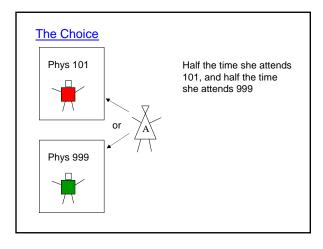
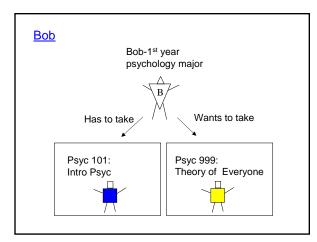
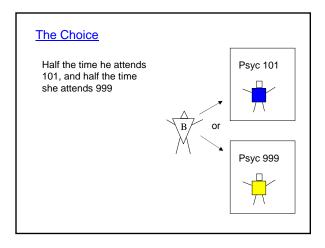
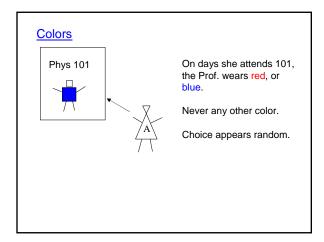

Quantum Mysteries

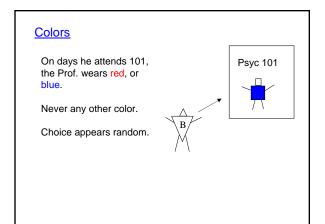

Mark Beck Dept. of Physics, Whitman College Help from J. Alex Carlson, Matt Olmstead

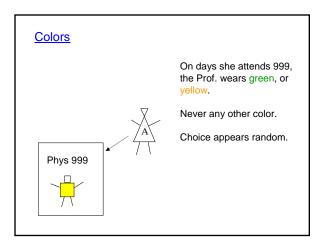
Thought Experiment

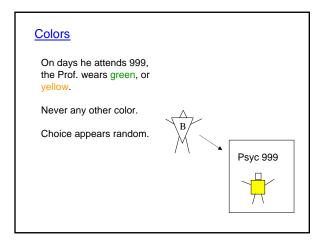

- 1) Describe the experiment
- 2) Describe some of the data we might collect during this experiment
- Results from a particular set of measurements
- Given these results, we'll *infer* what we would expect to see if we performed a different measurement
 - Logical implication
- 4) Describe what happens when we perform this other measurement
 - Was our inference correct?

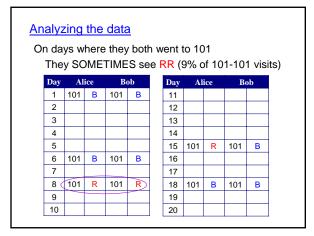








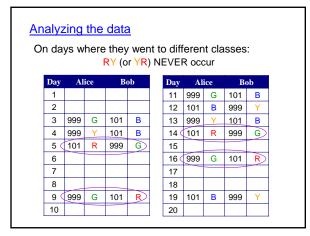




ne Experiment Every day Alice and Bob record which class they went to, and what color the Prof was wearing											
Day	Alice		Bob			Day	Alice		Bob		
1	101	В	101	В		11	999	G	101	В	
2	999	G	999	Y		12	101	В	999	Y	
3	999	G	101	В		13	999	Y	101	В	
4	999	Y	101	В		14	101	R	999	G	
5	101	R	999	G		15	101	R	101	В	
6	101	В	101	В		16	999	G	101	R	
7	999	Y	999	Y		17	999	Y	999	G	
8	101	R	101	R		18	101	В	101	В	
9	999	G	101	R		19	101	В	999	Y	
10	999	Y	999	G		20	999	G	999	Y	

Analyzing the data

They SOMETIMES see RR (9% of 101-101 visits)


1) Alice R, Bob R OK [P(R,R)=0.09]

Analyzing the data

On days where they went to different classes: If one measures R, the other ALWAYS measures G

Day	Alice		Bob		Day Alice		Bob		
1					11	999	G	101	В
2					12	101	В	999	Y
3	999	G	101	В	13	999	Y	101	В
4	999	Y	101	В	14 🤇	101	R	999	G
5 🤇	101	R	999	G	15				
6					16 🤇	999	G	101	R
7					17				
8					18				
9 🤇	999	G	101	R	19	101	В	999	Y
10					20				

Analyzing the data

If one measures R, the other ALWAYS measures G

1) Alice R, Bob R OK[P(R,R)=0.09]2) Alice R \rightarrow Bob G[P(R,Y)=0]3) Bob R \rightarrow Alice G[P(Y,R)=0]

Clearly, the wardrobe choices of the faculty are NOT random.

Inference

- On days where Alice and Bob both go to 101 and measure RR:We know that such days are possible
 - 1) Alice R, Bob R OK [P(R,R)=0.09]
- If Bob changes his mind and goes to 999:
 - He MUST measure G
 - 2) Alice R → Bob G [P(R,Y)=0]
- If Alice changes her mind and goes to 999:
 - She MUST measure G
 - 3) Bob R → Alice G [P(Y,R)=0]
- Must be possible for Alice and Bob to measure GG
 - P(G,G)<u>></u>0.09

Inference

The Data

Alice and Bob NEVER measure GG • P(G,G)=0

Explanation?

The faculty are playing with Alice and Bob's minds

Somehow the faculty are communicating
Cell phones?

Student Revenge

Alice and Bob decide to eliminate the possibility of communication

- Both come to class 5 minutes late
 No time to change
- They choose and enter their classrooms at the exact same time
 - Leave no time for the faculty to communicate
 - Buy 2 atomic clocks to do this

With these improvements

They measure:

1) Alice R, Bob R OK [P(R,R)=0.09]2) Alice R \rightarrow Bob G [P(R,Y)=0]3) Bob R \rightarrow Alice G [P(Y,R)=0]Same as before, so again they infer: $P(G,G)\geq 0.09$ They measure: P(G,G)=0

The changes made absolutely no difference.

What's going on?

Maybe I'm making up stories

Half true

Do this experiment with real people

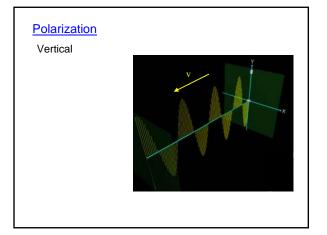
Measure P(G,G)<u>></u>0.09

Do an equivalent experiment with microscopic particles (electrons, photons)

Measure P(G,G)=0

People are macroscopic and obey the laws of classical physics

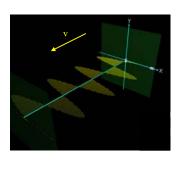
Photons are microscopic and obey the laws of quantum mechanics

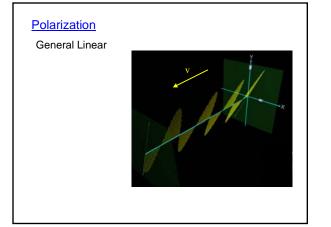

What is the microscopic experiment?

Faculty → Photons Alice and Bob → Detectors Choice of 101 or 999 → Choice of measurement Color of faculty clothing → Polarization of photon

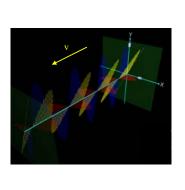
What's a Photon?

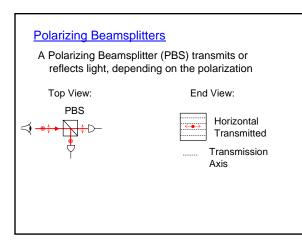
Great question. I wish I could answer it. Photon is like a particle of light


- Only problem is that light is not made of particles, it's an electromagnetic wave
- Light has both wave-like and particle-like properties
 - Sometimes wave-like properties are more evident
 - Sometimes particle-like properties are more evident



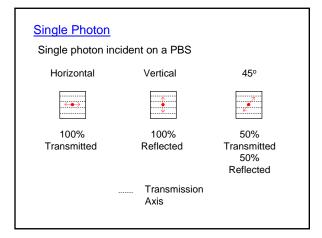
Polarization

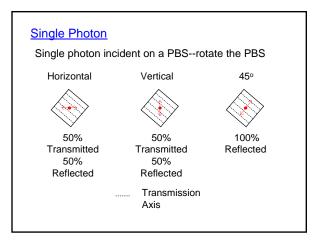

Horizontal

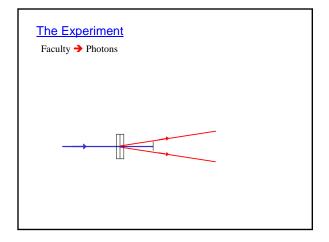


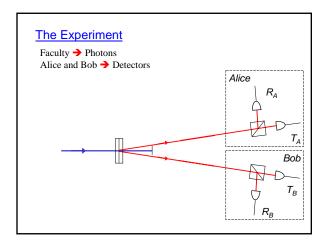
Polarization

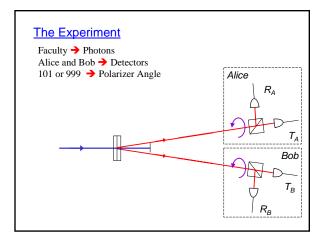

General Linear has both vertical and horizontal components

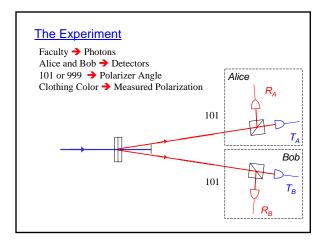


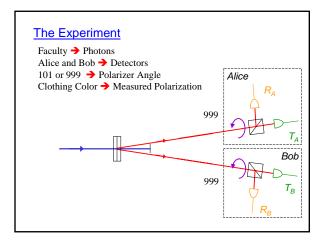


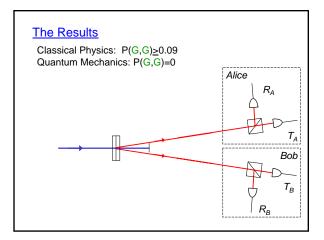


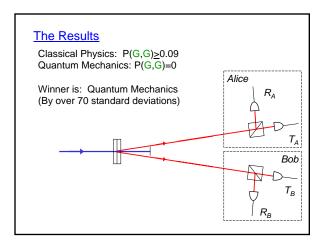


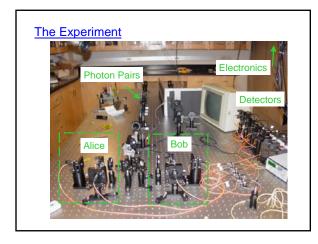




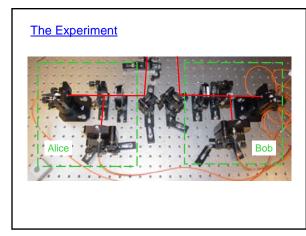


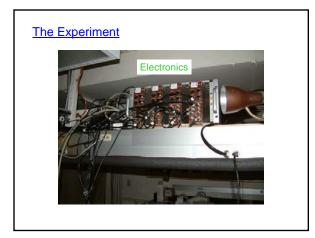


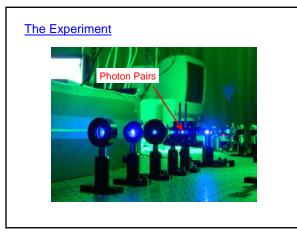












Conclusions

- For certain experiments classical physics and quantum mechanics yield very different predictions
 - QM is counterintuitive
- Can experimentally test validity of $\ensuremath{\mathsf{QM}}$
 - We've done it here at Whitman
- These experiments are suitable for an undergraduate laboratory
 - Working on getting them into our curriculum

References

- L. Hardy, "Nonlocality for two particles without inequalities for almost all entangled states," Phys. Rev. Lett. **71**, 1665 (1993).
- N.D. Mermin, "Quantum Mysteries Refined," Am. J. Phys. 62, 880 (1994).
- P.G. Kwiat and L. Hardy, "The Mystery of the Quantum Cakes," Am. J. Phys. **68**, 33 (2000).