Interference, Complementarity, Entanglement and all that Jazz

Mark Beck Dept. of Physics, Whitman College

With lots of help from:

Faculty: Robert Davies (Seattle U) Students: Ashifi Gogo, William Snyder, Jeremy Thorn (U of O), Matthew Neel (OSU), Vinsunt Donato (OSU) Support: NSF, Whitman College

Quantum Mechanics

Quantum information is changing how we think about quantum systems.

• Convey this to students

Many experiments involve photons

• Doable by undergraduates

Project Goals

- Develop a series of advanced undergraduate laboratories exploring modern aspects of quantum mechanics
 - Study the properties of individual photons
- 2) Develop course materials that take advantage of these labs
 - Use photon polarization as an example 2dimensional quantum system

Experiment Proving Photons Exist

- 1) Should be conceptually simple
- 2) Should display the "granular" nature of individual photons
- 3) Necessary to treat the field quantum mechanically
 - Not explainable using classical waves

Proving Photons Exist

Photoelectric Effect?

- Satisfies criteria 1) & 2)
 detector "clicks" are granular
- Does NOT satisfy criterion 3)
 - Does not require photons (i.e. a quantum field)
 - for its explanation
 Can be explained using a semiclassical theory
 - (detector atoms quantized, field is a classical wave)

Grangier Experiment

• P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. **1**, 173-179 (1986).

Single Photon on a Beamsplitter

Т

ŪR

- If a single photon is incident on a beamsplitter, what do we know about "clicks" at output detectors? • Only one detector will fire
 - No coincidence detections
- "...a single photon can only be detected once!" - Grangier et al.

Results				
Integration time per pt.	Number of pts.	Total acq. time	$g^{(2)}(0)$	St. dev. of $g^{(2)}(0)$
2.7 s	110	~ 5 min.	0.0188	0.0067
5.4 s	108	~ 10 min.	0.0180	0.0041
11.7 s	103	~ 20 min.	0.0191	0.0035
23.4 s	100	~ 40 min.	0.0177	0.0026

In 5 minutes of counting we violate the classical inequality $g^{(2)}(0) \ge 1$ by 146 standard deviations.

Why not 0?

Perfect single photons have $g^{(2)}(0) = 0$.

- i.e., we expect <u>no</u> coincidences between T and R
- Why do we measure $g^{(2)}(0) = 0.0177 \pm 0.0026$?

Accidental coincidences

- Due to finite coincidence window (2.5 ns) Expected accidental coincidence rate explains

difference from 0.

Entanglement

Frequencies of the two beams are entangled

 $\omega_p \Rightarrow$ frequency of pump (blue) beam

 $\omega_p = \omega_G + \omega_I$

 $\omega_G, \omega_I \Rightarrow$ frequencies of gate and interferometer beams

In coincidence, narrowing the distribution of $\omega_{_{\! G}}$ narrows the distribution of $\omega_{_{\! P}}$

Results

Takes one path

Have which-path

info • No interference

Quantum Eraser

Interference

- Not having which-path information is not good enough
- The fact that which-path information is available *in principle* is enough to destroy interference

Only way to erase in principle information is to *explicitly* perform a measurement that erases it.

Conclusions

We have performed the following experiments

- Proof of the existence of photons
- Single-photon interference
- Quantum eraser
 - A classical mixed state can mimic certain aspects of the eraser behavior
- Test of Bell inequality
 - *S*=2.467<u>+</u>0.015
 - Violates S<2 by 30 standard deviations</p>

All experiments have been performed by undergraduates, and are suitable for an undergraduate laboratory

http://www.whitman.edu/~beckmk/QM/