Uniform Boundedness

01° Let \(z = x + iy \) be a complex number for which the real part \(x \) is positive. Let us form the sequence:

\[
(\bullet) \quad w_0 = z, \quad w_1 = z + \frac{1}{w_0}, \quad w_2 = z + \frac{1}{w_1}, \quad \ldots, \quad w_{k+1} = z + \frac{1}{w_k}, \quad \ldots
\]

By induction, it is plain that, for each nonnegative integer \(k \), the real parts of \(w_k \) and \(1/w_k \) are positive. Hence:

\[
(1) \quad x \leq |w_k|
\]

It follows that:

\[
|w_{k+1}| = |z + \frac{1}{w_k}| \leq |z| + \frac{1}{|w_k|} \leq |z| + \frac{1}{x}
\]

Hence:

\[
(2) \quad x \leq |w_k| \leq |z| + \frac{1}{x}
\]

02° Now let \(K \) be a compact set of complex numbers such that, for each \(z \) in \(K \), the real part \(x \) of \(z \) is positive. Let \(b \) be a positive number such that, for each \(z \) in \(K \):

\[
|z| + \frac{1}{x} \leq b
\]

By the foregoing observations, it is plain that, for each \(z \) in \(K \), the sequence \((\bullet)\) defined by \(z \) is bounded by \(b \).

03° Obviously, if the sequence \((\bullet)\) is convergent then the limit \(w \) must satisfy the relation:

\[
(\circ) \quad w^2 - zw - 1 = 0
\]

Of course, \(w \) must then be the zero for which the real part is positive. By the “subsubsequence” argument, the sequence \((\bullet)\) must in fact converge to \(w \).

04° In context of Complex Analysis, we infer that sequence of analytic functions of \(z \), defined by \((\bullet)\) in the right half plane, converges uniformly on compact sets to the limit defined by \((\circ)\).