COMPLEX DIFFERENTIATION

01° We identify \(\mathbb{C} \) with \(\mathbb{R}^2 \), subject to the following notation:

\[
z = x + iy = \begin{pmatrix} x \\ y \end{pmatrix}
\]

Let \(W \) be a region in \(\mathbb{C} \) and let \(f \) be a mapping carrying \(W \) to \(\mathbb{C} \):

\[
f(z) = w = u + iv = \begin{pmatrix} u \\ v \end{pmatrix} \quad (z \in W)
\]

By the foregoing identification, we may regard \(f \) as a mapping carrying \(W \) to \(\mathbb{R}^2 \):

\[
f\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} u \\ v \end{pmatrix}
\]

02° Let \(z_o \) be a member of \(W \):

\[
z_o = x_o + iy_o = \begin{pmatrix} x_o \\ y_o \end{pmatrix}
\]

One says that \(f \) is analytic at \(z_o \) iff there is a member \(c \) of \(\mathbb{C} \):

\[
c = a + ib = \begin{pmatrix} a \\ b \end{pmatrix}
\]

such that:

\[
(1) \quad \lim_{z \to z_o} \frac{1}{z - z_o} (f(z) - f(z_o) - c(z - z_o)) = 0
\]

One says that \(f \) is totally differentiable at \(z_o \) iff there is a two by two matrix \(M \):

\[
M = \begin{pmatrix} p & r \\ q & s \end{pmatrix}
\]

having real entries such that:

\[
(2) \quad \lim_{(x, y) \to (x_o, y_o)} \frac{1}{\| (x - x_o, y - y_o) \|} \| f\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) - f\left(\begin{pmatrix} x_o \\ y_o \end{pmatrix} \right) - M \left(\begin{pmatrix} x - x_o \\ y - y_o \end{pmatrix} \right) \| = 0
\]
In the latter case, it might (but may not) happen that \(s = p \) and \(r = -q \):

\[
M = \begin{pmatrix} p & -q \\ q & p \end{pmatrix}
\]

03° Given a member \(c \) of \(\mathbb{C} \):

\[
c = a + ib
\]

we may introduce the following two by two matrix \(M \):

\[
M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}
\]

having real entries. Clearly:

\[
\begin{aligned}
cz &= (ax - by) + i(bx + ay) = \begin{pmatrix} ax - by \\ bx + ay \end{pmatrix} = M \begin{pmatrix} x \\ y \end{pmatrix}
\end{aligned}
\]

04° Now it is plain that (1) holds iff (2) and (3) hold, where \(c \) and \(M \) are linked by (4) and (5). We conclude that \(f \) is analytic at \(z_o \) iff \(f \) is totally differentiable at \(z_o \) and the following relations hold:

\[
\begin{aligned}
(CR) & \quad \frac{\partial u}{\partial x}(x_o, y_o) = \frac{\partial v}{\partial y}(x_o, y_o), \quad \frac{\partial u}{\partial y}(x_o, y_o) = -\frac{\partial v}{\partial x}(x_o, y_o) \\
\end{aligned}
\]

One calls these relations the Cauchy/Riemann Equations. Obviously:

\[
\begin{aligned}
\frac{d}{dx}(z_o) = \frac{\partial u}{\partial x}(x_o, y_o) + i \frac{\partial v}{\partial x}(x_o, y_o) = \frac{\partial v}{\partial y}(x_o, y_o) - i \frac{\partial u}{\partial y}(x_o, y_o)
\end{aligned}
\]

05° Informally, we write the foregoing relations as follows:

\[
(CR) \quad u_x = v_y, \quad u_y = -v_x
\]

and:

\[
(7) \quad f' = u_x + iv_x = v_y - iu_y
\]