PROBLEM 1. Fill in the following addition and multiplication tables (using standard representatives for equivalence classes for convenience, e.g., 3 instead of [3]).

SOLUTION:

		+	0	1	2	3	4		•	0	1	2	3	4	
$\mathbb{Z}/5\mathbb{Z}$		0	0	1	2	3	4	•	0	0	0	0	0	0	
		1	1	2	3	4	0		1	0	1	2	3	4	
		2	2	3	4	0	1		2	0	2	4	1	3	
		3	3	4	0	1	2	•	3	0	3	1	4	2	
		4	4	0	1	2	3	-	4	0	4	3	2	1	
$\mathbb{Z}/6\mathbb{Z}$	+	0	1	2	3	4	5		•	0	1	2	3	4	5
	0	0	1	2	3	4	5		0	0	0	0	0	0	0
	1	1	2	3	4	5	0	-	1	0	1	2	3	4	5
	2	2	3	4	5	0	1		2	0	2	4	0	2	4
	3	3	4	5	0	1	2		3	0	3	0	3	0	3
	4	4	5	0	1	2	3	•	4	0	5	2	0	4	2
	5	5	0	1	2	3	4	-	5	0	5	4	3	2	1

PROBLEM 2. Why are all of the tables in the previous problem symmetric about the diagonal from top-left to bottom-right? Do you see any other patterns?

SOLUTION: That is because addition and multiplication in $\mathbb{Z}/n\mathbb{Z}$ are commutative: [a]+[b] = [b] + [a] and [a][b] = [b][a]. Said another way, $a + b = b + a \mod n$ and $ab = ba \mod n$. Some other patterns:

- (a) The rows of the addition table are cyclic shifts of each other.
- (b) The equivalence classes for 0 and 1 behave as one might expect with respect to addition and multiplication.
- (c) In the bottom row and last column of the multiplication tables, the classes besides [0] are listed in reverse order.

PROBLEM 3. Let $a, b \in \mathbb{Z}$. When is $a = b \mod 2$? When is $a = b \mod 1$? When is $a = b \mod 1$? When is $a = b \mod 0$? List the equivalence classes in each case, i.e., the elements of $\mathbb{Z}/n\mathbb{Z}$, for n = 2, 1, 0.

SOLUTION: We have $a = b \mod 2$ exactly when a and b are both even or if they are both odd. There are two equivalence classes, [0] and [1].

We have $a = b \mod 1$ when $a - b = 1 \cdot k$ for some $k \in \mathbb{Z}$. But there is always such a k, namely, k = a - b. Thus, $a = b \mod 1$ holds for all a and b. There is one equivalence class, [0].

We have $a = b \mod 0$ when $a - b = 0 \cdot k$, i.e., when a - b = 0. So a and b are equal modulo 0 if and only if a = b. The equivalence classes are [a] for $a \in \mathbb{Z}$, and each equivalence class just contains one element.

PROBLEM 4. Use modular arithmetic to find the last two digits of the following two numbers: $101^{(10^{1000}+2021)}$ and $99^{(10^{1000}+2021)}$.

SOLUTION: To find the last two digits, we find standard representatives modulo 100. Now $101 = 1 \mod 100$. So

$$101^{(10^{1000}+2021)} = 1^{(10^{1000}+2021)} = 1 \mod 100.$$

The last two digits are 01. Similarly, $99 = -1 \mod 100$. So

$$99^{(10^{1000}+2021)} = (-1)^{(10^{1000}+2021)} = -1 = 99 \mod 100,$$

since $10^{10^{1000}+2021}$ is odd. The last two digits in this case are 99.

PROBLEM 5 (Challenge). Let $a_1 = 3$, and for n > 0, define $a_n = 3^{a_{n-1}}$. Thus, $a_2 = 3^3 = 27$, and $a_3 = 3^{3^3} = 3^{27}$. What is the last digit of a_{100} ? (Hint: start by considering the last digits of 3, 3^2 , 3^3 , 3^4 , etc., until you see a pattern. You may start to think that the number 4 is significant.)

SOLUTION: To find the last digit, work modulo 10. We have $3^4 = 81 = 1 \mod 10$. Therefore, the last digit of 3^n for any n is determined by the equivalence class of n modulo 4. For instance,

$$3^{n+4} = 3^n \cdot 3^4 = 3^n \mod 10.$$

So to find a_{100} , we need to find a_{99} modulo 4. Since $3 = -1 \mod 4$, we have

$$a_{99} = 3^{a_{98}} = (-1)^{a_{98}} = -1 = 3 \mod 4$$

since a_{98} is odd. Then

$$a_{100} = 3^{a_{99}} = 3^3 = 27 = 7 \mod 10$$