PROBLEM 1. Let A be the set of all lines in the plane. Is the relation "is parallel to" on A an equivalence relation? If not, which properties prevent if from being so. (Take "parallel" to mean "same slope" rather than "non-intersecting". How does this affect your answer?)

SOLUTION: This is an equivalence relation but would not be if we took "parallel" to mean "non-intersecting".

Reflexivity. A line has the same slope as itself. Hence, the relation is reflexive. If, on the other hand, we took "parallel" to mean "non-intersecting", then reflexivity would not hold.

Symmetry. If line L is parallel to line M, then line M is parallel to line L. Hence, the relation is symmetric.

Transitivity. If L, M, N are lines and L is parallel to M and M is parallel to N, then L is parallel to N. Hence, the relation is transitive. If we took "parallel" to mean non-intersecting, we would not have transitivity: consider the case where L = N.

PROBLEM 2. Let A be the set of all lines in the plane. Is the relation "is perpendicular to" on A an equivalence relation? If not, which properties prevent if from being so.

SOLUTION: This is not an equivalence relation.

Reflexivty. A line is not perpendicular to itself.

Symmetry. If line L is perpendicular to line M, then M is perpendicular to L. Hence, the relation is symmetric.

Transitivity. Let L, M, N be lines. If L is perpendicular to M and M is perpendicular to N, then L and N are parallel, not perpendicular. Hence, the relation is not transitive.

PROBLEM 3. For $a, b \in \mathbb{Z}$, say $a \sim b$ if a - b = 2k for some $k \in \mathbb{Z}$. In other words, $a \sim b$ if a - b is an even integer. Prove that \sim is an equivalence relation on \mathbb{Z} following the template below:

Theorem. Define a relation \sim on a set A by blah, blah, blah. Then \sim is an equivalence relation.

Proof. Let $a, b, c \in A$.

Reflexivity. We have $a \sim a$ since blah, blah, blah. Therefore, \sim is reflexive.

Symmetry. Suppose that $a \sim b$. Then, blah, blah, blah. It follows that $b \sim a$. Therefore \sim is symmetric.

Transitivity. Suppose that $a \sim b$ and $b \sim c$. Then blah, blah, blah. It follows that $a \sim c$. Therefore, \sim is transitive.

Since \sim is reflexive, symmetric, and transitive, it follows that \sim is an equivalence relation.

SOLUTION:

Proof. Let $a, b, c \in \mathbb{Z}$.

Reflexivity. For each $a \in \mathbb{Z}$, we have $a \sim a$ since $a - a = 0 = 2 \cdot 0$, i.e., a - a is even. Therefore, \sim is reflexive.

Symmetry. Suppose that $a \sim b$. Then, a - b = 2k for some $k \in \mathbb{Z}$. But then, b - a = 2(-k). It follows that $b \sim a$. Therefore \sim is symmetric.

Transitivity. Suppose that $a \sim b$ and $b \sim c$. Then a - b = 2k and b - c = 2k' for some $k, k' \in \mathbb{Z}$. But then

$$a-c = (a-b) + (b-c) = 2k - 2k' = 2(k-k').$$

It follows that $a \sim c$. Therefore, \sim is transitive.

Since \sim is reflexive, symmetric, and transitive, it follows that \sim is an equivalence relation.