Mathematics 361: Number Theory
Assignment #1

Reading: Ireland and Rosen, Chapter 1 (including the exercises)

Problems:

Euclidean algorithm and linear Diophantine equations:
1. Let \(0 < b < a \). The Euclidean algorithm is:
 - (Initialize) Set \([x, y; \alpha, \beta, \gamma, \delta; s] = [a, b; 1, 0, 0, 1; 0]\).
 - (Divide) We have \(x = qy + r, 0 \leq r < y \); set
 \([x, y; \alpha, \beta, \gamma, \delta; s] = [y, r; \gamma, \delta, \alpha - q\gamma, \beta - q\delta; s + 1]\).
 If \(y = 0 \), go to the next step; otherwise repeat this step.
 - (Output) Return \(x; \alpha, \beta; s \). Here \(x = \gcd(a, b) = \alpha a + \beta b \), and the running time is \(s \).

(a) Show that after the initialization step,
\[(x, y) = (a, b), \quad x = \alpha a + \beta b, \quad y = \gamma a + \delta b. \]

(b) Show that each division step preserves the conditions by showing that
\[(x_{\text{new}}, y_{\text{new}}) = (a, b), \]
\[x_{\text{new}} = \alpha_{\text{new}} a + \beta_{\text{new}} b, \]
\[y_{\text{new}} = \gamma_{\text{new}} a + \delta_{\text{new}} b, \]
given that these relations are established with “old” instead of “new” throughout.

(c) Show that at termination the conditions are
\[(x) = (a, b), \]
\[x = \alpha a + \beta b. \]

Thus \(x = \gcd(a, b) \) (the positive greatest common divisor), and we have expressed \(\gcd(a, b) \) as a linear combination of \(a \) and \(b \).

(d) The algorithm generates a succession of remainders
\[r_{-1} = a, \]
\[r_0 = b, \]
\[r_k = r_{k-2} - q_k r_{k-1}, \quad k = 1, \cdots, s, \]
with each \(q_k \geq 1 \) and
\[
 r_{-1} > r_0 > r_1 > \cdots > r_{s-1} > r_s = 0, \quad s \geq 1.
\]
Here \(s \) is the number of steps that the algorithm takes. Let \(F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, \) and so on be the Fibonacci numbers. Thus we have
\[
 r_{s-1} \geq 1 = F_2, \\
 r_{s-2} \geq 2 = F_3, \\
 r_{s-3} \geq r_{s-2} + r_{s-1} \geq F_4, \\
 \vdots \\
 b = r_0 = r_{s-s} \geq F_{s+1}.
\]
A lemma (see page 72 of Jamie Pommersheim’s book) that you may take for granted or prove says that \(F_{k+2} > \varphi^k \) for \(k \geq 1 \), where \(\varphi \) is the Golden Ratio. Show that consequently an integer upper bound on the number \(s \) of steps for the Euclidean algorithm to compute \(\gcd(a, b) \) where \(0 < b < a \) is
\[
 \lceil \log_\varphi(b) \rceil \geq s.
\]
(e) Work Ireland and Rosen, Exercises 1.3, 1.5—1.8, 1.13, 1.14. For 1.13, let \(g \) be the generator of the ideal generated by the \(n_i \) and argue that \(g \) is the gcd of the \(n_i \). Then use this idea in 1.14. Also, 1.6 can be done tidily by using ideals.

Some ring theory:

2. (a) Let \(R \) be a commutative ring with 1. Show that \(R \) is an integral domain if and only if the cancellation law holds.
 (b) Show that if \(R \) is a field then \(R \) is an integral domain.
3. Prove that \(\mathbb{Q}(i) = \mathbb{Q}[i] \) and \(\mathbb{Q}(\omega) = \mathbb{Q}[\omega] \).
4. Consider the ring \(R = \mathbb{Z}[(\sqrt{-5})]. \) Show that the ideal \((2, 1 + \sqrt{-5}) \) is not principal, so \(R \) is not a PID. Use the norm \(N(x + y\sqrt{-5}) = x^2 + 5y^2 \) to show that 2 is irreducible in \(R \) but not prime in \(R \) since \(2 \mid 6 = (1 + \sqrt{-5})(1 - \sqrt{-5}). \)
Mersenne primes and Fermat primes, cf. Ireland and Rosen, Exercises 1.24—1.26:

5. Let $a \geq 2$ and $n \geq 2$. Use the geometric sum formula and its variant

$$r^n - 1 = (r - 1) \sum_{j=0}^{n-1} r^j, \quad r^n + 1 = (r + 1) \sum_{j=0}^{n-1} (-1)^j r^j$$

for n odd to prove that (a) if $a^n - 1$ is prime then $a = 2$ and n is prime (such $2^p - 1$ primes are called Mersenne primes); (b) if $a^n + 1$ is prime then a is even and n is a power of 2 (in particular, $2^{2^n} + 1$ primes are called Fermat primes).

Incidentally, the geometric sum formula and its variant quickly yield the identities

$$x^n - y^n = (x - y) \sum_{j=0}^{n-1} x^{n-1-j} y^j$$

and

$$x^n + y^n = (x + y) \sum_{j=0}^{n-1} (-1)^j x^{n-1-j} y^j$$

for n odd, which should be familiar from high school for small values of n.

No polynomial generates a sequence of prime values:

6. Let f be a nonconstant polynomial with integer coefficients.

(a) If f has degree n show that

$$f(x + h) = f(x) + \frac{f'(x)}{1!} h + \frac{f''(x)}{2!} h^2 + \cdots + \frac{f^{(n)}(x)}{n!} h^n.$$

(One can show this using Taylor’s Theorem with Remainder or prove it as a formal polynomial identity.) Note that each $f^{(j)}(x)/j!$ also has integer coefficients.

(b) Show that the sequence

$$\{f(1), f(2), f(3), \ldots\}$$

does not consist solely of primes past any starting index, as follows. Without loss of generality, the leading coefficient of f is positive, so $f(n_0) > 1$ for some integer n_0 beyond which f is monotone increasing; then $f(n_0 + kf(n_0))$ is composite for all $k \geq 1$.

(The polynomial expression $x^2 - x + 41$ is prime for $0 \leq x \leq 40$.)