WEEK 12 HOMEWORK

MATH 211

Problem 1. Consider the vector fields $F, G, H: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
F(x, y, z)=\left(x, 2 z,-z^{2}\right), \quad G(x, y, z)=(y,-x, z), \quad H(x, y, z)=\left(2,-3 y, z^{3}\right)
$$

and the paths $\gamma, \delta, \varphi: \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by

$$
\gamma(t)=\left(\sin t, \cos t, e^{t}\right), \quad \delta(t)=\left(e^{t}, 2 \log t, 1 / t\right), \quad \varphi(t)=\left(2 t+3,5 e^{-3 t}, 7 / \sqrt{1-98 t}\right) .
$$

Determine which paths are flow lines for which vector fields, explaining your work.
Problem 2. For $\alpha \in \mathbb{R}$, let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation taking x to αx. Compute the operator norm of L, proving that your answer is correct.
Problem 3. Prove Proposition 8 from the notes; i.e. prove that for any linear transformation L : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
\begin{aligned}
\|L\| & =\sup \{|L(v)|| | v \mid \leq 1\} \\
& =\sup \{|L(v)|| | v \mid=1\} \\
& =\sup \left\{|L(v)| /|v| \mid v \in \mathbb{R}^{n} \backslash\{0\}\right\} .
\end{aligned}
$$

Problem 4. Prove part (ii) of Proposition 9 from the notes; i.e., prove that for any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and any scalar $\lambda \in \mathbb{R}$,

$$
\|\lambda L\|=|\lambda| \cdot\|L\| .
$$

Problem 5. Let A be the 3×3 matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & -8 \\
3 & 0 & -6 \\
2 & 1 & -4
\end{array}\right)
$$

(a) Compute a closed form for the exponential matrix $e^{A t}$ where t is some scalar. (Hint: $A^{3}=0$.)
(b) Write out the homogeneous linear system of differential equations given by

$$
x^{\prime}=A x .
$$

(c) Use $e^{A t}$ to solve the above system of differential equations subject to the initial condition $x(0)=(1,1,1)$.
(d) Use sage or another computer algebra system to plot the vector field $A x$ and the flow line of your solution, $x(t)$.
Problem 6. Let B be the 2×2 matrix

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(a) Show that $B^{2 n}=I$ and $B^{2 n+1}=B$ for all natural numbers n.
(b) Use (a) to show that

$$
e^{B t}=\cosh (t) I+\sinh (t) B
$$

(You may take the Taylor series for hyperbolic sine and cosine as given.)
(c) Plot a family of flow lines for the differential equation

$$
\gamma^{\prime}(t)=B \gamma(t)
$$

by varying initial conditions. Describe their behavior in qualitative terms.
Problem 7. Repeat the analysis of Problem 6 but with B replaced by the matrix

$$
C=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)
$$

(The functions from part (b) will no longer be hyperbolic trig functions, but they should be familiar nonetheless.)
Problem 8 (Bonus). The Frobenius norm (also known as the Hanson norm) of an $m \times n$ matrix $A=\left(a_{i j}\right)$ is

$$
|A|_{2}=\sqrt{\sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{i j}^{2}}
$$

(It is given by considering the $m n$ entries in A as forming a vector in $\mathbb{R}^{m n}$ and then taking the Euclidean norm.) Prove that the Frobenius norm dominates the operator norm, i.e., that

$$
\|A\| \leq|A|_{2}
$$

for all matrices A. (Partial bonus credit will be given for proving this in the 2×2 case.)

