Problem 1. Fill in the following addition and multiplication tables (using standard representatives for equivalence classes for convenience, e.g, 3 instead of [3]).

\cdot	0	1	2	3	4
0					
1					
2					
3					
4					

\cdot	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Solution:

$\mathbb{*} \mathbb{Z} / 5 \mathbb{Z}$| + | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

\cdot	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$\mathbb{Z} / 6 \mathbb{Z}$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	5	2	0	4	2
5	0	5	4	3	2	1

Problem 2. Why are all of the tables in the previous problem symmetric about the diagonal from top-left to bottom-right? Do you see any other patterns?

Solution: That is because addition and multiplication in $\mathbb{Z} / n \mathbb{Z}$ are commutative: $[a]+[b]=$ $[b]+[a]$ and $[a][b]=[b][a]$. Said another way, $a+b=b+a \bmod n$ and $a b=b a \bmod n$.
Some other patterns:
(a) The rows of the addition table are cyclic shifts of each other.
(b) The equivalence classes for 0 and 1 behave as one might expect with respect to addition and multiplication.
(c) In the bottom row and last column of the multiplication tables, the classes besides [0] are listed in reverse order.

Problem 3. Let $a, b \in \mathbb{Z}$. When is $a=b \bmod 2$? When is $a=b \bmod 1$? When is $a=$ $b \bmod 0$? List the equivalence classes in each case, i.e., the elements of $\mathbb{Z} / n \mathbb{Z}$, for $n=2,1,0$.

Solution: We have $a=b \bmod 2$ exactly when a and b are both even or if they are both odd. There are two equivalence classes, [0] and [1].
We have $a=b \bmod 1$ when $a-b=1 \cdot k$ for some $k \in Z$. But there is always such a k, namely, $k=a-b$. Thus, $a=b \bmod 1$ holds for all a and b. There is one equivalence class, [0].
We have $a=b \bmod 0$ when $a-b=0 \cdot k$, i.e., when $a-b=0$. So a and b are equal modulo 0 if and only if $a=b$. The equivalence classes are $[a]$ for $a \in \mathbb{Z}$, and each equivalence class just contains one element.

Problem 4. Use modular arithmetic to find the last two digits of the following two numbers:

$$
101^{\left(10^{1000}+2021\right)} \quad \text { and } \quad 99^{\left(10^{1000}+2021\right)}
$$

Solution: To find the last two digits, we find standard representatives modulo 100. Now $101=1 \bmod 100$. So

$$
101^{\left(10^{1000}+2021\right)}=1^{\left(10^{1000}+2021\right)}=1 \bmod 100 .
$$

The last two digits are 01 . Similarly, $99=-1 \bmod 100$. So

$$
99^{\left(10^{1000}+2021\right)}=(-1)^{\left(10^{1000}+2021\right)}=-1=99 \bmod 100,
$$

since $10^{10^{1000}+2021}$ is odd. The last two digits in this case are 99 .
Problem 5 (Challenge). Let $a_{1}=3$, and for $n>0$, define $a_{n}=3^{a_{n-1}}$. Thus, $a_{2}=3^{3}=27$, and $a_{3}=3^{3^{3}}=3^{27}$. What is the last digit of a_{100} ? (Hint: start by considering the last digits of $3,3^{2}, 3^{3}, 3^{4}$, etc., until you see a pattern. You may start to think that the number 4 is significant.)

Solution: To find the last digit, work modulo 10. We have $3^{4}=81=1 \bmod 10$. Therefore, the last digit of 3^{n} for any n is determined by the equivalence class of n modulo 4 . For instance,

$$
3^{n+4}=3^{n} \cdot 3^{4}=3^{n} \bmod 10
$$

So to find a_{100}, we need to find a_{99} modulo 4 . Since $3=-1 \bmod 4$, we have

$$
a_{99}=3^{a_{98}}=(-1)^{a_{98}}=-1=3 \bmod 4
$$

since a_{98} is odd. Then

$$
a_{100}=3^{a_{99}}=3^{3}=27=7 \bmod 10 .
$$

