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Quantum-state tomography of single-photon entangled states
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We have performed quantum-state tomography on several different single-photon entangled states, that is, states
in which a single photon is shared between two possible paths. We begin by doing a tomographic reconstruction
of density matrices in the subspace where a single photon is shared by two spatial modes. In this subspace we
are able to create high-fidelity, path-entangled states. Also within this subspace we use the Akaike information
criterion and Monte Carlo simulations to help us estimate the amount and source of state drift in our system. We
find that the primary state drift is due to phase drifts and fluctuations on the order of 7 /400 in our experimental
apparatus. We then use the single-photon subspace density matrices and further measurements to estimate density
matrices in the larger space consisting of two modes containing up to one photon each. In this larger space we find
that the concurrence of the density matrices is C = 0.08 and is greater than O by at least 45 standard deviations,

indicating that our states are indeed entangled.
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I. INTRODUCTION

Consider a single photon incident on a beam splitter, as
shown in the upper-left corner of Fig. 1. The photon can be
reflected, or transmitted where it then undergoes a phase shift
6. The single photon is now shared between both output modes,
and its state can be written as

[¥) = al1),10); + be|0), 1), = al1,0) + be[0,1). (1)

Here a and b are real numbers determined by the beam
splitter reflectivity and that satisfy the normalization condition
a® 4+ b*> = 1. Equation (1) represents a mode-entangled state
of a single photon [1,2], and states of this form have potential
applications in quantum networking [3]. These states are also
known as single-photon entangled states.

There are several ways to perform state measurements on,
or to witness entanglement in, single-photon entangled states.
One way is to perform homodyne detection on each of the
output modes from the beam splitter and use these measure-
ments to tomographically determine the full joint quantum
state [4]. Other techniques determine an entanglement witness
rather than the full quantum state [5,6]. Violations of Bell-type
inequalities have been reported for single-photon entangled
states [4,7], as has a violation of an Einstein-Podolsky-Rosen
steering inequality [8]. All of these techniques require a
local oscillator that is mode matched to the state being
measured.

Several experiments have been performed in which states
having the form of Eq. (1) have been stored in atomic
ensembles or crystals, and then read out and characterized
[9-12]. In each of these experiments entanglement was
demonstrated by measuring the concurrence of the density
matrix. The diagonal elements of the density matrix were
measured by photon counting, while the magnitudes of the
off-diagonal elements were determined by measuring both
photocounts and the visibility of a fringe pattern measured
at many different relative phases.
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Finally, we note that single-photon entangled states have
been successfully purified [13]. Purification of these states will
likely be necessary for them to be useful in practical quantum
networking applications operating over long distances.

Here we use a two-step process to measure our states,
and to demonstrate that they are entangled. We do not use
a local oscillator, but instead characterize the states using
photon counting, so our technique is more similar to those
of Refs. [9—12]. First we limit ourselves to the subspace of a
single photon. Within this subspace we measure the density
matrix of the path-entangled states using maximum-likelihood
quantum-state tomography [14]. This technique yields the
full complex density matrix, not just the magnitude of the
density matrix as was obtained in previous experiments using
photon counting. Also, since this measurement technique is
based on the standard tomographic technique of performing
measurements in different bases, it will be extendable to
measurements of single photons entangled in other degrees
of freedom beyond just their path after a beam splitter (e.g., in
polarization as well).

Furthermore, to characterize time-dependent drifts of the
state, we perform two separate sets of tomographic measure-
ments in succession. We use five projections for each suc-
cessive state determination, and we determine three different
states. The first is the state of the first five projections, the
second is the state of the second five projections, and the third
is the state determined by all ten projections. We then apply the
Akaike information criterion (AIC) as described in Ref. [15].
By comparing the AIC and other measures of the states to
Monte Carlo simulations of the experiments, we are able to
estimate the size of the state drift in our system. The AIC
has been used previously to characterize different aspects of
quantum systems [16,17]; here it is used to characterize the
drift of a quantum state.

Once the measurements that determine the state in the
single-photon subspace are complete, we perform further
measurements to determine the density matrix in the expanded
space containing up to one photon in each mode [9-12]. The
degree of entanglement is characterized by the concurrence
C of this density matrix, and C > 0 ensures that our state
is entangled within this larger space [9,18]. Finally, as a
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FIG. 1. (Color online) A single photon is incident on a beam
splitter, and the path-entangled state |/) is created at the output modes
of the beam splitter. An interferometer (dashed box) implements the
transformation U (¢;,¢,) and the outputs are detected.

further measure of the suppression of two-photon events in
our heralded one-photon source, we measure the degree of
second-order coherence g®(0) [19-22] and show that this
measurement is consistent with that of a single photon.

II. THEORY

A. Quantum-state tomography

Consider the configuration shown in Fig. 1. A single photon
is incident on a beam splitter, and the state |i) of Eq. (1) is
created at the beam splitter outputs (for the moment we assume
that we are working in the subspace of a single photon). The
two modes of this state are fed into the input ports of an
interferometer that is constructed of 50:50 beam splitters and
has two adjustable phases ¢; and ¢,. The unitary operator for
this interferometer, which transforms the input modes into the
modes at the two detectors, can be represented as

-1+ i$2
( e )>. )

1 [(—e' (1 4 €'%)
(14 ¢?)

U(¢]7¢2) = z ei¢l(1 i €i¢2)

Essentially, this interferometer behaves as a beam splitter
whose reflection and transmission coefficients can be adjusted
using ¢ and ¢;; this is what makes it useful for our purposes
here.

To perform quantum-state tomography, it is necessary to
make measurements in bases corresponding to different linear
combinations of the input states. For appropriate choices of
the phases, the transformations described by U (¢1,¢2) allow
one to do this. For example, when applying the transformation
U(0,0) the input states |1,0) and |0,1) are unchanged (apart
from inconsequential overall phase shifts), and are measured
directly by the detectors. The transformation U(wr/2,7/2)
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maps the states

1

= —(|1,0 0,1)), 3

V1) ﬁ(l ) +10,1)) 3)
1

= —(|1,0) — 10,1 4

[V2) ﬁﬂ ) —10,1)) “4)

onto the detectors, while U (0,77/2) maps the states

1

= —(|1,0) +i]0,1)), 5

[¥3) ﬁ(l ) +i10,1) (&)
1

= —(|1,0) —i]0,1 6

[V4) ﬁ(l ) —l0.1)) (6)

onto the detectors.
In the basis |0,1), |1,0), the single-photon entangled state
of Eq. (1) has as its density matrix representation

. b? abe™?
s = <abei" e > (7)

In general, within the subspace of a single photon, the density

matrix is given by
~y_ (B v
A0 = (V* a). (®)

Here y is complex, while ¢ and B are real and positive
and satisfy the normalization condition o + 8 = 1. We use
maximum-likelihood quantum-state tomography in order to
determine density matrices of this form [14]. For our two-
dimensional system this technique requires measurements to
be performed in a minimum of three different bases. We
perform measurements in five bases (i.e., five different settings
of ¢ and ¢;).

B. The Akaike information criterion

The AIC is a method to rank different models, in order to
determine which best fits a set of measured data. As described
by van Enk and Blume-Kohout in Ref. [15], the AIC assigns a
number €2 to each model k, given by

Qk = lnﬁk - Kk. (9)

Here L, is the maximum likelihood of model k, and K}, is the
number of independent parameters used in the model to fit the
data. Roughly speaking, the difference AQ = Q; — Qp is the
weight of evidence (in bits) of model k over model k’. The
basic idea behind the AIC is that models with larger likelihood
are better, but there is a “penalty” for increasing the number of
adjustable parameters in order to improve the model fit. This
is a way of guarding against overfitting the data.

In our experiments, for measurement j we acquire data
from N; qubits, the result being that a photon is registered at
either detector B or detector B’. We then change the settings of
the measurement apparatus (the phases of the interferometer)
and repeat this process, at a total of M measurement settings.
For measurement j the logarithm of the likelihood is given by

L9 = N; £ (p3) + N £ I (p%),  (10)

where féj ) and f ) are the fractions of the measurements
that yield B and B’, respectively, and pg) and pg,) are the
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probabilities of B and B’ measurements determined from the
density matrix returned by maximum-likelihood tomography.
The total logarithm of the likelihood is obtained by summing
over the M measurement settings:

M
InL = Zlnﬁ(j). (11)

j=1

We use five measurement settings and maximum-likelihood
tomography to determine a density matrix for one of our
experimentally produced states, and then repeat these five
measurements to determine a second density matrix. We then
use all ten measurements to determine the density matrix
of the entire ensemble. We refer to this ten-measurement
model as the standard model. Since it returns a single density
matrix with three independent, real parameters [Eq. (8)], it
has K; = 3 and returns an AIC value of €. The alternative
model uses the separate five-measurement subsets, and returns
two independent density matrices, which have a total of
six independent parameters. The alternative model thus has
K, = 6 and returns an AIC value of €2,. We then compute the
difference AQ = Q; — Q,.

To understand what we expect from the AIC difference,
first consider the unphysical situation in which there are no
fluctuations in the data, and hence all three density matrices
that we determine are the same. In this case the likelihoods of
the two models are the same, and the only difference between
them is the number of independent parameters. Since the
standard model uses three fewer parameters, it pays less of
a penalty, and we have AQ = 3. This positive value tells us
that the standard model is “better” because it contains the same
information, but uses fewer parameters.

If there is any drift in the state between measurements,
the three density matrices will be different. Note that in this
case the likelihood of the alternative model will be higher than
that of the standard model, as two separate density matrices
will be able to reflect this drift better than a single density
matrix. Thus, the question the AIC difference A2 helps us
to address is not which model is more likely, but whether or
not the additional free parameters of the alternative model are
justified. In an experiment we will always have AQ < 3.

The value of AQ2 gives us an idea of how much drift there
is in our states; larger values correspond to less drift. Even
if AQ is negative, indicating that there is drift in the state, it
may be that the amount of drift is within acceptable limits.
To assess this, we compare our experimental measurements of
A2 to Monte Carlo simulations of our data. These simulations
include the primary sources of experimental imperfections in
our experiments: Poissonian noise of the counting statistics,
accidental coincidences due to our finite coincidence windows,
and phase drift and fluctuations in the interferometer. The
simulations help us to obtain an understanding of how these
imperfections influence the state drift in our experiments.

C. Concurrence of p in the larger Hilbert space

Above we have assumed that our Hilbert space contains
exactly one photon. However, our heralded photon source is
not 100% efficient, so there is some probability that there are
zero photons present. There is also a very small probability that
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there are two photons within the coincidence window of our de-
tectors. We must allow for these possibilities when examining
whether or not the states that we measure are truly entangled.

To do this, we construct the density matrix for our
experimentally determined states within a larger Hilbert space
that contains up to one photon in each output port of the first
beam splitter of Fig. 1. Following Chou et al. we write this
density matrix as [9]

po O 0 0

Q) _ 0 Poi d 0 12
P = . : (12)
0 d po O

0 0 0 pu

This matrix is written in the basis |n),|m),, with the number
of photons in the reflected or transmitted modes being O or 1.
The form of Eq. (12) assumes that the off-diagonal elements
corresponding to different numbers of photons in the two
modes are zero, and that terms with two or more photons
per mode are also zero. It can be shown that these assumptions
can only decrease the amount of measured entanglement, so
they set a lower bound on the amount of entanglement actually
present in the experiments [9].

To determine this density matrix, after the ten measure-
ments that determine the state /) in the subspace of a
single photon, we set the phases of our interferometer (Fig. 1)
to ¢1 = ¢ = 0 and perform ten more measurements. (Ten
measurements allow us to determine the standard deviation
of our measurements, which we use to express all of our
errors.) This setting directs the two modes after the first beam
splitter (Fig. 1) directly onto the detectors B and B’, so we
can determine the probabilities of obtaining O or 1 photons in
each beam. For our spontaneous parametric down-conversion
source, in which the presence of a signal photon in our
interferometer is heralded by the detection of an idler photon
at detector A, the probability of detecting one photon in each
interferometer beam is

Napp
Ny

Here we use the notation that within our measurement time
N; is the number of counts on detector j, Ny; is the number
of coincidences between detectors A and j, and Napp is the
measured number of threefold coincidences. The probability
of detecting a single photon (in either mode) is given by

_ (Nap — Napp) + (Nap — Nagp)

P11 = (13)

P
Ny
N Nap —2Napp
_ Nas + Nap ABE (14)
Ny
and the probability of detecting zero photons is
Nap + Nap — Nagp
po=1—(Pi+pn)=1- . (15

Ny

We use the probability P; to scale our measured density ma-
trix in the one-photon subspace p [Eq. (8)], yielding the ma-
trix elements py; = P18, pio = P1o, and d = P;y. Since we
determine the full complex y in the single-photon subspace, we
obtain the complex value of the off-diagonal matrix element d.
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We can find a lower bound on the entanglement in our
system by measuring the concurrence C of p® [9,18]. The
concurrence is given by

C = max(2|d| — 2+/poopi1,0). (16)

D. Measuring g®(0)

A common figure of merit that describes the quality
of the production of single-photon states is the degree of
second-order coherence g‘®(0). Classical fields must satisfy
the inequality g®(0) > 1, while the degree of second-order
coherence for a source containing exactly n photons is [21]

g20)=1- % (17)

which is valid for n > 1. This means that an ideal source
containing a single photon has g®(0) = 0, while a source
containing exactly two photons has g (0) = 1/2.

As was shown by Grangier et al., the degree of second-order
coherence of the signal beam, conditioned on the detection of
an idler photon, can be expressed in terms of the measured
photocounts as [19,20]

¢@(0) = M_ (18)
NapNap

In our experiments we use the ten measurements with the

phase settings ¢ = ¢, = 0 to determine g®(0).

III. EXPERIMENTS

In our experiments we use a 150 mW, 405 nm laser diode
to pump a 3-mm-long B barium borate (BBO) crystal. This
produces type-I spontaneous parametric down-conversion at
810nm, with signal and idler beams making angles of 3°
from the pump. The idler beam is focused into a single-
mode, polarization-preserving optical fiber, filtered by RG780
colored glass and a 10 nm bandpass filter centered at 810 nm,
and detected by a single-photon-counting module (SPCM),
which we refer to as detector A. Detection of an idler
photon heralds the production of a single photon in the signal
beam. The signal beam is also focused into a single-mode,
polarization-preserving optical fiber. The output of this fiber
is then collimated and passed on to our interferometer.

Figure 1 represents a simplified version of our interferom-
eter, while the interferometer that we actually use is shown in
Fig. 2. This interferometer consists of two modified Sagnac
interferometers in series; they are modified in the sense that
the two counterpropagating directions do not overlap, but are
spatially separated. Heralded single photons from the output of
the signal-beam fiber strike the 50:50 beam splitter. Both the
clockwise and counterclockwise beams pass through micro-
scope slides, one of which is mounted to a tilt stage controlled
by a stepper motor that allows us to adjust the phase ¢; in a
controlled manner. The fixed microscope slide in the other path
is necessary to equalize both the path lengths and the disper-
sions of the two counterpropagating directions, a necessity for
seeing high-visibility interference with our broad-bandwidth
single-photon source. The counterpropagating beams of this
first Sagnac interferometer recombine at the beam splitter,
and the outputs become the counterpropagating beams of the
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FIG. 2. (Color online) The series interferometers used in the
experiments. Each modified Sagnac interferometer has microscope
slides in each of the two counterpropagating beams. One of the slides
in each interferometer is tilted under the control of a stepper motor
in order to adjust the interferometer phase.

second interferometer. The second interferometer also contains
two microscope slides, one of which allows us to control
¢» with a second stepper motor. The beams in the second
interferometer recombine at the beam splitter before exiting.

The interferometer outputs are coupled into multimode
optical fibers, filtered with RG780 colored glass, and then
detected with SPCMs. These detectors are referred to as
B and B’. Counting of singles, twofold coincidences and
threefold coincidences is performed using a coincidence
counting unit implemented on an Altera DE2 board. The
coincidence windows of the AB and AB’ coincidences were
measured to be 7.8 and 7.7 ns, respectively. We do not subtract
accidental coincidences from our data, nor do we make any
other corrections for detection efficiency, etc.

The single-photon entangled state |i/) is created after the
first beam-splitter reflection. The phase angle 6 in the state
is adjusted by adding an offset to the phase ¢; (adding an
offset of —6 to ¢; creates a state with a phase of 9). We
have chosen to use Sagnac interferometers, rather than Mach-
Zehnder interferometers, for two reasons. The first is that
high-visibility interference with our 10 nm bandwidth source
requires that the pathlengths and dispersions of the beams be
nearly perfectly matched; this is more easily achieved using
Sagnac interferometers than Mach-Zehnder interferometers.
Furthermore, because the counter-propagating beams in a
modified Sagnac are nearly common-path, we find that these
interferometers are extremely stable against phase drifts. This
allows us to reliably adjust the phase angles ¢; and ¢, when
performing our measurements, without needing to resort to
active phase stabilization.

A. Phase calibration

In order to calibrate the phase of the first interferometer,
¢1, we block one of the beams in the second interferometer
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Coincidence Counts
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32 33 34 35 36 37 38

Stepper Motor Position (103steps)

FIG. 3. (Color online) Coincidence counts in 3 s as a function
of the position of the stepper motor that adjusts the interferometer
phase. Results for scanning the phase of the first interferometer, ¢,
are shown in (a), while results for scanning the phase of the second
interferometer, ¢,, are shown in (b). The measured data are shown as
points, while fits to the measured data are shown as solid lines [the
lines in (a) are essentially on top of each other].

and scan the stepper motor that tilts the microscope slide
that adjusts this phase. Coincidence counts between the
heralding detector A and detectors B and B’ at the outputs
of the interferometer are shown in Fig. 3(a). Notice that the
interference patterns on each detector oscillate with the same
phase. This is because by blocking one of the arms in the
second interferometer we are monitoring a single output from
the first interferometer. This single output splits equally on the
final beam splitter, so we expect the two outputs to be the same.
We fit these data with cosine functions, and from the fits we
determine ¢; as a function of the motor position. We find that
¢, varies quadratically with the motor position. (The phase
variation is predominantly linear, but there is a small quadratic
contribution.) This calibration of ¢; as a function of the motor
position is used to set the phase in subsequent measurements
used to perform tomographic state reconstruction.

In order to calibrate the phase of the second interferometer,
¢», we follow the same basic procedure: We block one of the
arms of the first interferometer and scan the stepper motor that
tilts the microscope slide that adjusts ¢,. Coincidence counts
that result from doing this are shown in Fig. 3(b). In this case
we are blocking one of the inputs to the interferometer and
monitoring the two outputs, so the fringe patterns are expected
to be out of phase with each other, which is what we observe.
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Fits to this data show that ¢, also varies quadratically with
the motor position. The visibility of each of the interference
patterns shown in Fig. 3, determined from the fits, is 98% or
greater.

B. State measurements in the single-photon subspace

As described above, we perform ten total measurements and
determine three different density matrices /") in the subspace
of a single photon. Each measurement has an integration time
of 30 s.

We characterize our measured states using several quanti-

ties. The purity of the state is given by P = Tr{(p")’], where
Tr indicates the trace. Pure states have P = 1, while for any
nonpure state P < 1. The amount of overlap between two
states described by density matrices p; and p, can be expressed
as the fidelity, F, which is defined as [14,23]

F = (Trly/ /b1 pa/ 1) (19)

The fidelity takes on values 0 < F < 1, with F =1 corre-
sponding to p; = p,. We use F to quantify the overlap between
the measured state and the state that we were attempting to
prepare. When computing P and F, we use the density matrix
obtained from all ten measurements; we referred to this as the
standard model above.

Examples of measured density matrices, for states prepared
in |Y) and |y3) [Eqs. (4) and (5)], are shown in Fig. 4. The
purities and fidelities of these and other measured states are
given in Table I; note that in all cases the states have P > 0.95
and F > 0.97. This means that we are able to prepare and
measure the intended states with reasonably high purity and
fidelity.

(@) (b)
1 1
IA_| IT
e, 0 e 0
Q ]
~ ~
-1 -1
0,1) 0,1)
1,0 1,0
) 0.1 (10 ) .1 (10
State State
1 1
IA_\ IT|
0 o0
= g
-1 -1
0,1) 0,1)
1,0) 1,0
(0.1 (1,0 ) 0.1 (1,0
State State

FIG. 4. (Color online) The real and imaginary parts of the mea-
sured density matrices 5V, for measurements performed on states
prepared in (a) |v,) and (b) |v3). Green boxes correspond to positive
values, while red boxes correspond to negative values.
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TABLE I. The columns in this table correspond to the following
quantities: |y) is the state that is prepared, P is the purity of the
measured state, F is the fidelity of the measured state when compared
to |¢), and A is the AIC difference.

V) P F AQ
5 (11,0) +10,1)) 0.95 0.97 —5.7
25(11,0) = 10,1) 0.97 0.98 -0.5
25(11,0) +10,1)) 0.99 0.97 -33
25(11,0) = [0, 1)) 0.98 0.97 ~11

Also shown in Table I is the value of the AIC difference A2
for each of the measured states. The values in this table are for
individual state measurements, but we find that they are typical
values obtained when our system is well aligned and allowed
to come to equilibrium. For example, we most often obtain
values for AQ between —10 and 0, but we do measure lower
values. Since the measured values of A2 are negative, there
is some drift in our states and thus the alternative model using
two density matrices is a better description for our states than a
single density matrix [15]. However, the question that remains
is just how much change is represented by these values of A€2.
One reason to suspect that the states do not change very much
is that for each model the values of the AIC in our experiments
are on the order of —200 000, so the values of A2 in Table I
represent a difference of less than a few parts in 10°.

Another way to quantify the state drift is to examine the
differences between the two density matrices that constitute
the alternative model (these density matrices are measured
one right after the other). For the state depicted in Fig. 4(a),
we find that the difference in the parameter 8 [Eq. (8)] for these
two density matrices is A = 0.005, and the difference in the
phase of the complex parameter y is A8 = 0.008 rad. We also
find that if we compute the fidelity of these two matrices, we
obtain F' = 0.9999, so they are very close to each other in
Hilbert space.

We have also performed Monte Carlo simulations of our
data, using the same average counting rates, etc., that we have
in our experiments. We simulate 1000 experimental runs and
look at the statistics of A2 and other parameters. If we include
the effects of Poissonian fluctuations of the photocounts and
accidental coincidences, but no phase drift or fluctuations in
our interferometer, we find that AQ = 1.5 4+ 1.3 (here, and
for all of the data from the simulations, the error bars are
one standard deviation), and 89% of the simulated trials yield
positive values for AS. If we add phase fluctuations having
a mean of 0 and a standard deviation of 7/400(0.008 rad)
to ¢; and ¢,, we find AQ = —4.3+£5.1, and only about
18% of the trials yield positive values of ASQ. For these
parameters the simulations yield A = 0+ 0.003 and A6 =
0 4 0.005 rad. If we simulate a phase shift of the state between
state measurements (A8) of 7 /400 and maintain the standard
deviation of the phase fluctuations at 7 /400, the results are
essentially the same, except that A6 = 0.008 £ 0.005 rad.

The results of the simulations with phase drift and
fluctuations on the order of 7 /400 are consistent with our
experimental measurements. We conclude from this that the
predominant source of state drift in our experiments is drift
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and fluctuations of approximately this size in the phases of our
interferometer. So, while our measurements are sensitive to
changes in the state over the 5 min that it takes us to measure
it, the state actually changes very little.

C. Entanglement in the larger Hilbert space

As described in Secs. II C and II D, immediately after per-
forming the measurements that determine ‘!, we perform ten
more measurements with ¢; = ¢, = 0 in order to determine
p? [Eq. (12)], C [Eq. (16)], and g®(0) [Eq. (18)]. We use 60 s
integration times for each of these measurements. We integrate
longer than we do when determining 5" because here we
need to determine the probability of having one photon in
each arm of the interferometer, p;;, which is a low-probability
event. Getting good statistics on this quantity requires a longer
integration time.

The magnitude of p®, corresponding to the same state as
that depicted in Fig. 4(a), is shown in Fig. 5. Table II shows the
measured values of several other quantities, all corresponding
to the same states that are listed in Table I. Here we see
that the largest density matrix element corresponds to having
no photons in the interferometer. Our heralding efficiency is
approximately 9%, leaving no photons in our interferometer
about 91% of the time. The probability of having one photon in
each arm of the interferometer is on the order of 10>, which
yields values for g®(0) that are approximately 0.01. These
values are consistent with those arising from the expected ac-
cidental coincidence rates in our system, and indicate that our
states contain only a very small two-photon contribution [24].

Finally, in Table II we see that our values for the concurrence
are C = 0.08. The concurrences are larger than 0 by between
45 and 89 standard deviations, so we can say with confidence
that our states are entangled. The concurrence is currently
limited by the ~9% overall heralding efficiency of our source.

1072

1073

1074

1073

(1,11
(1,0]
(0,11

0,0
0,1)
1,0)

I1.1) (0,01

State

FIG. 5. (Color online) The magnitude of the density matrix 5,
corresponding to the same state as depicted in Fig. 4(a). While our
measurements determine the full complex p®, we plot only the
magnitude in order to use a logarithmic scale on the vertical axis.
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TABLE II. The columns in this table correspond to the following quantities: C is the concurrence, g®(0) is the degree of second-order
coherence, pq is the probability of detecting zero photons, p; is the probability of detecting one photon in each beam. The errors represent

one standard deviation.

[¥) C g<2)(0) Poo Pu

%(H,O) +10,1)) 0.0796 + 0.0014 0.010 £ 0.003 0.9060 + 0.0004 22x107° 4+ 0.7 x 107
%(ll,O) —10,1)) 0.0857 + 0.0019 0.005 £+ 0.003 0.9043 + 0.0004 1.0 x 1072 +£0.7 x 1073
%(H,O) +]0,1)) 0.0805 £ 0.0009 0.013 £0.002 0.9076 + 0.0002 28 x 1072 4+0.5x 1073
%(ll,O) —1i]0,1)) 0.0826 + 0.0010 0.011 £0.002 0.9054 + 0.0003 2.6 x 107> 4+0.5 x 1073

Our detectors have a detection efficiency of 60%, and we find
that the coupling efficiency of our source into the single-mode
fibers yields a heralding efficiency of ~20%. Losses in the
interferometer and coupling into the detector fibers then reduce
the heralding efficiency to ~9%.

IV. CONCLUSIONS

We have prepared single-photon entangled states (states of a
single photon that takes two paths) and then characterized these
states in several ways. In the subspace of a single measured
photon, we determine the density matrices of these states with
maximum-likelihood quantum-state tomography. We are able
to prepare these states with high fidelity (F > 0.97), and the
measured states are found to be reasonably pure (P > 0.95).
We have used the Akaike information criterion and Monte
Carlo simulations to help us estimate the amount of time-
dependent drift in our states. We find that the state drift is
influenced by phase drifts and fluctuations on the order of
7/400 in our apparatus.

We also perform measurements in the larger space consist-
ing of up to one photon in each mode, and determine density
matrices in this space. We find that the concurrences of these
density matrices are C = 0.08, and are positive by at least 45
standard deviations for all of our measured states, indicating
that our states are indeed entangled. Simultaneous measure-
ments of g®(0) confirm that the two-photon component to our
states is quite small.

Note that our interferometer is largely independent of the
polarization of the photons [25]. As such we will be able to
use our apparatus and measurement technique to perform state
measurements on single photons that are entangled not only in
the path that they take, but in polarization as well.
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