Experiments with Individual Photons in an Undergraduate Lab

Mark Beck

Dept. of Physics, Whitman College

With lots of help from:

Faculty: R. Davies (U of Oxford)

Students: J. Thorn (Oregon), M. Neel (Oregon St.),

- V. Donato (Oregon St.), A. Gogo (Dartmouth), W. Snyder, M. Olmstead (Utah), J.A. Carlson,
- G. Bergreen
- Support: NSF, Whitman College

Quantum Mechanics

Quantum information is changing how we think about quantum systems.

- Convey this to students
- Many experiments involve photons
- Doable by undergraduates

Project Goals

- Develop a series of advanced undergraduate laboratories exploring modern aspects of quantum mechanics
 - Study the properties of individual photons
- 2) Develop course materials that take advantage of these labs
 - Use photon polarization as an example 2dimensional quantum system

New Course

Will be taught this fall

Four experiments

- Spontaneous parametric downconversion
- Proving light is made of photons
- Single photon interference
- Test of local-realism

#2 Light is Made of Photons

Т

 ∇R

If a single photon is incident on a beamsplitter, it can only go one way •Only one detector will fire •No coincident detections

"...a single photon can only be detected once!" - P. Grangier et al.

 $\lambda/2$

C R

Ľ

 $P_{GTR} = \frac{N_{GTR}}{N}$ N_G

 $P_{GT} =$ N_G N_{GR} $P_{GR} =$ N_{G}

 N_{GT}

Our Experiment

Everything is conditioned on a detection at G:

 $g^{(2)}(0) = \frac{P_{GTR}}{P_{GT}P_{GR}}$

Integration time per pt.	Number of pts.	Total acq. time	$g^{(2)}(0)$	St. dev. of $g^{(2)}(0)$
2.7 s	110	~ 5 min.	0.0188	0.0067
5.4 s	108	~ 10 min.	0.0180	0.0041
11.7 s	103	~ 20 min.	0.0191	0.0035
23.4 s	100	~ 40 min.	0.0177	0.0026

In 5 minutes of counting we violate the classical inequality $g^{(2)}(0) \ge 1$ by 146 standard deviations.

Why not 0?

Perfect single photons have $g^{(2)}(0) = 0$.

• i.e., we expect <u>no</u> coincidences between *T* and *R*

Why do we measure $g^{(2)}(0) = 0.0177 \pm 0.0026$?

Accidental coincidences

• Due to finite coincidence window (2.5 ns) Expected accidental coincidence rate explains difference from 0.

Other Field States

Have recently measured other field states Classical fields: $g^{(2)}(0) \ge 1$

- Downconversion without conditioning
- Laser below threshold
- Pulsed laser
- White light source (R.C. Haskell, Harvey Mudd College)

#4 Test of Local-Realism

- Could do a Bell inequality test
- Dehlinger and Mitchell
- We use Hardy's test
 - Essentially the same as a test of a Bell inequality
 - More intuitive
 - Easy to switch back and forth between Hardy and Bell

Analyzing the data

On days when they both to to 101:

• They SOMETIMES see RR (9% of 101-101 visits)

1) Alice R, Bob R OK [P(R,R)=0.09]

Analyzing the data

On days when they go to opposite classes: • If one measures R, the other ALWAYS measures G

1) Alice R, Bob R OK[P(R,R)=0.09]2) Alice R \rightarrow Bob G[P(R,Y)=0]3) Bob R \rightarrow Alice G[P(Y,R)=0]

Clearly, the wardrobe choices of the faculty are NOT random.

Inference

On days where Alice and Bob both go to 101 and measure RR: • We know that such days are possible • 1) Alice R, Bob R OK [P(R,R)=0.09]

If Bob changes his mind and goes to 999:

- He MUST measure G
- 2) Alice **R** → Bob G [P(**R**, **Y**)=0]
- If Alice changes her mind and goes to 999: • She MUST measure G
 - She MOST measure G
 - 3) Bob R → Alice G [P(Y,R)=0]
- If BOTH change their minds, they must measure GG • P(G,G)≥P(R,R)=0.09

(<u>, , ,) -</u>, (**, , ,)** -0.08

Inference

Must be possible for Alice and Bob to measure GG • $P(G,G) \ge P(R,R) = 0.09$

The Data

Alice and Bob NEVER measure GG • P(G,G)=0

Explanation?

Inference involves classical assumptions:

- Locality Faculty don't communicate
- Reality Makes sense to talk about measurements that weren't explicitly performed

Results

H <u><</u> 0 Local Realism

H > 0 Quantum Mechanics

Best Results: H = 0.1178 <u>+</u> 0.0016

Violates H < 0 by over 70 standard deviations

In a Teaching Lab

4 groups of students

• All saw over a 10 st. dev. violation

Summary

New QM course:

- Photon polarization -- 2-state system
- Integrated laboratory component
 - Spontaneous parametric downconversion
 - Proving light is made of photons
 - Single photon interference
 - Test of local-realism