
EXPLICIT FORMULAS FOR 2-CHARACTERS
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Abstract. Ganter and Kapranov associated a 2-character to 2-representations of a finite
group. Elgueta classified 2-representations in the category of 2-vector spaces 2V ectk in
terms of cohomological data. We give an explicit formula for the 2-character in terms of
this cohomological data and derive some consequences.

1. Introduction

In [6], Hopkins, Kuhn and Ravenel develop a theory of generalized characters that computes
E∗(BG) for the n-th Morava E-theory. The characters in this case are class functions defined
on the set of n-tuples of commuting elements of G whose order is a power of p. In [5], Ganter
and Kapranov define a 2-character for a 2-representation of a finite group in a 2-category.
This 2-character is a function that assigns an element of the field k to every pair (g, h) of
commuting elements in G. Ganter and Kapranov proved that these 2-characters satisfy the
same formulas as the characters in [6] for n = 2.

The purpose of this paper is to find an explicit description of the 2-characters of a 2-
representation in the 2-category of 2-vector spaces, 2V ectk. In order to find this description,
we first review the algebraic classification of 2-representations. In [3], it is shown that every
equivalence class of 2-representations is given uniquely by a finite G-set S and a class in
H2(G; kS). We present a streamlined approach to this result.

We then proceed to compute the 2-character in terms of this associated cohomology class.
Using these computations we prove that 2-characters are additive and multiplicative with
respect to direct sum and tensor product of 2-representations.

Given a 2-representation ρ of H ⊆ G, Ganter and Kapranov also define the induced repre-
sentation, and compute its character in terms of the character of ρ. Using our cohomological
classification of representations, we identify the induced representation in terms of the co-
homological data for ρ using the Shapiro isomorphism.

Finally, using the explicit computation of 2-characters we give an example of two non-
equivalent 2-representations that have the same character, thus showing that this assign-
ment is not faithful.

In [1] and [2], Bartlett develops independently of [5] a theory of categorical characters for
2-representations, although he works with 2-Hilbert spaces as opposed to 2-vector spaces.
Bartlett defines the 2-character of a 2-representation, which is the same as the categorical
character of [5], and proves that it gives an equivariant vector bundle over the group.

In [5], Ganter and Kapranov use this action of the group on the bundle to define the
2-character, which is a discrete invariant of the 2-representation. In this paper, we work di-
rectly to compute this discrete invariant in terms of the cohomological data. An alternative
approach to the results of this paper is to translate Bartlett’s results into the cohomological
language.
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The 2-categorical language can be cumbersome, so we review some of the terminology and
constructions. By 2-category, 2-functor and 2-natural transformation we mean the weak
versions, that is, what other authors call bicategories, pseudofunctors and pseudonatural
transformations. For more background on 2-categories we refer the reader to [5] and [3].

The author would like to thank Nora Ganter for many helpful discussions that lead to
some of the approaches and results presented here. The author would also like to thank
Mark Behrens for his comments on earlier versions of this paper. Finally, the author would
like to thank the referee for the fast review of the paper and the useful suggestions for
improvement.

2. 2-representations and their characters

Following [5], we review the notions of 2-representations of a group and character theory.

Definition 1. Let C be a 2-category and G a group. A 2-representation of G in C is a
2-functor from G (viewed as a discrete 2-category) to C.

This amounts to the following data:

(1) an object V of C,
(2) for every g ∈ G, a 1-morphism ρg : V → V ,
(3) a 2-isomorphism φ1 : ρ1 ⇒ 1V ,
(4) for every pair g, h ∈ G, a 2-isomorphism φg,h : ρg ◦ ρh ⇒ ρgh.

This data has to satisfy the following conditions:
(5) (associativity) for every g, h, k ∈ G,

(ρg ◦ ρh) ◦ ρk
φg,h◦ρk

��

α +3 ρg ◦ (ρh ◦ ρk)
ρg◦φh,k +3 ρg ◦ ρhk

φg,hk

��
ρgh ◦ ρk

φgh,k

+3 ρghk

must commute,
(6) for any g ∈ G,

ρ1 ◦ ρg
φ1◦ρg +3

φ1,g �'FFFFFFFF

FFFFFFFF
1V ◦ ρg

ε
w� wwwwwwww

wwwwwwww

ρg

, ρg ◦ ρ1
ρg◦φ1 +3

φg,1 �'FFFFFFFF

FFFFFFFF
ρg ◦ 1V

ζw� wwwwwwww

wwwwwwww

ρg

must commute.
Here α, ε and ζ are the associativity and left and right unit 2-isomorphisms of C,

as in [5, 2.1].

There is a 2-category in which we are particularly interested: the 2-category of 2-vector
spaces. There are several 2-categories which are 2-equivalent and give equivalent 2-representation
theories. We will use the definition in [7].

Definition 2. Let k be a field. The 2-category 2V ectk has as objects [n], where n ∈
{0, 1, 2, . . . }. For integers m,n, the set of 1-morphisms 1Hom2V ectk([m], [n]) is the set of
m×n matrices with entries in k-vector spaces. These are called 2-matrices. Composition is
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given by matrix multiplication using tensor product and direct sum. For 2-matrices A and B
of the same size, 2-morphisms are given by matrices of linear maps φ, with φij : Aij → Bij .

Remark 3. This 2-category is not strict. To make sense of the matrix multiplication of A ∈
1Hom2V ectk([m], [n]) and B ∈ 1Hom2V ectk([n], [p]), one has to choose a parenthesization of
the direct sum of the n terms

(Ai,j ⊗Bj,k)nj=1.

One notices then that A · (B ·C) and (A ·B) ·C are not equal but naturally isomorphic. In
[4], there is a construction of a strict version which is equivalent to 2V ectk.

Thus a 2-representation of a group G in 2V ectk consists of the following data:

(1) A natural number n, called the dimension,
(2) for every g ∈ G, an n× n 2-matrix, ρg
(3) a 2-isomorphism φ1 : ρ1 ⇒ 1[n],
(4) for every pair g, h ∈ G, a 2-isomorphism φg,h : ρg ◦ ρh ⇒ ρgh.

The isomorphisms φg,h and φ1 are subject to the same conditions expressed above.

The following result is similar to a more general one in [3]. The result here is presented
in a coordinate-free approach. We will later use this result to recover [5, Prop. 7.3] in
Proposition 7.

Proposition 4. There is a one-to-one correspondence between equivalence classes of 2-
representations of G in 2V ectC and pairs (S, [c]) where S is a finite G-set and [c] ∈
H2(G; (C×)S). Here (C×)S denotes (C×)|S| as a G-module through the action of G on
S.

Proof. Note that since ρgρg−1 is isomorphic to 1[n], each ρg is given by a weakly invertible
2-matrix. This means that the entries in ρg can only be 0 and 1-dimensional vector spaces,
with exactly one entry per row and column being 1-dimensional. That is, up to isomorphism,
ρg is given by an n× n permutation matrix. Thus, we can think of ρ as a map

ρ : G→ Σn.

Now, let us turn our attention to φg,h and φ1. The 2-matrices ρgh and ρgρh have only one
nonzero entry per row and column, and those entries are 1-dimensional vector spaces. Thus,
to specify the 2-isomorphism φg,h all we need to give is a sequence of n nonzero complex
numbers {ci(g, h)} which give the isomorphism for the nonzero entry in the ith row.

Condition (5) in the definition of a 2-representation implies

cσ−1(i)(h, k) · ci(g, hk) = ci(gh, k) · ci(g, h),

where σ is the permutation represented by ρg.

We can think of (C×)n as a G-module through ρ, where g · −→a = ρg
−→a in matrix notation.

We will denote this G-module by (C×)nρ .

We can then think of c as a 2-cochain G×G→ (C×)nρ . Then the condition above becomes
the cocycle condition:
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(δc)(g, h, k) = g · c(h, k)− c(gh, k) + c(g, hk)− c(g, h) = 0

Here we are using additive notation for the component-wise multiplication group structure
of C×)n.

On the other hand, Condition (6) of Definition 1 with g = 1 implies that φ1 is given by
multiplication by c(1, 1).

Hence, we can say that up to isomorphism, a 2-representation is determined by a group
homomorphism ρ : G → Σn and a 2-cocycle c ∈ C2(G; (C×)nρ ). This coincides with the
notion in [3].

In this new language, we would like to identify the equivalence classes of representations.
Two representations are equivalent if there exists a 2-natural equivalence between the
functors. A 2-natural transformation is a 1-morphism f : [n] → [n′] together with a 2-
isomorphism ψ(g) : ρ′g ◦ f ⇒ f ◦ ρg for every g ∈ G, satisfying two coherence conditions:

(1) For all g, h ∈ G, ψ(gh) · (φ′g,h ◦ 1f ) = (1f ◦ φg,h) · (ψ(g) ◦ 1ρh
) · (1ρ′g ◦ ψ(h)),

(2) φ′1 ◦ 1f = (1f ◦ φ1) · ψ(1).

This 2-natural transformation is an equivalence if and only if f is a weakly invertible 1-
morphism, that is if n = n′ and f is given by a permutation matrix.

Assume two 2-representations are equivalent. If these 2-representations are given by the
same map ρ : G → Σn and f = 1[n], the 2-isomorphism ψ(g) is given by a sequence of n
nonzero complex numbers bi(g) which give the isomorphisms on the nonzero 1-dimensional
vector spaces in each row. Again, we can think of these vectors of complex numbers as a
1-cochain G→ (C×)n. The two coherence conditions imply for all i:

bi(gh)c′i(g, h) = ci(g, h)bi(g)bσ−1(i)(h),

where c and c′ are the cocycles giving the two representations. If we write this in additive
notation we get:

(δb)(g, h) = g · b(h)− b(gh) + b(g) = c′(g, h)− c(g, h).

That is, c and c′ are cohomologous cocycles in C2(G; (C×)nρ ) if and only if they give equiv-
alent representations.

In general the representations given by ρ, [c] and ρ′, [c′] are equivalent if and only if there
exists a permutation f ∈ Σn such that ρ′g = fρgf

−1 and [c′] = [f · c]. This follows from the
assertions above.

�

3. Direct sum and tensor product

There is a notion of direct sum and tensor product in 2V ectk as noted in [7]. Direct sum is
given as follows:

• On objects: [n]⊕ [m] = [n+m],
• on 1-morphisms is given by block sum of 2-matrices,
• on 2-morphisms is given by block sum of matrices of linear maps.
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Tensor product is given as follows:

• On objects: [n]⊗ [n′] = [nn′].
• on 1-morphisms: let f : [m] → [n], f ′ : [m′] → [n′] be 1-morphisms, then f ⊗ f ′ :

[mm′]→ [nn′] is the 2-matrix with (i, i′), (j, j′)-entry equal to fij ⊗ f ′i′j′ , where the
set of mm′ elements is labeled by pairs (i, i′), where i = 1, . . . ,m, i′ = 1, . . . ,m′,
with the order: (1, 1), (1, 2), . . . , (1, n′), (2, 1), . . . , (m,m′) and similarly for nn′.
• on 2-morphisms: similarly as above.

These operations can be extended to 2-representations on 2V ectk by taking the appropriate
direct sum and/or tensor product of the respective objects, 1-morphisms and 2-morphisms.
It is not hard to prove that we obtain a new 2-representation in both cases.

4. Induced 2-Representations

In [5], Ganter and Kapranov define the notion of an induced representation given H ⊆ G
and inclusion of finite groups. Here we analyze the case of 2V ectk following their explicit
description in Remark 7.2.

Let ρ : H → Σn, and let [c] ∈ H2(H; (C×)nρ ) be a 2-representation on [n]. Let S be the
corresponding H-set. Let m be the index of H in G. Let R = {r1, . . . , rm} be a system of
representatives of the left cosets of H in G.

Then ind |GH(ρ) is a 2-representation of G of dimension nm. The matrix for ind |GHρg is a
block matrix, with blocks of size n× n, where the (i, j)-th block is given as follows:

(ind |GHρg)ij =

{
ρh if grj = rih, h ∈ H
0 else.

Now we turn our attention to ind |GHφg1,g2 . Notice that

(ind |GHρg1) ◦1 (ind |GHρg2)ik =

=

{
ρh1 ◦1 ρh2 if g1rj = rih1 and g2rk = rjh2

0 else.

and the (i, k)-th block is not zero precisely when g1g2rk = rih1h2, that is, when

(ind |GHρ(g1g2))ik = ρ(h1h2).

Here ◦1 denotes vertical composition of 2-morphisms.

On this block then

(ind |GHφg1,g2)ik = φh1,h2 .

Notice that the G-set given by ind |GHρ : G→ Σnm is precisely

ind |GHS = G×H S ∼= R× S.

Thus, the G-module (C×)ind |GHS is
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coind |GH [(C×)S ] = HomH(ZG, (C×)S).

The corresponding cocycle is then

(ind |GHc)(ri,s)(g1, g2) = cs(h1, h2),

where (ri, s) ∈ R× S and h1, h2 are as above.

We shall now recall the Shapiro isomorphism, which is a standard tool in group cohomology.
For more information, we refer the reader to [8, 6.3.2].

Theorem 5. Shapiro Isomorphism. Let G be a group and H a subgroup of G. Let A be an
H-module and coind |GH(A) = HomZH(ZG,A) the coinduced G-module. Then

H∗(G; coind |GH(A)) ∼= H∗(H;A).

One can trace the class [c] in the isomorphism above to obtain the following result.

Theorem 6. The cohomology class [ind |GHc] is the image of [c] under the Shapiro isomor-
phism

H2(H; (C×)S) ∼= H2(G; coind |GH [(C×)S ]) ∼= H2(G; (C×)ind |GHS).

In particular, let (S, [c]) be an equivalence class of a representation of G. Let

S =
k∐
i=1

G/Hi

be the decomposition of S into G orbits. Then the chain of isomorphisms

H2(G; (C×)S) ∼=
k⊕
i=1

H2(G; (C×)G/Hi) ∼=
k⊕
i=1

H2(Hi; (C×))

sends [c] to [c1]⊕· · ·⊕ [ck] to [d1]⊕· · ·⊕ [dk], where [di] is the image of [ci] under the Shapiro
isomorphism.

This means that the representation given by (G/Hi, [ci]) is the induced representation of a
1-dimensional representation (∗, [di]) of Hi

We thus recover the following proposition, which coincides with [5, Prop. 7.3].

Proposition 7. Every representation is the direct sum of induced 1-dimensional represen-
tations.

5. 2-characters

We would like to know what the character introduced in [5] looks like in terms of ρ and c.

Definition 8. Given a 2-category C, let A be an object and F : A→ A a 1-endomorphism.
We define the categorical trace as

Tr(F ) = 2HomC(1A, F ).
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Note that since C is a 2-category, End(A) = Hom(A,A) is a category. This definition gives
a functor Tr : End(A)→ Set. If α : F ⇒ G is a 2-morphism between F,G ∈ End(A),

Tr(α) : 2HomC(1A, F )→ 2HomC(1A, G)

is given by composition with α.

Let D be a category. We recall that if a 2-category is enriched over D then the categories
Hom(A,B) are enriched over D for all objects A,B.

Hence, if the 2-category C is enriched over D then Tr is a functor into D.

Let C = V ectk, let A = [n] and let F be an n × n matrix [Fij ] of vector spaces. Then the
following equality holds

Tr(F ) =
n⊕
i=1

Fii.

Note that the categorical trace is additive and multiplicative in the following sense. Let
F : [n]→ [n] and G : [m]→ [m]. Then F ⊕G : [n+m]→ [n+m] and

Tr(F ⊕G) =
n+m⊕
i=1

(F ⊕G)ii = (
n⊕
i=1

Fii)⊕ (
m⊕
i=1

Gii) = Tr(F )⊕ Tr(G).

Also, F ⊗G : [n ·m]→ [n ·m] and

Tr(F ⊗G) =
⊕

i=1,...,n
j=1,...,m

(F ⊗G)(i,j)(i,j)

=
⊕

i=1,...,n
j=1,...,m

Fii ⊗Gjj

= (
n⊕
i=1

Fii)⊗ (
m⊕
i=1

Gjj)

= Tr(F )⊗ Tr(F ).

Given F : A → A, let G : A → B be an equivalence with quasi-inverse H. Then the trace
is conjugation invariant in the sense that there is an isomorphism:

ψ : Tr(F )→ Tr(GFH).

Let ρ be a 2-representation of a group G in C. The categorical character of ρ is given by
assigning to each g ∈ G the trace Tr(ρg). In [2] and [1], the author calls this the 2-character,
not to be confused with the 2-character defined below.

In this case, since we have the maps φg,h and φ1 we can use the conjugation invariance
above to get a map

ψg(h) : Tr(ρh)→ Tr(ρghg−1).
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This map ψg(h) is additive and multiplicative with respect to the direct sum and tensor
product of 2-representations since it is given by composition of structural 2-morphisms of
the 2-representation.

When ρ is a 2-representation in 2V ectk and g and h commute, Tr(ρh) and Tr(ρghg−1) are
the same vector space. Thus Ganter and Kapranov introduce the following definition:

Definition 9. The 2-character of ρ is a function on pairs of commuting elements:

χρ(h, g) = trace
(
ψg(h) : Tr(ρh)→ Tr(ρh)

)
.

It is invariant under simultaneous conjugation.

Since Tr, ψg(h), and trace are all additive and multiplicative, we deduce that the character
is also additive and multiplicative. (We will later give a different, explicit proof of this fact).

We are now prepared to compute the character of a 2-representation on 2V ectC.

Theorem 10. The 2-character of a 2-representation given by ρ : G → Σn and c ∈
C2(G; (C×)nρ ) is

χ(h, g) =
∑

i=ρg(i)=ρh(i)

ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, hg−1).

Remark 11. This explicit formula can also be deduced from [2, Lemma 9.9] and [1, Lemma
30], by interpreting the computation of the map ψg(h) in terms of the 2-cocycles of Propo-
sition 4.

Proof. Let ϕ : 1[n] ⇒ ρh, that is, a vector in Tr(ρh). Note that this is an n×n matrix with
zero entries everywhere except in those diagonal entries that are nonzero in ρh. Without
loss of generality, we can assume those are in the first k rows (we can conjugate ρ by a
permutation matrix f and change c accordingly to f · c; this will just give a reordering of
the indices which does not change the dimension of Tr(ρh) nor the map ψg(h)). Thus we
have

ϕ =



a1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ak 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


,

where k is the number of indices fixed by ρh.

We would like to compute now

ψg(h)(ϕ) = φg,h,g−1 · (ρg ◦ ϕ ◦ ρg−1) · φ−1
g,g−1 · φ−1

1

which is a 2-morphism 1[n] ⇒ ρghg−1 . Note that we are omitting the associativity and unity
isomorphisms.

For commuting pairs of elements (h, g), ρh and ρg ◦ ρh ◦ ρg−1 are isomorphic, in particular,
the nonzero entries in the diagonal are in the same position. Thus we have
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ρg ◦ ϕ ◦ ρg−1 =



aρg−1 (1) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · aρg−1 (k) 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


.

On the other hand, composition with the isomorphisms φ is given just by multiplication by
the appropriate scalar in the appropriate row:

ψg(h) = φg,h,g−1 · (ρg ◦ ϕ ◦ ρg−1) · φ−1
g,g−1 · φ−1

1 =



b1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · bk 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


,

where

bi = ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, hg−1)aρ−1
g (i).

We can think of the matrices {ei}ki=1, where ei is the n× n matrix with 1 in the (i, i) entry
and zero everywhere else, as a basis for Tr(ρh). Then the contribution to the character
comes from the indices i fixed by both ρh and ρg:

χ(h, g) =
∑

i=ρg(i)=ρh(i)

ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, hg−1).

�

Remark 12. For a 1-dimensional representation we obtain that the character is given by

χ(h, g) = c(g, g−1)−1c(1, 1)−1c(h, g−1)c(g, hg−1),

where c is the 2-cocycle. This differs slightly from [5, Prop. 5.1] which gives

χ(h, g) = c(g, g−1)−1c(1, 1)−1c(g, h)c(gh, g−1).

These seemingly different results are actually equal since c is a 2-cocycle, hence

c(h, g−1)c(g, hg−1) = c(g, h)c(gh, g−1).

Corollary 13. The 2-character of a 2-representation given by ρ : G → Σn and c ∈
C2(G; (C×)nρ ) is

χ(h, g) =
∑

i=ρg(i)=ρh(i)

ci(h, g−1)
ci(g−1, h)

.
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Proof. Since g and h commute and [c] is a cocycle that

ci(g, hg−1) = ci(g, g−1h) =
ci(1, h)ci(g, g−1)

ci(g−1, h)
.

The cocycle condition also implies that ci(1, h) = ci(1, 1).

Substituting in the formula of Theorem 10, we obtain the result. �

Lemma 14. The character is invariant under equivalence.

Proof. Given two equivalent representations given by ρ, [c] ∈ H2(G; (C×)nρ ) and ρ′, [c′] ∈
H2(G; (C×)nρ′), there exists f ∈ Σn such that ρ′ = f−1ρf and [c′] = [f · c], with (δb)(g, h) =
g · b(h)− b(gh) + b(g) = c′(g, h)− f · c(g, h).

Then

χ′(h, g) =
∑

i=ρ′g(i)=ρ′h(i)

c′i(g, g
−1)−1c′i(1, 1)−1c′i(h, g

−1)c′i(g, hg
−1)

=
∑

i=fρgf−1(i)=fρhf−1(i)

bi(1)
cf−1(i)(g, g−1)bi(g−1)bi(g)

· bi(1)
cf−1(i)(1, 1)bi(1)bi(1)

·
cf−1(i)(h, g−1)bi(g−1)bi(h)

bi(hg−1)
·
cf−1(i)(g, hg−1)bi(hg−1)bi(g)

bi(h)

=
∑

i=ρg(i)=ρh(i)

ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, hg−1)

= χ(h, g).

�

Lemma 15. The character respects the additive and multiplicative structure of representa-
tions.

Proof. Let ρ, [c] and ρ′, [c′] represent two representations of dimensions n, n′.. The direct
sum representation is given by ρ̃h, the block sum of the matrices ρh and ρ′h for every h and
the cocycle c̃ with

c̃i =

{
ci if i ≤ n,
c′i−n if i > n.

The character of the direct sum is
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χ̃(h, g) =
∑

i=ρ̃g(i)=ρ̃h(i)

c̃i(g, g−1)−1c̃i(1, 1)−1c̃i(h, g−1)c̃i(g, hg−1)

=
∑

n≥i=ρg(i)=ρh(i)

ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, gh−1)

+
∑
i>n

i−n=ρ′g(i−n)=ρ′h(i−n)

c′i−n(g, g−1)−1c′i−n(1, 1)−1c′i−n(h, g−1)c′i−n(g, hg−1)

= χ(h, g) + χ′(h, g).

On the other hand, let ρ, [c] denote the tensor product of ρ, [c] and ρ′, [c′]. From the definition
of the tensor product and using the labeling above for the set of nn′ elements, it is not hard
to see that

(ρg)(i,i′),(j,j′) = (ρg)i,j(ρ′g)i′,j′ ,

c(i.i′) = cic
′
i′ .

Then (i, i′) is fixed by ρh if and only if i is fixed by ρh and i′ is fixed by ρ′h.

Thus

χ(h, g) =
∑

(i,i′)=ρg(i,i′)=ρh(i,i′)

c(i,i′)(g, g
−1)−1c(i,i′)(1, 1)−1c(i,i′)(h, g

−1)c(i,i′)(g, hg
−1)

=
∑
(i,i′)

i=ρg(i)=ρh(i)
i′=ρg(i′)=ρh(i′)

((cic′i′)(g, g
−1)(cic′i′)(1, 1))−1(cic′i′)(h, g

−1)(cic′i′)(g, hg
−1)

=
( ∑
i=ρg(i)=ρh(i)

ci(g, g−1)−1ci(1, 1)−1ci(h, g−1)ci(g, hg−1)
)

·
( ∑
i′=ρ′g(i′)=ρ′h(i′)

c′i′(g, g
−1)−1c′i′(1, 1)−1c′i′(h, g

−1)c′i′(g, hg
−1)
)

= χ(h, g)χ′(h, g).

Hence we see that the characters respect the additive an multiplicative structures on the
representations.

�

Remark 16. One can also use Theorem 10 to reproduce the formula for the character of the
induced representation which appears in [5, Corollary 7.6]:

χind(h, g) =
1
|H|

∑
s−1(h,g)s∈H×H

χ(s−1hs, s−1gs).

11



On the other hand, using Proposition 7, [5, Prop. 5.1, Cor. 7.6] and the additivity of the
2-character, we can recover the result of Theorem 10.

One might hope that, analogous to the case of 1-characters, the map from equivalence
classes of 2-representations to characters is injective. This turns out not to be true, see [2,
Corollary 9.11]. Here is an explicit counterexample.

Example. We will consider two 2-representations of Σ3 of dimension 8 with trivial cocycle,
so they amount to a group homomorphism ρ : Σ3 → Σ8, that is, they are permutation
representations. Note also that they are isomorphic are permutations representations if
and only if they are isomorphic as 2-representations. Since they have trivial cocycle, the
character is given by

χ(h, g) =
∑

i=ρg(i)=ρh(i)

1 = #{i = ρg(i) = ρh(i)}.

Let ρ be given by three blocks: the regular representation (action of Σ3 on itself), and two
trivial blocks. Let ρ′ be given by three blocks as well: 2 blocks with the action of Σ3 on
Σ3/〈(12)〉 and one block with the action of Σ3 on Σ3/〈(123)〉.
Note that these two 2-representations are not isomorphic: Σ3 fixes the last two elements of
ρ while Σ3 fixes no element of ρ′.

On the other hand, we can prove that these two representations have the same character:
the pairs of commuting elements in Σ3 are those containing 1, those with g = h, and
{(123), (132)}.
We can directly compute the characters:

χ(1, 1) = χ′(1, 1) =8;

χ(1, g) = χ′(1, g) =2 for all g 6= 1;

χ(g, g) = χ′(g, g) =2 for all g 6= 1;

χ((123), (132)) = χ′((123), (132)) =2.
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