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Quantum Mechanics

Quantum information is changing how we think
about quantum systems.

« Convey this to students
Many experiments involve photons
 Doable by undergraduates

Project Goals

1) Develop a series of advanced undergraduate
laboratories exploring modern aspects of
quantum mechanics

« Study the properties of individual photons

2) Develop course materials that take advantage

of these labs
« Use photon polarization as an example 2-
dimensional quantum system




Experiment Proving Photons Exist

1) Should be conceptually simple

2) Should display the “granular” nature of
individual photons

3) Necessary to treat the field quantum
mechanically

* Not explainable using classical waves

Proving Photons Exist

Photoelectric Effect?
« Satisfies criteria 1) & 2)
detector "clicks" are granular
 Does NOT satisfy criterion 3)
Does not require photons (i.e. a quantum field)
for its explanation
Can be explained using a semiclassical theory
(detector atoms quantized, field is a classical
wave)
Grangier Experiment

« P. Grangier, G. Roger, and A. Aspect, Europhys.
Lett. 1, 173-179 (1986).

Single Photon on a Beamsplitter

T If a single photon is incident on a

beamsplitter, what do we know
about “clicks" at output detectors?

* Only one detector will fire
» No coincidence detections

"...a single photon can only be detected once!"
- Grangier et al.




Single Photon on a Beamsplitter

T Quantify:

Pr=0
5g®(0)=0 (for asingle photon input)

The degree of second-order coherence

Classical Wave on a Beamsplitter
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<| .z> >(l, >2 (Cauchy-Schwartz inequality)

5g@0)>1  (for aclassical wave)

Positive Correlations

Pocl

Fluctuating input wave simply splits equally at a
beamsplitter
T and R are most likely to click at the same time
» Opposite behavior of a single photon




Distinguishing Classical and Quantum Fields

T Classical waves: g@(0)>1

Therefore, any field with g®(0) <1

cannot be described classically,
and is inherently quantum
mechanical.

Single photon state: g (0)=0

Making a Single Photon State

Spontaneous parametric downconversion
* One photon converted into two

W= +0,
,
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Making a Single Photon State

Spontaneous parametric downconversion
* One photon converted into two
* Photons always come in pairs

"click"

®, O/ .\

You know you have a
photon in the other beam

,

In 1986 Grangier et al. used a cascade decay in Ca as
a photon pair source.




Our Experiment Look for

coincidences
between T and R,
conditioned on a
detection at G.

Everything is conditioned on a T
detection at G:
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More Details

409 nm

2omw  BBO
Type |

3mm thick
3° cone angle

Detectors have RG780 filters

N >100,000 cps Ngr + Ngz > 8,000 cps

Experimental Setup




Experimental Setup

Collection Optics

Results
Integration | Number |Total acq. | (5 ©) St. dev. of
time perpt. |ofpts. |time g 9?(0)
27s 110 | ~5min. | 0.0188 | 0.0067
54s 108 ~10min. | 0.0180 | 0.0041
11.7s 103 | ~20min.| 0.0191 | 0.0035
2345 100 | ~40min.| 0.0177 | 0.0026

In 5 minutes of counting we violate the classical inequality
g®(0) =1 by 146 standard deviations.




Why not 0?

Perfect single photons have g®(0) = 0.
* i.e., we expect no coincidences between T
and R
Why do we measure g®@(0) = 0.0177 + 0.0026?
« Accidental coincidences
— Due to finite coincidence window (2.5 ns)

Expected accidental coincidence rate explains
difference from 0.

Single Photon Interference

Insert interference filter
(10nm bandpass) here

Insert interferometer
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Polarization Interferometer
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* Easy to align
— equal pathlengths
* EXTREMELY stable
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Wave-Particle Complementarity

Wave-Particle Complementarity

Or this way

Wave-Particle Complementarity

Never both ways

Not even if phase of interferometer is
adjusted so that on average the photon
goes each way half the time.




Wave-Particle Complementarity
Goes both ways at first beamsplitter

————————— —— Goes one way at
second beamsplitter

Wave-like behavior inside the interferometer
Particle-like behavior outside the interferometer

Results
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Frequency Entanglement

Inserting interference
filter to decrease
bandwidth of this beam

/

Increases the coherence
length of coincident
photons in this beam

Entanglement

Frequencies of the two beams are entangled
o, = frequency of pump
0, =0g +0, (blue) beam

g, ®, = frequencies of gate and
interferometer beams

In coincidence, narrowing the distribution of g
narrows the distribution of o,

Present Source
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Polarization Entangled Source

2 crystals
Axes rotated by 90°

/

[ver)= 75(3:8) 4]0 0)

Quantum Eraser PBS G

Horizontal, Vertical PBS
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collapse
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Horizontal, Vertical

PBS

D/G )

‘\Vvol> collapse >

.7)

Photon takes one path— R
No interference

Results

Takes one path s [ e |
« Have which-path Z
info - L

« No interference Pathbergsh Difference fum)

Results
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Takes one path

* Have which-path )
info %

* No interference D

Pathlength Difference (ym)

400

{counts in 5 5)

N,

How do we see
interference?
» Must take both paths

* Erase which-path
info
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Quantum Eraser PBS
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Quantum Eraser PBS
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Entangled in Any Basis
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rotate “7/ iy ¢ "\_‘>

\‘Vpol>Tapse>va>

Photon takes both paths —

Interference
Results o |
Takes both paths *I:,‘ R, ]
« Erased which-path g ¥i ]
info & .,.,P- v . ]

* Interference
Raw counts (not
coincidence)
* No interference o ]
* Why? Y bR

Pathlength Difference (un)
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No Coincidence Detection PBS

rotate W o

No Coincidence Detection

Detection at T does NOT yield
which-path info.
Why no interference? R

COULD Get Info s Gl

COULD IN PRINCIPLE know
which way the photon went—
No interference R
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rotate ‘7/ i vl ¢ ‘N>

: T
2 R
0
Results
'\\.‘
Each polarization makes
its own interference Y} j
v * £
pattern
« Out of phase : : . ;
B00
B0
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200 -
0
U 1 2 3
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Results

Add G and G’
coincidences
* No interference
* Why?
Again, we’re not using
gate polarization info
 Could do a different
measurement that
provides which-
path information
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Quantum Eraser

Interference

* Not having which-path information is
not good enough

* The fact that which-path information is
available in principle is enough to
destroy interference

Only way to erase in principle information
is to explicitly perform a measurement that
erases it.

Conclusions

We have performed the following experiments
« Proof of the existence of photons
« Single-photon interference

* Quantum eraser
A classical mixed state can mimic certain
aspects of the eraser behavior
« Test of Bell inequality
$=2.467+0.015
Violates S<2 by 30 standard deviations
All experiments have been performed by under-
graduates, and are suitable for an undergraduate
laboratory

Whole Table

http://www.whitman.edu/~beckmk/QM/
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