01° Let Δ be the open disk in \mathbb{C} centered at 0 with radius 1. Let D be the closure of Δ. Let f be a complex-valued function defined on D, continuous on D, and analytic on Δ. Assume that there is a positive real number ϵ such that:

$$0 \leq \theta \leq \epsilon \implies f(e^{i\theta}) = 0$$

Show that f must be constantly 0 on D.

02° Let n be an integer for which $2 < n$ and let f be the polynomial defined as follows:

$$f(z) = z^n - \frac{1}{4}(1 + z + z^2) \quad (z \in \mathbb{C})$$

Show that the zeros of f lie in the unit disk Δ.

03° For any complex numbers ζ_1 and ζ_2, let us write:

$$\zeta_1 \cdot \zeta_2 = \Re(\zeta_1 \bar{\zeta}_2) = \Re(\zeta_1)\Re(\zeta_2) + \Im(\zeta_1)\Im(\zeta_2)$$

For each z in the unit disk Δ and for any complex numbers ζ_1 and ζ_2, let us write:

$$\langle\langle \zeta_1, \zeta_2 \rangle\rangle_z = \left(\frac{2}{1 - |z|^2}\right)^2 \zeta_1 \cdot \zeta_2$$

Now let H be an automorphism of Δ:

$$H(z) = \frac{\alpha z + \beta}{\beta z + \alpha} \quad (z \in \Delta)$$

where $|\alpha|^2 - |\beta|^2 = 1$. Let z be any member of Δ and let ζ_1 and ζ_2 be any complex numbers. Let:

$$w = H(z), \ \eta_1 = H'(z)\zeta_1, \ \eta_2 = H'(z)\zeta_2$$

Show that:

$$\langle\langle \eta_1, \eta_2 \rangle\rangle_w = \langle\langle \zeta_1, \zeta_2 \rangle\rangle_z$$

[If you like, you may restrict your attention to the case in which:

$$\alpha = \cosh(\theta), \ \beta = \sinh(\theta)$$

where θ is any real number.] Conclude that H is an isometry for the metric structure $\langle\langle \cdot, \cdot \rangle\rangle$ on Δ.