PROBLEM 1. Fill in the following addition and multiplication tables (using standard representatives for equivalence classes for convenience, e.g., 3 instead of [3]).

		+	0	1	2	3	$\begin{vmatrix} 4 \end{vmatrix}$			0	1	2	3	4	
		0							0						
		1							1						
		2							2						
		3						_	3						
		4							4						
	+	0	1	2	3	4	5			0	1	2	3	4	5
	0								0						
	1								1						
	2								2						
	3								3						
	4								4						
	5								5						

PROBLEM 2. Why are all of the tables in the previous problem symmetric about the diagonal from top-left to bottom-right? Do you see any other patterns?

PROBLEM 3. Let $a, b \in \mathbb{Z}$. When is $a = b \mod 2$? When is $a = b \mod 1$? When is $a = b \mod 0$? List the equivalence classes in each case, i.e., the elements of $\mathbb{Z}/n\mathbb{Z}$, for n = 2, 1, 0.

PROBLEM 4. Use modular arithmetic to find the last two digits of the following two numbers: $101^{(10^{1000}+2021)}$ and $99^{(10^{1000}+2021)}$.

PROBLEM 5 (Challenge). Let $a_1 = 3$, and for n > 0, define $a_n = 3^{a_{n-1}}$. Thus, $a_2 = 3^3 = 27$, and $a_3 = 3^{3^3} = 3^{27}$. What is the last digit of a_{100} ? (Hint: start by considering the last digits of 3, 3^2 , 3^3 , 3^4 , etc., until you see a pattern. You may start to think that the number 4 is significant.)