The Technology of Nuclear Energy and Weapons

I.Theory

I.A.1. Nucleons and Atoms

Nuclear binding energy = Δmc^2

For the alpha particle $\Delta m = 0.0304$ u which gives a binding energy of 28.3 MeV.

http://hyperphysics.phy-astr.gsu.edu/hbase/

nucene/nucbin.html

protons 2 x 1.00728 u

Mass of parts 4.03188 u Mass of alpha 4.00153 u

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ٠

I.A.2.Curve of Binding Energy

http://en.wikipedia.org/wiki/File:Binding_energy_curve_-_common_isotopes.svg

I.A.3.Isotopes (1)

Figure 2.2 The isotopes of hydrogen are all characterized by Z = 1 since they each have one proton in the nucleus; their chemical characteristics are therefore essentially the same. However, they are characterized by different atomic masses A = Z + N since they each have a different number N of neutrons in the nucleus; their nuclear properties are quite different.

• Dietrich Schroeer. Science, technology, and the nuclear arms race. Wiley, New York, NY, 1984. p.16

I.A.3.Isotopes (2)

Table 2.1 Isotopes relevant to the nuclear arms race, together with some of their more important properties.*

Isotope	Half-life	Emissions	Major Properties
2H	Stable	None	Fuel for the H-bomb
3 ⊢	12.3 years	β: 18.6 keV; γ: 550 keV	Fuel for the H-bomb
⁶ Li	Stable	None	Produce T by ⁶ Li + $n \rightarrow {}^{3}H + {}^{4}He$
°В	Stable	None	H-bomb tamper
¹⁴C	5730 years	β: 156 kev	Produced from air by A-bombs
⁹⁰ Sr	28 years	β: 546 keV; γ: 2.3 MeV	Fission product, bone seeker
131	8.05 days	β: 606 kev; γ: 364 keV	Fission product, thyroid seeker
¹³⁷ Cs	30 years	β: 514 keV; γ: 662 keV	Fission product
²³³ U	165 kyrs	α: 5.3 MeV	Fissile material
²³⁵ U	710 Myrs	α: 4.4 MeV; γ: 185 keV	Fissile material, 0.7% of natural U
²³⁸ U	4500 Myrs	α: 4.2 MeV	"Contaminant" of 235U
²³⁹ Pu	24.4 kyrs	α: 5.16 MeV	Fissile material
²⁴⁰ Pu	6580 yrs	α: 5.17 MeV	"Contaminant" of 239Pu
²⁴² Pu	380 kyrs	α: 4.9 MeV	"Contaminant" of 239Pu

^aThe symbols kyrs and Myrs stand for 1000 and 1 million yr, respectively.

I.A.4.Radioactivity

Table 2.6 Symptoms of radiation sickness from observations made in Japan and on victims of nuclear accidents.

Based on Glasstone and Dolan, 1977, Table 12.108.

	Dose				
Symptoms	150 rem	500 rem	600 rem	1000 rem	
Nausea and vomiting					
Incidence	Commonly	100%	100%	100%	
Onset	A few hours	A few hours	A few hours	$\sim \frac{1}{2}$ hour	
Duration	≤ 1 day	1–2 days	≤ 2 days	≤ 1 day	
Latent period	•	-	•	·	
(no symptoms)	2 weeks	2–3 weeks	≤ 2 weeks	1 week	
Final phase					
Duration	1 month	1 month	≤ 1 month	1 week	
Symptoms	Some loss of	Nausea; vom	iting; malaise; c	liarrhea;	
•	appetite; malaise;	hemorrhage under skin, from gums			
	some depletion of	and intestines, and into organs; loss			
	leucocytes	of hair; dep	letion of blood	platelets;	
	•	infection		•	
Survival	Essentially 100%	~50%	~10%	~0%	

I.A.5.Radiation Dose

• http://xkcd.com/radiation/

1 Sievert = 1 J/kg = 100 rem

I.A.6.Half-lives

Figure 2.3 Plot of the exponential decay of an initial quantity N_0 of some parent isotope A with a half-life $T_{1/2}$.

I.B.1.Fission and Fusion

• http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html

I.B.2.Chemical v. Nuclear

Amount of substance required to produce enough energy for one US citizen in a year (5x10^11 J)

- Fusion: 0.0000016 tons
- Fission: 0.0000063 tons
- Gasoline: 2800 gallons (8.6 tons)
- Natural Gas: 500,000 cubic feet (11.1 tons)
- Coal: 20 tons
- http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/eneein.html#c2

I.B.3.Chain Reactions

Figure 2.4 Sketch of a chain reaction in ²³⁵U assuming an average of 2.5 neutrons released per fission event and a loss on the average of 1 out of 5 neutrons through absorption or escape from the fissioning mass.

I.B.4.Critical mass

Table 2.3 The critical mass for fission bombs utilizing ²³⁹Pu or ²³⁵U of various enrichment levels.

The bomb material may be made of metal or oxide, and various surrounding neutron reflectors (tampers) may be used. Adapted from A. de Volpi, 1979, p. 70 and pp. 203–211.

	Tamper			
Bomb Material	None	10 cm of Uranium	10 cm of Beryllium	
²³⁹ Pu, <i>a</i> phase				
(0% ²⁴⁰ Pu)	10 kg	4.5 kg	4 kg	
(20% ²⁴⁰ Pu)		5.4 kg	_	
(50% ²⁴⁰ Pu)		8.7 kg		
²³⁹ Pu, δ phase	16 kg	7.0 kg		
²³⁹ PuO ₂	26 kg			
²³⁵ U (0% ²³⁸ U)	47 kg	16 kg	14 kg	
²³⁵ U (50% ²³⁸ U)	68 kg		25 kg	
²³⁵ U (80% ²³⁸ U)	160 kg		65 kg	
²³⁵ UO ₂ (0% ²³⁸ U)	100 kg		-	
²³³ U		5.5 kg		

I.B.4.Nuclear Power Plants

FIGURE 1.2: Schematic of a power plant including a pressurized-water reactor.

• Ferguson 2011, p.46

II.Practice

II.A.Fissile Materials Production

			Plutonium ^a		
	Reactor	Start	Net Total	Weapons	End
	Type (#)	Date	tons (2004)	(4 kg Pu)	Date
SA	LWGR(9)	1944	99.5	24875	1987
	HWR(5)	1953			1988
ussia	LWGR(13)	1948	145	36250	1994
Κ	GCR(8)	1951	7.6	1900	1995
ance	GCR(3)	1956	5	1250	1994
	HWR(2)	1967			?
dia ^b	HWR(2)	1960	0.38	95	N/A
rael	HWR(1)	1963	0.58	145	N/A
nina	LWGR(2)	1966	4.8	1200	1991
ıkistan	HWR(1)	1998	0.04	10	N/A
		Highly	Enriched Uran	ium	
	Separation	Start	Net Total	Weapons	
	Method	Date	tons (2004)	(15 kg WGU)	
SA	GD	1944	480	24000	1964
	EMIS	1945			1947
ussia	GD	1945	710	35500	1988
	EMIS	1945			?
	Cent	1946			1987
Κ	GD	1954	16	800	1962
nina	GD	1964	20	1000	1987
ance	GD	1967	25	1250	1996
ıkistan	Cent	1986	1.1	55	N/A
Africa ^c	Aero	1979	0.5	25	1989

Montgomery 2005

II.B.1.Gun-type

Figure 2.8 Gun-barrel design for a nuclear fission device using ²³⁵U as the fissile material. The chemical explosive drives two subcritical masses together, creating a supercritical mass that can undergo a rapidly growing chain reaction.

II.B.2.Implosion

Figure 2.9 Design sketch of the first ²³⁹Pu implosion nuclear bomb (not drawn to scale).

II.B.3.Thermonuclear

III.A.Rules of Thumb

- Energy and Distance
 - Cube root of the yield
 - Energy: 50% blast, 35% thermal, 5% prompt radiation, 10% FIPS
- Things that Will Kill You
 - Blast (5 psi from things falling on you)
 - Thermal (3rd degree burns)
 - Radiation (500 rem)
 - Fallout (Sr, I, Pu?)

III.B.What Will Kill You? (Fig. 2.19, p. 47)

Figure 2.19 Damage radii for various effects from nuclear weapons, based on Tables 2.4 and 2.5.

[•] Schroeer 1984, p.47

III.C.Hiroshima

	HORIZONTAL RANGE	MAX OVER- PRESSURE	THERMAL RADIATION
LOCATION	mi	psi	cal/cm ²
CONCRETE			
BASEMENT	.10	25.6	80
LOWER FLOORS	.08	26.4	83
MIDDLE FLOORS	.20	19.8	67
UPPER FLOORS	.23	18.0	63

Davis, Baker, and Summers, "Analysis of Japanese Nuclear Casualty Data", Reports DC-FR-1045 and 1054 Dikewood Corp., Albuquerque, N.M.