Quantum Mysteries

Mark Beck

Dept. of Physics, Whitman College
Help from
J. Alex Carlson, Matt Olmstead

Thought Experiment

1) Describe the experiment
2) Describe some of the data we might collect during this experiment

- Results from a particular set of measurements

3) Given these results, we'll infer what we would expect to see if we performed a different measurement

- Logical implication

4) Describe what happens when we perform this other measurement

- Was our inference correct?

\qquad
Bob
Psyc 101:

Intro Psyc \quad| Psyc 999: |
| :--- |
| Theory of Everyone |

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

The Situation

Alice

- Randomly chooses Phys 101 or 999
- 101
- Prof wears red or blue \qquad
- 999
- Prof wears green or yellow

Bob

- Randomly chooses Psyc 101 or 999
- 101
- Prof wears red or blue
- 999
- Prof wears green or yellow

The Experiment

Every day Alice and Bob record which class they went to, and what color the Prof was wearing

Day			Alice			Bob	
1	101	B	101	B			
2	999	G	999	Y			
3	999	G	101	B			
4	999	Y	101	B			
5	101	R	999	G			
6	101	B	101	B			
7	999	Y	999	Y			
8	101	R	101	R			
9	999	G	101	R			
10	999	Y	999	G			

Day				Alice			Bob	
11	999	G	101	B				
12	101	B	999	Y				
13	999	Y	101	B				
14	101	R	999	G				
15	101	R	101	B				
16	999	G	101	R				
17	999	Y	999	G				
18	101	B	101	B				
19	101	B	999	Y				
20	999	G	999	Y				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analyzing the data

On days where they both went to 101
They SOMETIMES see RR (9\% of 101-101 visits) \qquad

Day	Alice		Bob	
1	101	B	101	B
2				
3				
4				
5				
6	101	B	101	B
7				
8	101	R	101	R
9				
10				

Day	Alice		Bob	
11				
12				
13				
14				
15	101	R	101	B
16				
17				
18	101	B	101	B
19				
20				

Analyzing the data

They SOMETIMES see RR (9\% of 101-101 visits)

1) Alice R, Bob R OK $\quad[P(R, R)=0.09]$

Analyzing the data

On days where they went to different classes:
RY (or YR) NEVER occur

Day	Alice		Bob	
1				
2				
3	999	G	101	B
4	999	Y	101	B
5	101	R	999	G
6				
7				
8				
9	999	G	101	R
10				

Day			Alice			Bob	
11	999	G	101	B			
12	101	B	999	Y			
13	999	Y	101	B			
14	101	R	999	G			
15							
16	999	G	101	R			
17							
18							
19	101	B	999	Y			
20							

Analyzing the data

If one measures R, the other ALWAYS measures G

1) Alice R, Bob R OK $\quad[P(R, R)=0.09]$
2) Alice $R \rightarrow$ Bob $G \quad[P(R, Y)=0]$
3) Bob $R \rightarrow$ Alice $G \quad[P(Y, R)=0]$

Clearly, the wardrobe choices of the faculty are NOT random.

Inference

On days where Alice and Bob both go to 101 and measure RR

- We know that such days are possible

$$
\text { - 1) Alice R, Bob R OK } \quad[P(R, R)=0.09]
$$

If Bob changes his mind and goes to 999:

- He MUST measure G
- 2) Alice $R \rightarrow$ Bob G $[P(R, Y)=0]$

If Alice changes her mind and goes to 999:

- She MUST measure G

$$
\text { = 3) Bob } R \rightarrow \text { Alice G } \quad[P(Y, R)=0]
$$

Must be possible for Alice and Bob to measure GG

- $\mathrm{P}(\mathrm{G}, \mathrm{G}) \geq 0.09$

Inference

Must be possible for Alice and Bob to measure GG - P(G,G)>0.09

The Data

Alice and Bob NEVER measure GG

- $P(G, G)=0$ \qquad

Explanation?

The faculty are playing with Alice and Bob's minds

- Somehow the faculty are communicating
" Cell phones?

Student Revenge

Alice and Bob decide to eliminate the possibility of communication

- Both come to class 5 minutes late
- No time to change
- They choose and enter their classrooms at the exact same time
- Leave no time for the faculty to communicate
- Buy 2 atomic clocks to do this

With these improvements

They measure:

1) Alice R, Bob R OK $\quad[P(R, R)=0.09]$ \qquad
2) Alice $R \rightarrow$ Bob G $\quad[P(R, Y)=0]$
3) Bob $R \rightarrow$ Alice $G \quad[P(Y, R)=0]$ \qquad
Same as before, so again they infer:
$P(G, G) \geq 0.09$ \qquad
They measure:
P(G,G)=0 \qquad
The changes made absolutely no difference.

What's going on?

Maybe I'm making up stories

- Half true

Do this experiment with real people

- Measure $P(G, G) \geq 0.09$

Do an equivalent experiment with microscopic particles (electrons, photons)

- Measure P(G,G)=0

People are macroscopic and obey the laws of classical physics
Photons are microscopic and obey the laws of quantum mechanics
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is the microscopic experiment?

Faculty \rightarrow Photons
Alice and Bob \rightarrow Detectors
Choice of 101 or $999 \rightarrow$ Choice of measurement
Color of faculty clothing \rightarrow Polarization of photon
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What's a Photon?

Great question. I wish I could answer it.
Photon is like a particle of light

- Only problem is that light is not made of particles, it's an electromagnetic wave
Light has both wave-like and particle-like properties
- Sometimes wave-like properties are more evident
- Sometimes particle-like properties are more evident

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

The Experiment

Faculty \rightarrow Photons
Alice and Bob \rightarrow Detectors
101 or $999 \rightarrow$ Polarizer Angle
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Experiment

Faculty \rightarrow Photons
Alice and Bob \rightarrow Detectors
101 or $999 \rightarrow$ Polarizer Angle
Clothing Color \rightarrow Measured Polarization

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

The Results

Classical Physics: $P(G, G) \geq 0.09$
Quantum Mechanics: $P(G, G)=0$

The Results

Classical Physics: $P(G, G) \geq 0.09$ Quantum Mechanics: $P(G, G)=0$

Winner is: Quantum Mechanics (By over 70 standard deviations)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Experiment

The Experiment

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

For certain experiments classical physics and quantum mechanics yield very different predictions

- QM is counterintuitive

Can experimentally test validity of QM \qquad

- We've done it here at Whitman

These experiments are suitable for an undergraduate laboratory

- Working on getting them into our curriculum

References

L. Hardy, "Nonlocality for two particles without inequalities for almost all entangled states,"
Phys. Rev. Lett. 71, 1665 (1993).
N.D. Mermin, "Quantum Mysteries Refined," Am. J.

Phys. 62, 880 (1994).
P.G. Kwiat and L. Hardy, "The Mystery of the Quantum Cakes," Am. J. Phys. 68, 33 (2000).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

