01. Let \(f \) be the complex valued function defined as follows:
\[
f(z) = \tan\left(\frac{1}{2i} \log\left(\frac{1+iz}{1-iz}\right)\right)
\]
Describe the “natural” domain \(\Omega \) for \(f \). Show that:
\[
f(z) = z \quad (z \in \Omega)
\]

02. Evaluate the integral:
\[
\int_0^{2\pi} \frac{1}{a + b \sin \theta} d\theta
\]
where \(a \in \mathbb{R}, b \in \mathbb{R}, \) and \(0 < |b| < a \).

03. Evaluate the contour integrals:
\[
\int_{\Gamma} \frac{z \exp(z)}{z + 2i} dz, \quad \int_{\Delta} \frac{z \exp(z)}{z + 2i} dz
\]
where:
\[
\Gamma(t) = \exp(it), \quad \Delta(t) = 3 \exp(it), \quad 0 \leq t \leq 2\pi
\]

04. Let \(f \) be the complex valued function defined as follows:
\[
f(z) = \frac{1}{(z - 2)z(z + 1)}
\]
where \(1 < |z| < 2 \). Find the Laurent Expansion for \(f \) in the annulus on which it is defined.

05. Let \(f \) be a complex valued function defined and analytic on the entire complex plane \(\mathbb{C} \). For each positive real number \(r \), let:
\[
M(r) = \max_{|z|=r} |f(z)|
\]
Show that, for any positive real numbers \(r' \) and \(r'' \):
\[
r' < r'' \implies M(r') < M(r'')
\]
06• Determine the number of complex numbers \(\zeta \) for which \(1 < |\zeta| < 2 \) and:
\[
\zeta^4 - 6\zeta + 3 = 0
\]

07• Let \(\Omega \) be the region in \(\mathbb{C} \) defined as follows:
\[
z \in \Omega \iff [(0 < x) \text{ and } (x \leq 1 \implies y \neq 0)] \quad (z = x + iy)
\]
Let \(f \) be the complex valued function defined on \(\Omega \) as follows:
\[
f(z) = i\sqrt{z^2 - 1} \quad (z \in \Omega)
\]
Confirm that \(f \) is analytic. Describe the range of \(f \). Let \(u \) and \(v \) be the real and imaginary parts of \(f \):
\[
f(z) = w = u(x, y) + iv(x, y)
\]
Sketch the level sets for \(u \) and \(v \):
\[
u(x, y) = a, \quad v(x, y) = b
\]

08• Let \(\Omega \) be a region in \(\mathbb{C} \) of the following form:
\[
\Omega = \Omega^+ \cup J \cup \Omega^-
\]
where \(\Omega^+ \) is a region in \(\mathbb{C} \) such that:
\[
z \in \Omega^+ \implies 0 < y \quad (\text{where } z = x + iy)
\]
where \(\Omega^- \) is the region in \(\mathbb{C} \) conjugate to \(\Omega^+ \):
\[
z \in \Omega^- \iff \bar{z} \in \Omega^+
\]
and where \(J \) be an open interval in \(\mathbb{R} \). (Review the definition of a region.)
Let \(f \) be a complex valued function defined and analytic on \(\Omega^+ \) such that, for each (real) number \(u \) in \(J \):
\[
\lim_{z \to u} f(z) = 0
\]
Show that, for each (complex) number \(z \) in \(\Omega^+ \), \(f(z) = 0 \). To that end, introduce the complex valued function \(\phi \), defined on \(\Omega \) as follows:
\[
z \in \Omega \implies \phi(z) = \begin{cases} f(z) & \text{if } z \in \Omega^+ \\ 0 & \text{if } z \in J \\ \frac{f(\bar{z})}{f(z)} & \text{if } z \in \Omega^-
\end{cases}
\]
Show that \(\phi \) is analytic. Finish the argument.
Find all solutions of the following equation:

\[f''(z) + zf(z) = 0 \]

To that end, consider functions defined by power series.