IRREDUCIBILITY OF CYCLOTONIC POLYNOMIALS

Let $\Phi_n(X) \in \mathbb{Q}[X]$ denote the nth cyclotomic polynomial for $n > 1$. This writeup will show that Φ_n is irreducible. The argument, making use of Dirichlet’s theorem on primes in an arithmetic progression and of localization, was explained to me by Paul Garrett, and the details are based on a treatment by Keith Conrad.

Let p be an odd prime and let $n = p^e$. The group $(\mathbb{Z}/p^e\mathbb{Z})^\times$ is cyclic, $(\mathbb{Z}/p^e\mathbb{Z})^\times = \langle g \mod p^e \rangle$.

By Dirichlet’s theorem, there exists a prime $\ell = g \mod p^e$. In the diagram

\[\xymatrix{ & \mathbb{Q}(\zeta_{p^e}) \ar[d]^{d_{\ell}} \ar[rd] & \\
\mathbb{Q}(\zeta_{p^e}) \ar[d]^{d} & & \mathbb{Q}_\ell \\
\mathbb{Q} \ar[rr] & & \mathbb{Q}_\ell }
\]

we know that $d_{\ell} | d$ (by Galois theory) and that $d \leq \phi(p^e)$ (since ζ_{p^e} satisfies Φ_{p^e}, whose degree is $\phi(p^e)$), and we want to show that $d = \phi(p^e)$. But the extension $\mathbb{Q}_\ell(\zeta_{p^e})/\mathbb{Q}_\ell$ is unramified, and its degree d_{ℓ} is the order of ℓ modulo p^e. Thus, by our choice of ℓ, $d_{\ell} = \phi(p^e)$. It follows that $d = \phi(p^e)$ as desired. This argument also works if $n = 2$ or $n = 4 = 2^2$.

(Also, this argument really doesn’t require any localization. A variant argument is that the extension $\mathbb{Q}(\zeta_{p^e})/\mathbb{Q}$ has degree at least the inertial degree $f(\ell)$ for any prime ℓ and degree at most $\phi(p^e)$. As above, Dirichlet’s theorem supplies a prime $\ell = g \mod p^e$, so that $f(\ell)$, being the order of ℓ modulo p^e, is $\phi(p^e)$. However, the argument used localization to introduce some ideas that will be necessary to prove the irreducibility of Φ_n for general n.)

If $n = 2^e$ with $e \geq 3$ then the argument is slightly more complicated because $(\mathbb{Z}/2^e\mathbb{Z})^\times$ is not cyclic. Retaining the notation and diagram from the previous paragraph but with $p = 2$, take $\ell = 5$, so that $(\mathbb{Z}/2^e\mathbb{Z})^\times = (\ell) \times \{\pm 1\}$.

In the diagram we now have $d_5 = \phi(2^e)/2$, so that $d \in \{\phi(2^e)/2, \phi(2^e)\}$. More specifically, the upper Galois group

\[\text{Gal}(\mathbb{Q}_\ell(\zeta_{2^e})/\mathbb{Q}_\ell) \cong \{\zeta_{2^e} \mapsto \zeta_{2^e}^k : k \equiv 1 \mod 4\} \]

embeds in the lower Galois group $\text{Gal}(\mathbb{Q}(\zeta_{2^e})/\mathbb{Q})$. However, the lower Galois group also contains complex conjugation,

\[\zeta_{2^e} \mapsto \zeta_{2^e}^{2^e-1}, \]

1.
and $2^e - 1 = 3 \mod 4$. Thus $d = \phi(2^e)$ as desired.

For the general case $n = \prod p^e$, proceed by induction in the number of distinct prime factors of n. We have covered the base case of one distinct prime factor. For more than one distinct prime factor, let p be the largest such, and write

$$n = mp^e, \quad (m,p) = 1.$$

For any prime ℓ, consider the diagram

\[
\begin{array}{c}
\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_m, \zeta_{p^e}) \\
\mathbb{Q}(\zeta_m) \\
\mathbb{Q}(\zeta_{p^e})
\end{array}
\]

Again we know that $d_\ell \mid d \leq \phi(p^e)$ and we want to show that $d = \phi(p^e)$. Since $p > 2$, again let $(\mathbb{Z}/p^e\mathbb{Z})^\times = (g \mod p^e)$.

By Dirichlet’s theorem and the Sun-Ze theorem, there exist primes ℓ that satisfy the conditions

$$\ell = 1 \mod m \quad \text{and} \quad \ell = g \mod p^e.$$

Since $\ell = 1 \mod m$, the right side of the diagram simplifies (and we drop the lowest part of the left side),

\[
\begin{array}{c}
\mathbb{Q}(\zeta_{p^e}) \\
\mathbb{Q}(\zeta_m, \zeta_{p^e}) \\
\mathbb{Q}(\zeta_m)
\end{array}
\]

As before, since $\ell = g \mod p^e$, we now get $d = \phi(p^e)$. This completes the argument.