Problem 1. Compute $\sum_{k=-2}^{2}(3 k+2)$ and show that it equals $3 \sum_{k=-2}^{2} k+\sum_{k=-2}^{2} 2$.
Solution: We have

$$
\begin{aligned}
\sum_{k=-2}^{2}(3 k+2) & =(3(-2)+2)+(3(-1)+2)+(3(0)+2)+(3(1)+2)+(3(2)+2) \\
& =-4-1+2+5+8 \\
& =10
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
3 \sum_{k=-2}^{2} k+\sum_{k=-2}^{2} 2 & =3(-2-1+0+1+2)+(2+2+2+2+2) \\
& =3(0)+10 \\
& =10
\end{aligned}
$$

Problem 2. Use induction to prove that each $n \geq 1$,

$$
1 \cdot 2+2 \cdot 3+\cdots+n \cdot(n+1)=\frac{n(n+1)(n+2)}{3}
$$

Solution: We will prove this by induction. The base case, $n=1$, holds since

$$
1 \cdot 2=\frac{1(1+1)(1+2)}{3}
$$

Now suppose that the result holds for some $n \geq 1$. It follows that
$1 \cdot 2+2 \cdot 3+\cdots+(n+1)(n+2)=(1 \cdot 2+2 \cdot 3+\cdots+n(n+1))+(n+1)(n+2)$

$$
\begin{aligned}
& =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \quad \text { (by the induction hypothesis) } \\
& =(n+1)(n+2)\left(\frac{n}{3}+1\right) \quad \text { (factoring) } \\
& =\frac{(n+1)(n+2)(n+3)}{3} \\
& =\frac{(n+1)((n+1)+1)((n+1)+2)}{3}
\end{aligned}
$$

The result then holds for the case $n+1$, as well. The result follows by induction.

Alternative solution. We will prove this by induction. The base case, $n=1$, holds since

$$
\sum_{k=1}^{1} k(k+1)=1(1+1)=2=\frac{1(1+1)(1+2)}{3}
$$

Now suppose that the result holds for some $n \geq 1$. It follows that

$$
\begin{aligned}
\sum_{k=1}^{n+1} k(k+1) & =\sum_{k=1}^{n} k(k+1)+(n+1)(n+2) \\
& =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \quad \text { (by the induction hypothesis) } \\
& =(n+1)(n+2)\left(\frac{n}{3}+1\right) \quad \text { (factoring) } \\
& =\frac{(n+1)(n+2)(n+3}{3} \\
& =\frac{(n+1)((n+1)+1)((n+1)+2)}{3}
\end{aligned}
$$

The result then holds for the case $n+1$, as well. The result follows by induction.
Problem 3. Let $a>-1$ be a real number. Use induction to show that for all integers $n \geq 0$,

$$
(1+a)^{n} \geq 1+n a .
$$

(Note: for any nonzero real number x, we have that $x^{0}=1$, by definition.)
Solution: We will prove this by induction. The base case, $n=0$, holds since

$$
(1+a)^{0}=1 \geq 1=1+0 \cdot a
$$

Suppose the result holds from some $n \geq 0$. Then

$$
\begin{array}{rlr}
(1+a)^{n+1} & =(1+a)^{n}(1+a) \\
& \geq(1+n a)(1+a) \quad & \\
& =1+(n+1) a+n a^{2} & \\
& \geq 1+(n+1) a & \quad \text { and the fact that } 1+a>0) \\
& & \\
& & \\
& \text { since } \left.n a^{2} \geq 0\right) .
\end{array}
$$

Thus, the result then holds for $n+1$, too. The result holds for all $n \geq 0$ by induction.

