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“Then, my dear Glaucon, it is proper to lay down that study by
law, and to persuade those who are to share in the highest things in
the city to go for and tackle the art of calculation, and not as am-
ateurs; they must keep hold of it until they are led to contemplate
the very nature of numbers by thought alone, practising it not for
the purpose of buying and selling like merchants or hucksters, but
for war, and for the soul itself, to make easier the change from the
world of becoming to real being and truth.”[38, Republic 525¢]
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Introduction

Remembrance of Things Past

You have been working with numbers for most of your life, and you know hun-
dreds of facts about them. The first numbers you encountered were probably
the positive integers 1,2, 3,---. You learned that multiplication was repeated
addition, and that 3 x 4 = 12, because 3 groups of apples, each of which con-
tains 4 apples combine to give a group of 12 apples. Later you learned that
V12 - /12 = 12. This did not mean that /12 groups of apples, each of which
contained /12 apples combine to give a group of 12 apples. The definition
had changed, but whatever it meant, you knew how to get the “right answer”.
1_ 25

At some point you met decimals. Since ; = 15, you knew that i =.25 .
However 3 was more of a problem. Although .33333333 was close to g, the
two numbers were not equal. Perhaps you considered infinite decimals, so

1
3= 3333333 - - -.

Then 1
3 X 3 =.9999999- - -.

But 3 x 3 =1, S0 .9999999 - - - must be equal to 1. They don’t look equal, but
.9999999 was probably close enough. At first the fact that (—1) x (=1)= +1
was probably rather puzzling, but you got used to it after a while. You may
have encountered the imaginary number i such that i> = —1 and \/—a = \/a i
when q is positive. Then you found that
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V=4 x V=9 = /(—=4)(-9) = V36 = 6,

and

V=4 xv/-9=2i-3i=i’6 = —6.

This may have been unnerving. At some time numbers became identified with
points on a line. Addition is straightforward: to add two numbers, you just
slide the lines so that they share a common end, and combine them into one
line.

+ =

but what does multiplication mean?

The Goal of the Course

In this course we will reorganize all of the number facts with which you are fa-
miliar. We will make a small number of assumptions or azioms about numbers,
(thirteen assumptions in all, in definitions (2.48), (2.100), and (5.21)). The
first twelve assumptions will be familiar number facts. The last assumption
may not look familiar, but I hope it will seem as plausible as things you have
assumed about numbers in the past. You will not be permitted to assume any
facts about numbers other than the thirteen stated assumptions. For example,
we will not assume that 3-0 =0, or that 2 -2 = 4, so you will not be allowed
to assume this. (These facts will be proved in theorems 2.66 and 2.84.) You
will not be allowed to assume that (—1) - (—=1) = 1, or that 0 < 1. (These
facts will follow from exercise 2.77c¢ and corollary 2.104.) We will not justify
the representation of numbers by points on a line, so no proofs can depend
on pictures of graphs of functions. On the basis of our assumptions about
real numbers, we will construct a more general class of compler numbers, in
which —1, and in fact every number, has a square root. Many results about
the algebra and calculus of real functions will be shown to hold for complex
functions.
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Occasionally I will draw pictures to motivate proofs, but the proofs them-
selves will not depend on the pictures. The goal of the course is to “contem-
plate the very nature of numbers by thought alone, practising it not for the
purpose of buying and selling like merchants and hucksters, but - -- to make
easier the change from the world of becoming to real being and truth.”

Sometimes in examples or remarks I will use arguments depending on sim-
ilar triangles or trigonometric identities, but my theorems and definitions will
depend only on my assumptions. I will also refer to integers and rational
numbers in examples before I give the formal definitions, but no theorems will
involve integers until they have been defined. Nothing in this course will be
trivial or obvious or clear. If you come across these words, it probably means
that I am engaging in a mild deception. Beware.

On page 34 we will prove the well known fact that 2-0 = 0. On page
245, we will prove the less well known fact that e>™ = 1. The fact that
we can derive the last not-so-obvious result from our thirteen assumptions is
somewhat remarkable.

Some General Remarks

The exercises in these notes are important. The proofs of many theorems will
appear as exercises. You should work on as many exercises as time permits.
Do not be discouraged if you cannot do some of the exercises the first time you
try them. The important thing is that you should be able to do them after
they have been discussed in class. The entertainments are supposed to be
entertaining. If they do not entertain you, you can ignore them (unless your
instructor is so entertained that one gets assigned as a homework problem).
There are hints for selected problems at the end of the notes. Do not use them
until you have spent some time on the problems. Any method you discover on
your own is better than any method suggested in a hint.

The prerequisite for this course is a course in one-variable calculus. From
the remarks made above you know that you cannot assume any facts from
your calculus course, but many theorems are motivated by calculus. You
should know that the derivative f'(a) of a function f at a point a is given by

, . f(x) = fla)

flla) = lim ————,
and that this represents the slope of the tangent to the graph of f at the point
(a, f(a)). If you are not familiar with the rules for calculating the derivatives
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of the sine and cosine and exponential functions from an earlier course, our
definitions of the sine and cosine and exponential will seem rather meaningless.

In these notes, informal set theory and logic are used. Axioms for set
theory and logic can be given, and most mathematicians believe that all of
the sorts of informal proofs that we give in the notes can, in principle, be
justified by the axioms of set theory and logic. However the sort of informal
set theory and logic we use here are typical of the methods used by workers
in mathematical analysis at the start of the twenty-first century.

kkk

These notes are largely based on Joe Buhler’s math 112 notes, used at
Reed College in spring 1998[13]. The material in Buhler’s appendices has
been expanded and put into the main text. There are more examples, and
some proofs are given in more detail. I've added some pictures, because I
think geometrically.

Entertainment 0 Suppose three lines are given, having lengths 1, a, and b.

a) Describe a compass-and-straightedge construction for a line segment of
length a x b.
b) Describe a compass-and-straightedge construction for a line segment of

length /a.



Chapter 1

Notation, Undefined Concepts
and Examples

The ideas discussed in this chapter (e.g. set, proposition, function) are so basic
that I cannot define them in terms of simpler ideas. Logically they are unde-
fined concepts, even though I give definitions for them. My “definitions” use
undefined words (e.g. collection, statement, rule) that are essentially equiv-
alent to what I attempt to define. The purpose of these “definitions” and
examples is to illustrate how the ideas will be used in the later chapters. I
make frequent use of the undefined terms “true”, “false”, and “there is”. It
might be appropriate to spend some time discussing various opinions about
the meaning of “truth” and “existence” in mathematics, but such a discus-
sion would be more philosophical than mathematical, and would not be very
relevant to anything that follows. If such questions interest you, you might
enjoy reading Philosophy of Mathematics by Benacerraf and Putnam [7] or the
article Schizophrenia in Contemporary Mathematics by Errett Bishop [10, pp
1-10]

Some of the terms and notation used in the examples in this chapter will
be defined more precisely later in the notes. In this chapter I will assume
familiar properties of numbers that you have used for many years.

1.1 Sets

1.1 Definition (Set.) A set is a collection of objects. A small set is often
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described by listing the objects it contains inside curly brackets, e.g.,
{1,3,5,7,9}
denotes the set of positive odd integers smaller than ten.

1.2 Notation (N,Z,Q,0.) A few sets appear so frequently that they have
standard names:

N = set of natural numbers = {0,1,2,3,---}.
Z = set of integers ={0,1,—-1,2,—2,3,-3,---}.
Q = set of rational numbers.

—  set of fractions £ where p, q are integers and g # 0.
q
Q" = set of positive rational numbers.
) = emptyset ={} = set containing no objects.
1.3 Notation (€, ¢.) If A is a set and a is an object, we write

a€A

(read this as “a is in A”) to mean that @ is an object in A, and we write
a¢ A

(read this as “a is not in A”) to mean that a is not in A.

1.4 Example. Thus we have

2 ¢ 7,
) N,
2 e {1,2,5}

(1,2} ¢ {1,2,5). (1.5)

To see why (1.5) is true, observe that the only objects in {1, 2,5} are 1, 2, and
5. Since

{1,2) #1 and {1,2} # 2 and {1,2} # 5
it follows that {1,2} ¢ {1,2,5}.
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1.6 Definition (Subset, C.) Let A and B be sets. We say that A is a
subset of B and write
ACB

if and only if every object in A is also in B.

1.7 Example.
N C Z,
0 c Z,
Z C Z,
{1,2} C {1,2,3},
{1} c 1z,
are all true statements. However
1CZ (1.8)

is not a statement, but an ungrammatical phrase, since A C B has only been
defined when A and B are sets, and 1 is not a set.

1.9 Definition (Set equality.) Two sets A and B are considered to be the
same if and only if they contain exactly the same objects. In this case we write

A=B.
Thus A = B if and only if A C B and B C A.
1.10 Example.
{1,2,3} = {3,1,1,2}
{1,2,3,4} = {1,2+1,3+1,1+1,2+2}
1.2 Propositions

1.11 Definition (Proposition.) A proposition is a statement that is either
true or false.



8 CHAPTER 1. NOTATION AND EXAMPLES

1.12 Example. Both
1+41=2

and
1+1=3

are propositions. The first is true and the second is false. I will consider
13 is a prime number

to be a proposition, because I expect that you know what a prime number is.
However, I will not consider

13 is an unlucky number

to be a proposition (unless I provide you with a definition for unlucky number).
The proposition

{1} ¢ N
is true, and the proposition
NeN
is false, but
1CN

is not a proposition but rather a meaningless statement (cf (1.8)). Observe
that “x C y” makes sense whenever x and y are sets, and “ z € y” makes
sense when y is a set, and z is any object. Similarly

1—5
5=

is meaningless rather than false, since division by zero is not defined., i.e. I do
not consider % to be a name for any object.

1.13 Definition (and, or, not.) If P and @ are propositions, then
Por @ P and Q not P

are propositions, and (P or Q) is true if and only if at least one of P, @ is true;
(P and @) is true if and only if both of P, @ are true; (not P) is true if and
only if P is false.
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1.14 Example.

(1+1=2) and (242 =4),
(141=2) or (14+1=3),
(141=2) or (2+2=4),

are all true propositions.
1.15 Notation (#, ¢.) We abbreviate
not (a = b) by a # b,

and we abbreviate
not (a € A) by a ¢ A.

1.16 Notation (=) If P and @ are propositions, we write
to denote the proposition “P implies )”.

1.18 Example. If x,y, z are integers then all of the following are true:

(z=y) = (z-z=2-9). (1.19)
(z=y) = (@+z=y+2). (1.20)
(z#y) = (=2) = (#y)). (1.21)

The three main properties of implication that we will use are:

If P is true, and (P = Q) is true, then @ is true.
If (P = Q) is true and @ is false, then P is false.
If (P=Q) is true and (Q==R) is true, then (P==R) is true.(1.22)

We denote property (1.22) by saying that = is transitive.
1.23 Example. The meaning of a statement like
(1=2) = (=T (1.24)

" (1=2) = (G#£7) (1.25)
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may not be obvious. I claim that both (1.24) and (1.25) should be true.
“Proof” of (1.24):

(1=2) = (2-1=2-2) (by (1.19)),
(2:1=2-2) = (2:1+3=2-2+3) (by (1.20)),

and
(2-143=2-243) = (b="7),

so by transitivity of =,

1=2) = (6=17).|

“Proof” of (1.25):
(1=2) = (1+4=2+4) (by (1.20))

SO
(1=2) = (5=06),
(5=6) = (5#7) (by (1.21), since 6 # 7),

SO

(1=2) = (5 # 7) by transitivity of =. ||
The previous example is supposed to motivate the following assumption:
A false proposition implies everything,
ie.

If P is false, then (P = () is true for all propositions Q.
1.26 Example. For every x € Z, the proposition
r=2= 2>=4
is true. Hence all three of the statements below are true:

2=2 = 22=4, (1.27)
-2=2 = (=2)’=4, (1.28)
3=2 = 3F¥=4. (1.29)
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Proposition (1.28) is an example of a false statement implying a true one,
and proposition (1.29) is an example of a false statement implying a false one.
Equations (1.27) and (1.28) together provide motivation for the assumption.

Every statement implies a true statement;

le.
If @ is true then (P = Q) is true for all propositions P.

The following table shows the conditions under which (P = Q) is true.

P QR |P=Q
true | true true
true | false false
false | true true
false | false true

Thus a true statement does not imply a false one. All other sorts of implica-
tions are valid.

1.30 Notation (P — @Q = R = S.) Let P, @, R ,S be propositions.
Then

P—=Q=R=S-S (1.31)

is an abbreviation for
(P = @) and ( = R)) and (R = S).
It follows from transitivity of = that if (1.31) is true, then P = S is true.
Note that (1.31) is not an abbreviation for
(P and (P = @)) and (@ = R)) and (R = 95);
i.e., when I write (1.31), I do not assume that P is true.

1.32 Definition (Equivalence of propositions, <=-.) Let P, Q be propo-
sitions. We say that P and () are equivalent and write

P = @
(read this “P is equivalent to Q” or “P if and only if )”) to mean
(P = @) and (Q = P) (1.33)
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If either (P, @ are both true) or (P, @ are both false), then (P <= @)
is true. If one of P, @ is false, and the other is true, then one of (P = @),
(Q = P) has the form (true) = (false), and hence in this case (P <= Q)
is false. Thus

(P <= Q@) is true if and only if P, @ are both true or both false.

1.3 Equality
1.34 Notation (=.) Let z and y be (names of) objects. I write
=y

to mean that z and y are names for the same object. I will not make a
distinction between an object and its name.

For all objects z, = = x. (1.35)
We describe this property by saying that equality is reflexive.

For all objects z,y, (z=vy) = (y=2x). (1.36)
We describe this property by saying that equality is symmetric.

For all objects z,y,z ((x =y) and (y = 2)) = (v = 2). (1.37)

We describe this property by saying that equality s transitive.

Let P be a proposition involving the object z. Let () be a proposition
obtained by replacing any or all occurrences of x in P by y. Then P<=(Q).
We call this property of equality the substitution property.

1.38 Examples. Suppose that z,y are integers, and x = y. Then
(@+3)(z+4) =28+2) <= ((@+3)(y+4) =28+y),
and

(@+3) (= +4)=28+12) <= (y+3)(y+4) =28+y),



1.3. EQUALITY 13

and
(@+3)@+4)=28+2) <= ((y+3)(z+4)=28+2z).
We will frequently make statements like
(z=y) = (z+3=y+3).
The justification for this is
r+3=x+3 (by reflexivity of =)
Hence, if x = gy, then by the substitution property,
r+3=y+3.

1.39 Warning. Because we are using a vague notion of proposition, the
substitution property of equality as stated is not precisely true. For example,
although

5=2+3 (1.40)

and
5.4=20 (1.41)

are both true, the result of substituting the 5 in the second equation by 2 + 3
yields
2+3-4=20

which is false.
The proper conclusion that follows from (1.40) and (1.41) is

(2+3)-4=20.
(The use of parentheses is discussed in Remark 2.50.)
1.42 Notation (¢« = b=c=4d.) Let a,b, c,d be objects. We write
a=b=c=d (1.43)
as an abbreviation for
((a="5) and (b =c¢)) and (c = d).
If (1.43) is true, then by several applications of transitivity, we conclude that

a=d.
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1.4 More Sets

1.44 Definition (Proposition Form.) Let S be a set. A proposition form
P on § is a rule that assigns to each element x of S a unique proposition,
denoted by P(z).

1.45 Examples. Let
P(n) = “n®>—6n+8 =0 for alln € Z.

Then P is a proposition form on Z. P(0) is false, and P(2) is true. Note that
P is neither true nor false. A proposition form is not a proposition.
Let
Q(n) = “n*—4=(n-2)(n+2)" for all n € Z. (1.46)

Then @ is a propostion form, and Q(n) is true for all n € Z. Note that @ is
not a proposition, but if

R=“n>—-4=(n—-2)(n+2) foralln € Z” (1.47)

then R is a proposition and R is true. Make sure that you see the difference
between the right sides of (1.46) and (1.47). The placement of the quotation
marks is crucial. When I define a proposition I will often enclose it in quotation
marks, to prevent ambiguity. Without the quotation marks, I would not be
able to distinguish between the right sides of (1.46) and (1.47). If I see a
statement like

P(n)=n*>—-6n+8=0

without quotation marks, I immediately think this is a statement of the form
x =y = z and conclude that P(n) = 0.

1.48 Notation. Let S be a set, and let P be a proposition form on S.
Then
{r € S:P(z)} (1.49)

denotes the set of all objects z in S such that P(z) is true. (Read (1.49) as
“the set of all z in S such that P(x)”.)

1.50 Examples.
{r eN:z* — 6z +8=0}={2,4}

{z € Z:x = 2n for some n € Z} = set of even integers.
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Variations on this notation are common. For example,
{n®*+n:neZ}
represents the set of all numbers of the form n? + n where n € Z.

1.51 Definition (Union, intersection, difference.) Let A be a set, let S
be the set of all subsets of A, and let R,T be elements of S. We define the
intersection RNT of R and T by

RNT={zxc Az € Randz €T},
we define the union RUT of R and T by
RUT ={x€ Aix € Rorx € T};
and we define the difference R\ T by
R\T={z€ Rz ¢T}.

1.52 Examples. If R ={1,2,3} and T = {2, 3,4, 5}, then

RNT = {2,3}
RUT = {1,2,3,4,5}
R\T = {1}

T\R = {4,5}.

1.53 Definition (Ordered pairs and triples.) Let a,b, ¢ be objects (not
necessarily all different). The ordered pair (a,b) is a set-like combination of
a and b into a single object, in which a is designated as the first element and
b is designated as the second element. The ordered triple (a,b,c) is a similar
construction having a for its first element, b for its second element and ¢ for
its third element. Two ordered pairs (triples) are equal if and only if they
have the same first elements, the same second elements, (and the same third
elements). Thus
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1.54 Warning. Ordered pairs should not be confused with sets.
{1,2} = {2,1}.
(1,2) # (2,1).

1.55 Definition (Cartesian product, x.) If A and B are sets, we define
the set A x B by

A x B = the set of all ordered pairs (a,b) where a € A and b € B.
A? = Ax A
A® = the set of all ordered triples (a, b, ¢) where a, b, c are in A.

A x B is called the Cartesian Product of A and B.

1.56 Example. If R is the set of real numbers, then R? is the set of all
ordered pairs of real numbers. You are familiar with the fact that ordered
pairs of real numbers can be represented as points in the plane, so you can
think of R? or R x R as being the points in the plane.

1.5 Functions

1.57 Definition (Function.) Let A, B be sets, and let f be a rule that
assigns to each element ¢ in A a unique element (denoted by f(a)) in B. The
ordered triple (A, B, f) is called a function with domain A and codomain B.
We write

ftA— B

to indicate that (A, B, f) is a function. It follows from the definition that
two functions are equal if and only if they have the same domain, the same
codomain, and the same rule: If f: A — B and ¢g: A — B, I say that the rule
f and the rule g are the same if and only if f(a) = g(a) for all a € A. We

7

usually say “the function f” when we mean “the function (A, B, f),” i.e., we
name a function by giving just the name for its rule.

1.58 Examples. Let
f:N—>Z,
97 — 7,
h:Z — N,
k:Z — 7Z,
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be defined by

f(n) = (n—2)(n—3)foralln e N,
g(n) = (n—=2)(n—3) foralln € Z,
h(n) = (n—2)(n—3) forall n € Z,
k(w) w?® — 5w + 6 for all w € Z.
Then

f # g (f and g have different domains )

g # h (g and h have different codomains )

g = k.

If P is a proposition form on a set S, then P determines a function whose
domain is S and whose codomain is the set of all propositions.

1.6 *Russell’s Paradox

There are some logical paradoxes connected with the theory of sets. The
book The Foundations of Mathematics by Evert Beth discusses 17 different
paradoxes|9, pp. 481-492]. Here I discuss just one of these which was published
by Bertrand Russell in 1903[43, €78,99100-106].

Let S be the set of all sets, let Z be the set of all infinite sets, and let F
be the set of all finite sets. Then we have

Fes Fel F¢&F
ZesS el I¢F
ses Sel S¢F
2¢S {2}¢T {S}eF

Here F € T since there are infinitely many finite sets. {S} € F since {S}
contains just one element, which is the set of all sets. Also 2 ¢ S since 2 is
not a set. Next, let

R={zeS:z ¢z}
Then for all x € S we have

TER <= z¢u. (1.59)
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Thus

S¢R since S€S,
IT¢R since Ze€eZ,
FeR since F¢F,
ZecR since Z¢Z.

We now ask whether R is in R. According to (1.59),
ReR <= R¢R,

i.e., R is in R if and only if it isn’t!

I believe that this paradox has never been satisfactorily explained. A large
branch of mathematics (axiomatic set theory) has been developed to get rid of
the paradox, but the axiomatic approaches seem to build a fence covered with
“keep out” signs around the paradox rather than explaining it. Observe that
the discussion of Russell’s paradox does not involve any complicated argument:
it lies right on the surface of set theory, and it might cause one to wonder what
other paradoxes are lurking in a mathematics based on set theory.

1.60 Warning. Thinking too much about this sort of thing can be danger-
ous to your health.

The poet and grammarian Philitas of Cos is even said to have
died prematurely from exhaustion, owing to his desperate efforts
to solve the paradox.[9, page 493]

Philitas was concerned about a different paradox, but Russell’s paradox is
probably more deadly.



Chapter 2
Fields

2.1 Binary Operations

2.1 Definition (Binary operation.) Let A be a set. A binary operation
on A is a function o: A x A — A. Binary operations are usually denoted by
special symbols such as

+a_a'a/axaoa/\avauam

rather than by letters. If o: A x A — A is a binary operation, we write a o b
instead of o(a,b). By the definition of function (1.57), a binary operation is
a triple (A x A, A,0), but as is usual for functions, we refer to “the binary
operation o” instead of “the binary operation (A x A, A,0)”.

2.2 Examples. The usual operations of addition (+), subtraction (—) and
multiplication (-) are binary operations on Z and on Q. Subtraction is not a
binary operation on N, because 3 — 5 is not in N. Division is not a binary
operation on Q, because division by 0 is not defined. However, division is a
binary operation on Q \ {0}.

Let S be the set of all sets.! Then union (U) and intersection (N) and set
difference (\) are binary operations on S.

!Some mathematicians cringe at the mention of the set of all sets, because it occurs in
Russell’s paradox, and in some other set-theoretic paradoxes. Any cringers can modify this
example and the next one however they please.

19
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Let P be the set of all propositions. Then and and or are binary operations
on P. In mathematical logic, and is usually represented by A or &, and or is
represented by V or V.

2.3 Definition (Identity element.) Let o be a binary operation on a set
A. An element e € A is an identity element for o (or just an identity for o) if

foralla € A, eca=a=aoe.

2.4 Examples. 0 is an identity for addition on Z, and 1 is an identity for
multiplication on Z. There is no identity for subtraction on Z, since for all
e € Z we have

e is an identity for — = e—1=1and 1=1—e,
— e=2ande=0,

Since (2.5) is false, the first statement is also false; i.e., for all e € Z, e is not
an identity for —. ||

2.6 Exercise. Let S(Z) denote the set of all subsets of Z. Then union U
and intersection N are binary operations on S(Z). Is there an identity element
for U? If so, what is it? Is there an identity element for N? If so, what is it?

2.7 Theorem (Uniqueness of identities.) Let o be a binary operation
on a set A. Suppose that e, f are both identity elements for o. Then e = f.
(Hence we usually talk about the identity for o, rather than an identity for o.)

Proof: Let e, f be identity elements for o. Then
e=ceof (since f is an identity for o)

and
eof=1f (since e is an identity for o).

It follows that e = f. ||
2.8 Remark. The conclusion of the previous proof used transitivity of equal-

ity (Cf page 12). I usually use the properties of equality without explicitly
mentioning them.
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2.9 Definition (Inverse.) Let o be a binary operation on a set A, and
suppose that there is an identity element e for o. (We know that this identity
is unique.) Let z be an element of A. We say that an element y of A is an
wnverse for x under o if

rToy=e=Yyor.

We say that x is invertible under o if x has an inverse under o.

2.10 Examples. For the operation 4+ on Z, every element x has an inverse,
namely —z.

For the operation + on N, the only element that has an inverse is 0; 0 is
its own inverse.

For the operation - on Z, the only invertible elements are 1 and —1. Both
of these elements are equal to their own inverses.

If o is any binary operation with identity e, then e o e = e, so e is always
invertible, and e is equal to its own inverse.

2.11 Exercise. Let S(Z) be the set of all subsets of Z. In exercise 2.6 you
should have shown that both of the operations U and N on S(Z) have identity
elements.

a Which subsets A of Z have inverses for U? What are these inverses?

b Which subsets A of Z have inverses for N? What are these inverses?

2.12 Entertainment. Let S be a set, and let §(S) be the set of all subsets
of S. Define a binary operation A on §(S) by

AAB = (A\ B)U(B\ A) for all A, B € S(5).

Thus AAB consists of all points that are in exactly one of the sets A, B. We
call AAB the symmetric difference of A and B. Show that there is an identity
element for A, and that every element of S(S) is invertible for A.

2.13 Definition (Associative operation.) Let o be a binary operation on
a set A. We say that o is associative if

for all a,b,c€ A, ao(boc)=(aob)oc.
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2.14 Examples. Both 4 and - are associative operations on Q. Subtraction
(—) is not an associative operation on Z, since

1-1)—1#1-(1-1).
Observe that to show that a binary operation o on a set A is not associative,
it is sufficient to find one point (a, b, c) in A% such that ao (boc) # (aob)oc.

You should convince yourself that both N and U are associative operations
on the set S of all sets. If A, B, C' are sets, then

AN(BNC)=(ANB)NC = set of points in all three of A, B,C
AU(BUC)=(AUB)UC = set of points in at least one of A, B, C.

2.15 Theorem (Uniqueness of inverses.) Let o be an associative opera-
tion on a set A, and suppose that there is an identity e for o. Let x,y,z € A.
If y and z are inverses for x, then y = z.

Proof: Since y and z are inverses for =, we have
yor=e==zx0Yy

and
Zoxr=e=2xo02Z.

Hence,

y=yoe=yo(roz)=(yoxr)oz=eoz=2z |

2.16 Definition (Invertible element.) Let o be a binary operation on
a set A, having an identity element e. I will say that an element x € A is
invertible for o, if x has an inverse. If o is associative, then every invertible
element for o has a unique inverse, which I call the inverse for x under o.

2.17 Theorem (Double inverse theorem.) Let o be an associative binary
operation on a set A, with identity e, and let x € A. If x is invertible for o, let
x~! denote the (unique) inverse for x. Then x~" is invertible and (z™')™' = x.

Proof: If y is the inverse for x, then
yor=e=1x0Y.

But this is exactly the condition for = to be the inverse for y. ||
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2.18 Examples. As special cases of the double inverse theorem, we have
—(—z) =z forallzeQ
and
(™) '=2 forallz e Q) {0}.
Here, as usual, 7! denotes the multiplicative inverse for z.
2.19 Theorem (Cancellation law.) Let o be an associative binary opera-
tion on a set A, having identity e, and let v € A be an invertible element for

o. Then
forallz,y€ A (xov=yov) = (x=y), (2.20)

and
forallz,y€ A (vox=voy) = (xz=y). (2.21)
Proof: Let v be invertible, and let w be the inverse for v. Then for all x,y € A,
zov=yov = (rov)ow=(yov)ow
— zo(vow)=yo (vow)
— Zxoe=yoe
- T =Y.
This proves (2.20). The proof of (2.21) is left to you.

2.22 Exercise. Prove the second half of the cancellation theorem.

2.23 Warning. If o is a binary operation on a set A, then an expression
such as
aobocod

is ambiguous, and should not be written without including a way of resolving
the ambiguity. For example in Z, a — b — ¢ — d could be interpreted as any of

(a—(b—1c¢)) —d, (2.24)
((a—0b) —c)—d, (2.25)
(a—0b) — (c—d), (2.26)
a—(b—(c—d)), (2.27)
a— ((b—c)—d). (2.28)
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2.29 Entertainment. Is it possible to find integers a, b, ¢, d such that the
five numbers (2.24)-(2.28) are all different? If so, find four such integers

2.30 Exercise. Let o be an associative binary operation on a set A, and let
a, b, c,d be elements of A.

a) Show that there are five different ways to sensibly put parentheses in the
expression
aobocod,

and that all five ways produce the same result. (Each way will use two
sets of parentheses, e.g. (a o (boc))odis one way. If you arrange things
correctly, you will just need to apply the associative law four times.)

b) Show that if a, b, ¢, d, e are elements of A, then there are 14 ways to put
parentheses in
aobocodoe,

and that all 14 ways lead to the same result. Here each sensible way of
inserting parentheses will involve three pairs.

2.31 Entertainment. Show that there are 42 ways to put parentheses in
a1 0Qag 0Aa3O©ays0aso0 ag.

This can be done without actually writing down all the ways (and there isn’t
much point in writing down all the ways, because no one would read it if you
did). If you did part b. of the previous exercise in such a way that really
showed that there are just 14 ways, you should be able to do this, and then
to calculate the number of ways to parenthesize products with seven factors.
There is a simple (but hard to guess) formula for the number of ways to put
parentheses in products with n factors. You can find the formula, along with
a derivation, in [44].

2.32 Definition (Commutative operation.) Let o be a binary operation
on a set A. We say that o is commutative if

foralla,b € A aob=0boa.
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2.33 Examples. Both 4+ and - are commutative operations on Q. However
— is not a commutative operation on Q, because 3 — 2 # 2 — 3.

The operations U and N are both commutative operations on the set &
of all sets, and and and or are commutative operations on the set P of all
propositions. The set difference operation (\) is not commutative on S, since

{1,217\ {2,3} #{2,3} \ {1,2}.

2.2 Some Examples

2.34 Example (non-commutative and.) Many computer languages sup-
port an and operation that is not commutative. Here is a script of a Maple
session. My statements are shown in typewriter font. Maple’s responses
are shown in talics.

>P := (x = 1/y);
P::ac:1
)
> Q = (xxy=1);
Q=zy=1
> y:= 0;
y:=0
>x = 1;
z:=1
> and P;
false
> P and Q;

Error, division by zero
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When evaluating @) and P, Maple first found that @ is false, and then,
without looking at P, concluded that () and P must be false. When evaluating
P and @), Maple first tried to evaluate P, and in the process discovered that P
is not a proposition. Mathematically, both ) and P and P and () are errors
when y = 0 and z = 1. Many programmers consider the non-commutativity
of and to be a feature (i.e. good), rather than a bug (i.e. bad).

2.35 Example (Calculator operations.) Let C denote the set of all num-
bers that can be entered into your calculator. The exact composition of C
depends on the model of your calculator. Let C'= C U {E} where E is some
object not in C. 1 will call E the error. I think of E as the result produced
when you enter 1/0. Define four binary operations &, 8, ®, and @ on C by

a®b = result produced when you calculate a + b.
a©b = result produced when you calculate a — b.
a®b = result produced when you calculate a - b.
a@b = result produced when you calculate a/b.

On my calculator

242 = 4.

10 © 10 = E.

1111111111 ® 1111111111 = 1.2345679 x 108,
If o denotes any of @,8,®, @, I define

Foxr=FE=zxo0oFE forall z € C.

On all calculators with which I am familiar, & and ® are commutative oper-
ations, 0 is an identity for @, 1 is an identity for ®, and every element of C
except for E is invertible for @. On my calculator

13 = 0.333333333 (2.36)

0.333333333© 3 = 0.999999999 (2.37)
0.333333333 © 3.000000003 = 1 (2.38)
0.333333333 © 3.000000004 = 1. (2.39)

Thus 0.333333333 has two different inverses! It follows from theorem 2.15 that
©® is not associative. Your calculator may give different results for the calcu-
lations (2.38) and (2.39) but none of the calculator operations are associative.
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2.40 Exercise. Verify that calculator addition (@) and calculator multipli-
cation (®) are not associative, by finding calculator numbers a, b, ¢, z, y, and
zsuch that a® (b®c) # (a@b) D c,and 2O (YO 2) # (2 O y) © 2.

2.41 Notation. If n € N, let
Z, ={x € N:z <n}.

Hence, for example
Z; ={0,1,2,3,4}.
2.42 Definition (®,,®,.) Let n € N, with n > 2. We define two binary
operations @, and ®, on Z, by:
for all a,b € Z,,

a @, b = remainder when a + b is divided by n

and for all a,b € Z,,

a ®n b = remainder when a - b is divided by n.
Thus,
4®54 = 3 sinced+4=1-5+3,
1054 = 4 sincel-4=0-5+4,
and
4054=1 sinced4-4=3-5+1.

The operations @, and ®, are both commutative (since + and - are commu-
tative on Z). Clearly 0 is an identity for @,, and 1 is an identity for ®,. Every
element of Z,, is invertible for @,, and

: —k ifk#0
for & under @, = {”
mverse 1or k£ under @, 0 ke,
2.43 Definition (Multiplication table.) Let o be a binary operation on a
finite set A = {ay, ag, - - -, a, } having n elements. We construct a multiplication

table for o as follows: We write down a table with n rows and n columns. Along
the top of the table we list the elements of A as labels for the columns. Along
the left side of the table we list the elements of A (in the same order) as labels
for the rows. (See the figure to see what is meant by this.) If (z,y) € A2, we
write the product x oy in the box of our table whose row label is x and whose
column label is y.
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o|| @ o [-| an |
aq a1 © aq a1 O o ai O ap
(05} a9 O aq a9 © Q9 a9 O ap
ap, ap ©ai | Gp © Az | Gp O Ap

Multiplication table for o

2.44 Examples. Below are the multiplication tables for @5 and ®s5:

® |0[1]2]3]4] O |0[1]2]3]4]
0 J0]1]2]3]4 0 [0]0[0]0]0
1 [1(2]3[4]0 1 [0[1]2|3]4
2 [2(3[4]0]1 2 [0]2[4]1]3
3 |3]4]0]1]2 3 |0[3[1]4]2
7 [4[0[1]2]3 1 o431

By looking at the multiplication table for ©5 we see that

losl=1 2@53=1
4054=1 3052=1.

Hence all the non-zero elements of Z5 have inverses under ®s.

Both of the operations @, and ®,, are associative. This follows from the
fact that + and - are associative operations on Z, by a straightforward but
lengthy argument. The details are given in appendix A.

2.45 Exercise. Write down the multiplication table for ®g on Zg. Deter-
mine which elements of Zg are invertible for ®g, and find the inverse for each
invertible element.

2.46 Exercise. Let {z,y,z} be a set containing three distinct elements.
(x #vy,y # 2z, z# x). Let o be the binary operation on {z,y, 2z} determined
by the multiplication table:

[z]y]|=]
r|x|y|=z

Y Yyl x| x
z Z|1T | X
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a) Show that there is an identity element for o. (Which of z,y, z is the
identity?)

b) Show that y has two different inverses for o.

¢) Explain why the result of part b does not contradict the theorem on
uniqueness of inverses.

2.47 Note. An early example of a binary operation that was not an
obvious generalization of one of the operations +, —, -,/ on numbers was the
use of union and intersection as binary operations on the set of all sets by
George Boole[11]. In Laws of Thought (1854), Boole introduces the operation
+ (for union) and x (for intersection) on “classes” (although he usually writes
xy instead of z X y). He explicitly states

Tty = y+z
z(y+z2) = zy+uzz

which he calls commutative and distributive laws. He does not mention asso-
ciativity, and writes zyz without parentheses. He denotes “Nothing” by 0 and
“the Universe” by 1, and notes that 0 and 1 have the usual properties. As an
example of the distributive law, Boole gives

FEuropean men and women = European men and European women.

Boole’s + is not really a binary operation since he only defines x 4+ y when
z and y have no elements in common.

The word associative, in its mathematical sense, was introduced by William
Hamilton[24, p114] in 1843 in a paper on quaternions. According to [14, p284],
the words commutative and distributive were introduced by Francois -Joseph
Servois in 1813.

2.3 The Field Axioms

2.48 Definition (Field.) A field is a triple (F,+,-) where F is a set,
and + and - are binary operations on F (called addition and multiplication
respectively) satisfying the following nine conditions. (These conditions are
called the field azioms.)
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. (Associativity of addition.) Addition (+) is an associative operation

on F.

. (Existence of additive identity.) There is an identity element for

addition.

We know that this identity is unique, and we will denote it by 0.

. (Existence of additive inverses.) Every element x of F' is invertible

for +.

We know that the additive inverse for = is unique, and we will denote it
by —zx.

. (Commutativity of multiplication.) Multiplication (-) is a commu-

tative operation on F'.

. (Associativity of multiplication.) Multiplication is an associative

operation on F.

. (Existence of multiplicative identity.) There is an identity element

for multiplication.

We know that this identity is unique, and we will denote it by 1.

. (Existence of multiplicative inverses.) Every element x of F' except

possibly for 0 is invertible for -.

We know that the multiplicative inverse for x is unique, and we will
denote it by 7. We do not assume 0 is not invertible. We just do not
assume that it is.

. (Distributive law.) For allz,y,z in F, x-(y+2) = (z-y) + (z - 2).

. (Zero-one law.) The additive identity and multiplicative identity are

distinct; i.e., 0 # 1.

We often speak of “the field F” instead of “the field (F,+,-)”.

2.49 Remark. Most calculus books that begin with the axioms for a field

(e.g.,

[47, p5], [1, p18], [13, p5], [12, p554]) add an additional axiom.

10. (Commutativity of addition.) Addition is a commutative operation

on F.
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I have omitted this because, as Leonard Dickson pointed out in 1905[18, p202],
it can be proved from the other axioms (see theorem 2.72 for a proof). I agree
with Aristotle that

It is manifest that it is far better to make the principles finite in
number. Nay, they should be the fewest possible provided they
enable all the same results to be proved. This is what mathemati-
cians insist upon; for they take as principles things finite either in
kind or in number|[26, p178|.

2.50 Remark (Parentheses.) The distributive law is usually written as
z-(y+z)=z-y+z-2 (2.51)

The right side of (2.51) is ambiguous. There are five sensible ways to interpret
it:

The conventions presently used for interpreting ambiguous statements such as
x -y + x - z and involving operations +, —, -, / are:

1. Multiplication and division have equal precedence.
2. Addition and subtraction have equal precedence.
3. Multiplication has higher precedence than addition.

This means that to interpret
1-2/344-5-6-7-8+09, (2.52)

you first read (2.52) from left to right and perform all the multipliations and
divisions as you come to them, getting

((1-2)/3)+ ((4-5)-6) — (7-8) +9. (2.53)
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Then read (2.53) from left to right performing all additions and subtractions
as you come to them, getting

((((1-2)/3) +((4-5) - 6)) = (7-8)) +9.

When I was in high school, multiplication had higher precedence than division,
SO

a-bjc-dje- f
meant

((a-0)/(c-d))/(e- ),

whereas today it means

(((a-b)/c)-d)/e)- f.

In 1713, addition often had higher precedence than multiplication. Jacob
Bernoulli [8, p180] wrote expressions like

n-n+l-n+2-n+3-n+4

to mean
n-mn+1)-(n+2)-(n+3)-(n+4).

2.54 Examples. Q with the usual operations of addition and multiplication
is a field.

(Zs, @5, ®5) is a field. (See definition 2.42 for the definitions.) We showed
in section 2.2 that (Zs, @5, ©5) satisfies all the field axioms except possibly
the distributive law. In appendix A, it is shown that the distributive property
holds for (Z,,®n, ®n) for all n € N, n > 2. (The proof assumes that the
distributive law holds in Z.)

For a general n € N, n > 2, the only field axiom that can possibly fail to
hold in (Z,, ®,, ®,) is the existence of multiplicative inverses, so to determine
whether Z,, is a field, it is just necessary to determine whether every non-zero
element in Z,, is invertible for ®,,.

2.55 Exercise. In each of the examples below, determine which field axioms
are valid and which are not. Which examples are fields? In each case that an
axiom fails to hold, give an example to show why it fails to hold.

a) (Z,+,-) where + and - are usual addition and multiplication.
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b) (G, +,-) where G = QTU{0} is the set of non-negative rational numbers,
and + and - are the usual addition and multiplication.

c) (H,+,-) where H = {z} is a set with just one element and both + and
- are the only binary operation on H; i.e.,

r+x=ux, Tr-Tr=xx.

d) (Q,®,®) where both & and ® are the usual operation of addition on
Q,eg,3®4=Tand 304="T.

2.56 Exercise. Determine for which values of n = 2,3,4,5,6, (Z,, ®n, On)
is a field. (You already know that n = 5 produces a field.)

2.57 Notation (The field Z,.) Let n € N, n > 2 be a number such that
(Z,,,®n, ®y) is a field. Then “the field Z,” means the field (Z,,, ®,, ©p). |
will often denote the operations in Z, by + and - instead of &,, and ®,.

2.58 Entertainment. Determine for which values of n in {7,8,9,10,11}
the system (Z,, ®,, ®,) is a field. If you do this you will probably conjecture
the exact (fairly simple) condition on n that makes the system into a field.

2.4 Some Consequences of the Field Axioms.

2.59 Theorem (Cancellation laws.) Let (F,+,-) be a field, let z,y,z be
elements in I, and let v € F\{0}. Then

rT+z=y+z = z=y. (2.60)
z+r=2+y = zT=4Y. (2.61)
T-Uv=yY-v = T =1. (2.62)
ver=v-y = T =1. (2.63)

(2.60) and (2.61) are called cancellation laws for addition, and (2.62) and
(2.63) are called cancellation laws for multiplication.

Proof: All of these results are special cases of the cancellation law for an
associative operation (theorem 2.19). ||
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2.64 Theorem. In any field (F,+,-)
—0=0and17' =1.

Proof: These are special cases of the remark made earlier that an identity
element is always invertible, and is its own inverse. ||

2.65 Theorem (Double inverse theorem.) In any field (F,+,"),

forall x € F —(—2z) ==z,
for all x € F\{0} (™! = .

Proof: These are special cases of theorem 2.17. ||

I will now start the practice of calling a field F'. If I say “let F' be a field”
I assume that the operations are denoted by + and -.

2.66 Theorem. Let F' be a field. Then
forallae F, a-0=0.
Proof: We know that 0 = 0 + 0, and hence
a-0=a-(0+0)=a-0+a-0.
Also,a-04+0=a-0, so
a-0+0=a-0+a-0.
By the cancellation law for addition, 0 = a - 0. ||
2.67 Corollary. Let F be a field. Then for alla € F, 0-a = 0.
2.68 Theorem. Let F' be a field. Then for all x,y in F
(z-y=0) = (z=0o0ry=0). (2.69)
Proof:

Case 1: Suppose z = 0. Then (2.69) is true because every statement implies
a true statement.
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Case 2: Suppose x # 0. By theorem 2.66, x - 0 = 0, so

z-y=0 = z-y=2x-0.
Since x # 0, we can use the cancellation law for multiplication to get
(x-yzm-O) == (yzO) == (szoryzO),

and hence
(x-yzO) = (x=00ry=0).

Thus (2.69) holds in all cases. ||

2.70 Remark. We can combine theorem 2.66, corollary 2.67 and theorem
2.68 into the statement: In any field F',

forall z,y € F z-y=0 < (z=0o0ry=0).

2.71 Exercise. Let F' be a field. Prove that 0 has no multiplicative inverse
in F.

2.72 Theorem (Commutativity of addition.) Let F' be any field. Then
+ 1s a commutative operation on F'.

Proof: Let z,y be elements in F'. Then since multiplication is commutative,
we have
A+z)-I+y)=04+y)-(1+2).

By the distributive law,
(1+2) D+ (A +2)-y)=(1+y)- )+ ((1+y) 2).
Since 1 is the multiplicative identity,
A+2)+ (1 +2)-y)=0+y)+ (1 +y)-2),

and hence
1+ (@z+((1+2)-y)=1+Fy+(1+y)- 2)).

By the cancellation law for addition

4+ ((1+z)-y)=y+((1+y)-2).
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By commutativity of multiplication and the distributive law,
g+ -(1+z)=y+ @ (1+y))

and
e+ ((y-)+-2)=y+(z-1)+(-y)).
Since 1 is the multiplicative identity and addition is associative

r+ Y+ -z)=y+ @@+ (- y)

and hence
(+y)+y-2)=(Y+z)+(z-y).

Since multiplication is commutative
@+y)+(@-y) =y+z)+(=-y)
and by the cancellation law for addition,
rTt+y=y+z
Hence, + is commutative. ||

2.73 Remark. Let F' be a field, and let x,y € F. Then

To prove x = —y, it is sufficient to prove z +y = 0. (2.74)
To prove z =y~ !, it is sufficient to prove z - y = 1. (2.75)
Proof:
z+y=0 = ((x+y=0)and (y+2=0))
= y=-—zand z = —y.
z-y=1 = ((zx-y=1)and (y-z=1))
= z=y landy=a"" |
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Proof: Let z,y € F. By (2.74) it is sufficient to prove
z-(—y)+z-y=0.
Well,

z-(=y)+z-y = z-((-y)+y)
= 20
= 0.

2.77 Exercise. Let I be a field, and let a,b € F. Prove that
a) (—a)-b=—(a-b).
b) a-(-1) = —a.
¢) (—a)-(=b) =a-b.

2.78 Exercise. Let F' be a field and let b,d be non-zero elements in F'.

Prove that
b~t.dt = (b - d)_l.

2.79 Definition (Digits.) Let F be a field. We define

2=1+1, 6=5+1,
3=2+1, 7T=6+1,
4=3+1, 8=7+1,
5=4+1, 9=8+1,

t=9+1.

T'll call the set
Dr=10,1,2,3,4,5,6,7,8,9}

the set of digits in F'. If a, b, c are digits, I define
ab=1-a+b, (2.80)

and
abc =t - (ab) + c. (2.81)

Here ab should not be confused with a - b.
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2.82 Example.

10 = t-14+0=1.
100 = ¢-104+0=1¢-10=10-10.
37 = t-3+7=10-3+T7.

In general, if x € F', I define

Then for all digits a, b, ¢

abc = t-(ab)+c=t-(t-a+b)+c=({t-(t-a)+t-b)+c
= ((t-t)-a+t-b)+c
- a+t-b+c=10*-a+10-b+c,

so, for example
375=10%2-3+10-7+5.

2.83 Remark. The set Dp of digits in F' may contain fewer than ten ele-
ments. For example, in (Zs, @5, ©s5),

2 1®51=2.
3 = 2@51=3.
4 = 3@51=4.
3 4@51=0.

and you can see that Dz, = {0, 1,2, 3,4}.

2.84 Theorem. In any field F, 24+ 2 =4 and 2 -2 = 4.

Proof:
2+2 =2+ (1+1) (by definition of 2)
=(241)+1 (by associativity of +)
=3+1 (by definition of 3)
=4 (by definition of 4).
Also,

2.2=2-(141)=2-142-1=2+2=4.|
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2.85 Exercise. Prove that in any field F', 3+ 3 =6 and 3-2 = 6.
2.86 Exercise. Prove that in any field F', 9+ 8 = 17.

2.87 Remark. After doing the previous two exercises, you should believe
that the multiplication and addition tables that you learned in elementary
school are all theorems that hold in any field, and you should feel free to use
them in any field.

2.88 Exercise. Let I be a field and let z € F'. Prove that

r+r=2-2x.

2.5 Subtraction and Division

2.89 Definition (Subtraction.) In any field F', we define a binary opera-
tion — (called subtraction) by

forallz,ye F z—y=x+(-y).

Unfortunately we are now using the same symbol — for two different things,
a binary operation on F', and a symbol denoting additive inverses.

2.90 Exercise (Distributive laws.) Let F be a field, and let a,b,c € F.
Prove that

a) a-(b—c)=(a-b)—(a-c).
b) —(a—b)=b-a.

2.91 Definition (Division.) Let F be a field. If a € F and b € F\{0} we
define

a/b=a-b'.
a
b
fines a binary operation on F\{0}. Also, if b # 0, then % =1/b=1-b'=0b".

We also write — for a/b. If a, b are both in F\{0}, then a-b=! € F\{0} so / de-
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2.92 Example. In the field (Z5, ®5,©s5), 37 =2 and 4! = 4. Hence

Thus,

2.93 Exercise. Let F' be a field, and let a,b, c,d be elements of F' with
b # 0 and d # 0. Prove all of the following propositions. In doing any part of
this problem, you may assume that all of the earlier parts have been proved.

) 24_ 4
b-d b

d-a a
b T3

a —a

9 -(3)=7

a c a—+c
V3t
e)9+£_a-d+b-c

b d b-d

I will now start the practice of using steps in proofs that involve multiple
uses of the associative and commutative laws. For example, I'll write state-
ments such as

b—a)+(d—c)=(b+d)—(a+c)
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with no explanation, because I believe that you recognize that it is correct,
and that you can prove it. I'll also write ab for a - b when I believe that no
confusion will result, and I'll use distributive laws like

(x+y)-z=x-24+y-2

and
(x—y)-z=x-2—y-2

even though we haven’t proved them. I will write

(a+b)(c+d)=(a+b)c+ (a+b)d = ac+ bc+ ad + bd

and assume that you know (because of our conventions about omitting paren-
theses; cf. Remark 2.50) that the right side of this means

(((a-¢)+(b-¢c)) + (a-d)) +(b-d)

and you also know (by exercise 2.30) that the parentheses can be rearranged
in other sensible orders without changing the value of the expression.

2.94 Exercise. Let F' be a field. Show that for all a,b, z in F'

a)

(

b) (

¢) (a—1b)-(a+b) = (a® —b?).
(
(

a+b)? =a®+ 2ab + b°.

a—b)? = a* — 2ab + b°.

d) (z—a)(x—-b)=2>—-(a+b)z+a-b.
e) (2a + b)? = 4a® + 4ab + b*.
2.95 Theorem. Let F' be a field. Then for all x,y € F,
(22 =19%) <= (r=yorz=—y).

Proof:
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2.96 Theorem (Quadratic formula.) Let F' be a field such that 2 # 0 in
F. Let A € F\{0}, and let B, C be elements of F'. Then the equation

A’ + Bz +C =0 (2.97)

has a solution x in F if and only if B> — 4AC is a square in F (i.e., if and
only if there is some element y € F such that y*> = B?> — 4AC). If y is any

element of F' satisfying
y? = B? — 4AC,

then the complete set of solutions of (2.97) is

{—B—|—y —B—y}
24 7 24 '

(This corresponds to the familiar quadratic formula

. —Bi\/B2—4AC)
N 24 '

Proof: The proof uses the algebraic identity
(pz + q)* = p*x* + 2pqx + ¢* for all p,q,z € F.
Since A # 0 and 2 # 0, we have 224 # 0 and hence

Az’ + B +C =0 < 22442+ Bz +C)=0
< (24)’2% +2-(24)Bz = —4AC
< (24)%2% +2-(24)Bx + B* = B? — 4AC
<= (24z+ B)’> = B> — 4AC.

Hence if B?>—4AC is not a square, then (2.97) has no solutions. If B?—4AC = y?
for some y € F, then

Az’ + Brx+C=0 <= (24z+ B)’=4¢’
< 2Ax+B=yor24Az+B=—y
_—B+y -y—B

< = 24 orr = 94 |||

2.98 Entertainment. Z; is a field. (You can take my word for it or check
it for yourself.) Find all solutions to the quadratic equations below in Z.



2.6. ORDERED FIELDS 43

a) ¥ —z+2=0.
b) 3z + 5z +2=0.
c) 222 +x+5=0.

2.99 Note. The definition of field that we use is roughly equivalent to
the definition given by H. Weber in 1893 [48, p526]. Weber does not give the
zero-one axiom but he remarks that 0 is different from 1 except in the uninter-
esting case where the field has only one element. He includes commutativity
of addition as an axiom, and he also appears to take a(—b) = —(ab) as an
axiom. Individual fields, both finite fields and subfields of the real and com-
plex numbers, had been studied before Weber’s paper, but Weber’s definition
provided an abstraction that included both finite and infinite fields.

There are many other choices we could have made for the field axioms. In
[29], Edward Huntington gives eight different sets of axioms that are equivalent
to ours. (Two sets of propositions A, B are equivalent if every statement in A
can be proved using statements in B, and every statement in B can be proved
from statements in A.)

2.6 Ordered Fields

2.100 Definition (Ordered field axioms.) An ordered field is a pair
(F,F*) = ((F,+,-), F") where F is a field, and F'* is a subset of F satisfying
the conditions

1. Foralla,be F*, a+be F™.

2. Foralla,be F*, a-be F™ .

3. (Trichotomy) For all a € F, exactly one of the statements
acF", —a€eFt, a=0

is true. The set F'* is called the set of positive elements of F. A field F
is orderable if it has a subset F'™ such that 1), 2) and 3) are satisfied.

2.101 Example. The rational numbers (Q, Q") form an ordered field,
where Q" denotes the familiar set of positive rationals.
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2.102 Notation (F'~.) Let (F, FT) be an ordered field. We let
F-={reF:—z e F'}.
We call F~ the set of negative elements in F'. Thus
r€F < —-z€FT,
and
—z€F < —(-r)eF" < zeF".

We can restate the Trichotomy axiom as: For all z € F', exactly one of the
statements
z € FT, x =0, x€eF~

is true.

2.103 Theorem. Let (F, F*) be an ordered field. Then for all x € F\{0},
r? e FT.

Proof: Since x # 0, we know = € F'* or z € F~. Now
re€Ft = -2 Ft = 2 € FT,

and
r€F = (—x)(-2) e Ft = 2 ¢ F*. |

2.104 Corollary. In any ordered field, 1 € F*.

2.105 Example. The field Z5 is not orderable.

First Proof: If there were a subset ZJ of Zs such that (Zs, Z7) were an ordered
field, we would have 4 = 22 € ZI. Butin Z5,4 = —1so —1 € ZJ and 1 € Z,
which contradicts trichotomy. ||

Second Proof: If (Zs,Z7) were an ordered field, we would have 1 € ZZ, so
1+1=2€Z} s01+2=3€Zf,503+1=4€Zf so4+1=0¢€ Z. This
contradicts trichotomy. ||

2.106 Remark. The method used in the second proof above shows that
none of the fields Z,, are orderable.
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2.107 Definition (<,<,>,>) Let (F,FT) be an ordered field, and let
a,b € F. We define

a<b < b—aecFTt.
a<b < a<bora=0b
a>b < a-beFT".

a>b < a>bora=0.
2.108 Remark. In any ordered field (F, F't):

0<b < beF™ .
b<0 <— 0—-beF" «<— beF .

2.109 Exercise. Let (F,F™) be an ordered field, and let a,b € F. Show
that exactly one of the statements

b<a, b=a, b>a
is true.

2.110 Theorem (Transitivity of <.) Let (F, F") be an ordered field. Then
for all a,b,c € F,

((a<b)and (b<c)) = (a<c).
Proof: For all a,b,c € F we have

< b—ac€Frandc—be F*
= (c—b+(b—a)eF*
= c—a€F*

= a<ec |

(a < b) and (b < c)

2.111 Exercise (Addition of inequalities.) Let (F, F™) be an ordered
field, and let a, b, c,d € F. Show that

((a<b)and (c<d)) = (a+c) < (b+d)

and
a<b < a+c<b+c
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2.112 Exercise. Let (F,F™") be an ordered field, and let a,b € F. Show
that
a<b < —-b< —a.

2.113 Notation. Let (F, F') be an ordered field, and let a,b,c,d € F. We
use notation like
a<b<c=d (2.114)

to mean (a < b) and (b < ¢) and (¢ = d), and similarly we write
a>b=c>d (2.115)

to mean @ > b and b = ¢ and ¢ > d. By transitivity of = and of <, you can
conclude a < ¢ from (2.114), and you can conclude b > d and a > ¢ from
(2.115). A chain of inequalities involving both < and > shows bad style, so
you should not write

a<b>ec

2.116 Exercise (Laws of signs.) Let (F, F") be an ordered field, and let
a,b € F. Show that

l.(ae Fftandbe F7) = ab€ F~

2. (ae F-andbe F") = abe F~

3. (aeF-andbe F~) = abe F*
These laws together with the axiom

a€ Ftandbe Ft = abe FT

are called the laws of signs.

2.117 Notation. Let F be an ordered field, and let a,b be non-zero
elements of F. We say a and b have the same sign if either (a,b are both in
F*) or (a,b are both in F~). Otherwise we say a and b have opposite signs.

2.118 Corollary (of the law of signs.) Let (F, F*) be an ordered field
and let a,b € F\{0}. Then

a-be Ft <= a and b have the same sign ,
a-be F~ <= a and b have opposite signs.
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2.119 Notation. I will now start to use the convention that “let F' be an
ordered field” means “let (F, F*) be an ordered field”; i.e., the set of positive
elements of F' is assumed to be called F'T.

2.120 Exercise. Let F' be an ordered field and let a,b,c € F. Prove that

((a <b) and (¢ <0)) = ac> be.
((a<b)and (¢c=0)) = ac=bc=0.
((a<b))and (¢ >0)) = ac<bec.

2.121 Theorem (Multiplication of inequalities.) Let F' be an ordered
field and let a,b, c,d be elements of F'. Then

(0<a<b)and (0<c<d)) = 0<ac< bd.
Proof: By the previous exercise we have

(0<a<b)and (0 <ec<d) ((ca < da) and (ad < bd))

=
= ((ac < ad) and (ad < bd)).
Hence, by transitivity of <,

(0<a<b)and (0<c<d) = ac<bd. |

2.122 Exercise. Let F' be an ordered field, and let a € F\{0}. Show that
a and a~! have the same sign.

2.123 Exercise. Let I be an ordered field, and let a,b € F\{0}. Under
what conditions (if any) can you say that

a<b=b'<al?
Under what conditions (if any) can you say that
a<b=a'l<b!?

2.124 Definition (Square root.) Let F' be a field, and let x € F'. A square
root for x is any element y of F such that 3% = z.
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2.125 Examples. In Zjs, the square roots of —1 are 2 and 3.
In an ordered field F', no element in F'~ has a square root.
In Q, there is no square root of 2. (See theorem 3.45 for a proof.)

2.126 Theorem. Let F be an ordered field and let x € F*. If x has a square
root, then it has exactly two square roots, one in F* and one in F~, so if x
has a square root, it has a unique positive square root.

Proof: Suppose = has a square root y. Then y # 0, since z € F*. If z is any
square root of z, then 22 = z = 92, so, as we saw in theorem 2.95, z = y or
z = —y. By trichotomy, one of y, —y is in F'", and the other is in F'~. ||

2.127 Theorem. Let F' be an ordered field and let x,y be elements of F
with x > 0 and y > 0. Then

r<y = 2’ <y’ (2.128)

Proof: Let x,y be elements of F*U{0}. Then x4y > 0, unless x =y = 0, so
7? <y?> = x +y > 0. Hence

<y = y¥*—2°>0

= (y—2)(y+z)>0

<= y —z and y + z have the same sign.
— y—z>0

= z<y. |

2.129 Remark. The implication (2.128) is also true when < is replaced by
< in both positions. I'll leave this to you to check.

2.7 Absolute Value
2.130 Definition (Absolute value.) Let F' be an ordered field, and let
x € F'. Then we define
x if z >0,
lz| = { 0 ifz=0,

—x ifxz <.

2.131 Remark. It follows immediately from the definition that
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1. |z| > 0 for all x € F.
2. |z| > 0 for all z € F\{0}.
3. (Jlz] =0) <= (z=0).
2.132 Theorem. Let F' be an ordered field. Then for all x € F,
—lz| <z < |zl (2.133)

Proof: If z = 0 then (2.133) becomes —0 < 0 < 0, which is true. If x > 0
then —|z| <0<z = |z|. f x < 0 then —|z| = —(—z) = 2 < 0 < |z|. Hence
(2.133) holds in all cases. ||

2.134 Exercise. Let F' be an ordered field. Prove that |z| = | — x| for all
r€F and |z|>=2%forallz € F.

2.135 Exercise (Product formula for absolute value.) Prove that for
all z,y € F,

lzy| = |=||yl-

2.136 Theorem. Let F' be an ordered field, let x € F', and let p € F with
p>0. Then
(lz| <p) <= (-p<z<Dp) (2.137)

and
(Jz| >p) <= ((z <-p) or (z >p)). (2.138)

Proof: We first show that
(lz] <p) = (-p <z <p). (2.139)
Case 1. If z > 0, then
2| <p=2<p= —p<0<z<p.
Case 2. If z < 0, then
[z <p= —z<p= —p<z<0<p

Case 3. If £ =0, then —p < z < p is true, so (2.139) is true. Hence (2.139)
is valid in all cases.
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Next we show that
(-p<z<p) = (lz| <p). (2.140)
Case 1. If z > 0, then

—p<zr<p=z<p= [z|<p
Case 2. If z < 0, then
pLz<p= —-p<z= —z<p= |z[<p

Case 3. If z = 0 then x < p is true, so (2.140) is true. Hence (2.140) is true
in all cases.

We have proved (2.137).
Since P<=-Q is true if and only if (( not P)<=( not Q)) is true,

not (|z| <p) <= not ((—p < z) and (z < p));

lz] >p <= (not (—p <zx)) or (not (z <p))
<~ —p>zrTo0orzxr>p,
— < -—porx>p.

This is 2.138. |

2.141 Remark. I leave it to you to check that (2.137) holds when < is
replaced by <, and (2.138) holds when > and < are replaced by > and <,
respectively.

2.142 Theorem (Triangle inequality.) Let F' be an ordered field. Then
for all z,y € F, lz+y| < |z| + |yl (2.143)

Proof: The obvious way to prove this is by cases. But there are many cases to
consider, e.g. (r < 0and y > 0 and z +y < 0). I will use an ingenious trick
to avoid the cases. For all x,y € F', we have

—lz| <@ <af,
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and
—lyl <y <yl
By adding the inequalities, we get

—(lzl +[y) <z +y < ([=] + ly]).
By theorem 2.136 it follows that |z +y| < |z| + |y]|. ||

2.144 Exercise. Let F' be an ordered field. For each statement below, either
prove the statement, or explain why it is not true.

a) for all 2,y € F\ |z — y| < |a| + [yl.

b) for all z,y € F, ‘iE—y| < |$|— |y|

2.145 Exercise (Quotient formula for absolute value.) Let F' be an
ordered field. Let a,b € F' with a # 0. Show that

1 1
a‘) a - Ma
N

al laf

2.146 Definition (Distance.) Let F' be an ordered field, and let a,b € F.
We define the distance from a to b to be |b — al.

2.147 Remark. If F is the ordered field of real or rational numbers, |b— al
represents the familiar notion of distance between the points a,b on the real
line (or the rational line).

2.148 Exercise. Let F' be an ordered field. Let z,a,p € F with p > 0.
Show that

(lr—a| <p) <= (a—p<z<a+p). (2.149)
HINT: Use theorem 2.136. Do not reprove theorem 2.136.
2.150 Remark. We can state the result of exercise 2.148 as follows. Let

a € F, and let p € F*. Then the set of points whose distance from z is smaller
than p, is the set of points between a — p and a + p.
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2.151 Definition (Intervals and endpoints.) Let F' be an ordered field.
Let a,b € F with a < b. Then we define

(a,b) = {z € F:a<z<b}
(a,b] = {reFa<z<b}

a,b) = {z€F:a<z<b}

[a,b) = {z € Fia<z<b}
(—o0,a] = {x€F:z<a}
(—o0,a) = {xeF:z<a}
(a,00) = {z€F:z>a}

[a,00) = {zx € F:x>a}
(—00,00) = F.

A set that is equal to a set of any of these nine types is called an interval.
Note that [a,a) = (a,a] = (a,a) = 0 and [a, a] = {a}, so the empty set is an
interval and so is a set containing just one point. Sets of the first four types
have endpoints a and b, except that (a, a) has no endpoints. Sets of the second
four types have just one endpoint, namely a. The interval (—oc,oc) has no
endpoints.

2.152 Examples. Let F' be an ordered field. By exercise 2.148 the set of
solutions to |z — 3| < 4 is

{reF:3-4<z<3+4+4}={zeF:-1<zx<T7}=[-1T7].

7

| L
—_
(SR

I can read this result from the figure by counting 4 units to the left and
right of 3. This method is just a way of remembering the result of theorem
2.148.

Now suppose I want to find the solutions in F' to

lz — 2| < |z — 5| (2.153)
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DO+
[JLEE
NI~
=~
oYy

Here, thinking of |a — b| as the distance from a to b, I want to find all elements
that are nearer to 2 than to 5. From the picture I expect the answer to be

7
(—o0, 5) Although this picture method is totally unjustified by anything I've

done, it is the method I would use to solve the inequality in practice. If I had
to use results we’ve proved to solve (2.153), I'd say (since |z — 2| > 0)

lz—2| <|z—5] <= |z—-27<|z—5

— (r-2)><(z-5)
— P —dr+4<2®—10x+25
<— b6z <21
<21_7
— T<§ T3
7
= xe(—oo,i)

which agrees with my answer by picture.

2.154 Exercise. Let I’ be an ordered field, let z, a,p € F with p > 0. Show
that

|t —a| >p <= z€(—00,a—p)U(a+p,0).

Interpret the result geometrically on a number line.

2.155 Exercise. Let F' be an ordered field. Express each of the following
subsets of F' as an interval, or a union of intervals. Sketch the sets on a number
line.

a) A={zx € F:|z—3| <2}
b) B={z € F: |z + 2| < 3}
c) C={zeF:|jz—1]>1}
)

d) D={zeF:lz+1| >1}
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2.156 Note. Girolamo Cardano (1501-1576), in an attempt to make sense
of the square root of a negative number, proposed an alternate law of signs in
which the product of two numbers is negative if at least one factor is negative.
He concluded that “plus divided by plus gives plus”, and “minus divided by
plus gives minus”, but “plus divided by minus gives nothing” (i.e. zero), since
both of the assertions “plus divided by minus gives plus” and “plus divided
by minus gives minus” are contradictory.[40, p 25]

I believe that our axioms for an ordered field are due to Artin and Schreier
in 1926 [6, page 259].

Systems satisfying various combinations of algebraic and order axioms were
considered by Huntington [28] in 1903.

The notation |z| for absolute value was introduced by Weierstrass in 1841[15,
vol.2, page 123]. It was first introduced for complex numbers rather than real
numbers.



Chapter 3

Induction and Integers

3.1 Natural Numbers and Induction

3.1 Definition (Inductive set.) Let F' be a field. A subset J of F is
inductive if it satisfies the two conditions:

i) 0 J.
ii) forallz € F, (r € J) = (z+1) € J).

3.2 Examples. Z,N and Q are inductive sets in Q. Every field is an
inductive subset of itself.
If J is an inductive subset of F', then

leJ since 0€eJandl=0+1
2e€¢J since leJand2=1+1
3e€J since 2€Jand3=2+1,

etc. Hence every inductive set contains
{0,1,2,3,4,5,---}.
If J is an inductive subset of Zs, then
Zs; ={0,1,2,3,4} C J C Z;
so the only inductive subset of Zy is Zj5 itself. The set
(0213078 1
2°2°2°2 22

is an inductive subset in Q.

95
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3.3 Exercise. Which of the following subsets of Q are inductive?
A = The set of even numbers = {2n:n € Z}
B = {n + %: ne Z}
C = {x€Z:2>3}={3,4,5,---}
D = {z€Z:2>-3}={-3,-2,-1,---}
3.4 Exercise.

a) Find an inductive subset J of Q, such that J # Q and 2 eJ.

b) Find an inductive subset K of Q, such that K # Z and % ¢ K.

3.5 Definition (Natural numbers in F.) Let F be a field, and let n € F.
Then n is a natural number in F if n is in every inductive subset of F'. The
set of all natural numbers in F' will be denoted by Ng.

3.6 Example. By the first example in 3.2, for every field F'
0 e Np, 1€ Np,2€ Np,3€ Np,---.
IfF = Z5, NF = Z5.

3.7 Remark. By the definition of Nz, N is a subset of every inductive
subset of F', i.e.,

If n € Ng, and J is inductive, then n € J.

3.8 Theorem. Let F' be a field. Then the set Ng of natural numbers in F
s an inductive set.

Proof: Since 0 is in every inductive set, 0 € Ng. Let J be an inductive subset
of F'. Then for all n € F,

n€ Np = n € J (by definition of Np)
= n+1¢€ J (since J is inductive) .

Hence

n € Nrp = (n+1 € J for every inductive subset J of F)

Hence N is inductive. ||
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3.9 Remark. We summarize the previous theorem and remark by saying
“Npr is the smallest inductive subset of F.” N is an inductive set, and it’s a
subset of every other inductive set. You should expect that

NF:{Oa17273747'“}

7

(whatever “ --” might mean).

3.10 Theorem (Induction theorem.) Let F be a field, and let P be a
proposition form on Ng. Suppose that

P(0) is true . (3.11)
For alln € Np, (P(n) = P(n+1)) is true . (3.12)

Then P(n) is true for alln € Ng.
Proof: Let P be a proposition form on N satisfying (3.11) and (3.12). Let
T = {n € Np: P(n) is true }.

I want to show that 7 is inductive. Well, 0 € T, by (3.11). Let n be any
element in F'.

Casel. neT:
ne€T = P(n)is true
= P(n+1) is true (by 3.12)
= n+1leT.
Case 2. n¢ T:

If n¢ T, then n € T is false,so (n € T = n+1¢€7T) is true.

Thus for all n € F,
nel = n+1eT.

This shows that T is inductive. Since every inductive set contains N, Np C T}

i.e, for all n € Np, P(n) is true. ||

3.13 Theorem. Let F be a field, and let a,m be natural numbers in F.
Then a +m and a-m are in Np.
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Proof: Let P be the proposition form on Nz defined by
P(n) = “for all @ € Ng(a+n € Np)” for all n € N.
Then P(0) says “for all a € Ng(a + 0 € Np)” which is true. For all n € Np,

P(n) = foralla € Np(a+n € Np)
= foralla € Np((a+n)+1 € Np) (since Np is inductive)
= foralla € Np(a+ (n+1) € Np)
= P(n+1).
By the induction theorem, P(n) is true for all n € Ng; i.e.,
for all n € Np( for all a € Np(a +n € Np)).
Now define a proposition form ) on Nz by
Q(n) = “for all a € Np(a-n € Np)” for all n € N.
Then Q(0) says “for all « € Np(a-0 € Np)” which is true. For all n € Np,

Q(n) = foralla € Np(a-n € Np)
= foralla € Np(a-n+a € Np) (a sum of things in Np is in Np)
= foralla € Np(a-(n+1) € Np)
= Q(n+1).
By the induction theorem, @(n) is true for all n € Ng; i.e.,
for all n € Np(for all a € Np(a-n € Np)). |
3.14 Theorem. Let F' be an ordered field. Then for alln € Ng, we have
n=0o0rn>1.
Proof: Define a proposition form P on Ng by
P(n)=“n=0o0rn>1" for all n € Np.

Clearly P(0) is true. let n € Np. To show that P(n) = P(n + 1), I'll show
that n =0 = P(n+1) and that n > 1 = P(n+1). Well

n=0=n+1l=1=n+1>1= P(n+1)

and
n>1=n+1>141>1=n+1>1= P(n+1).

Hence P(n) = P(n+ 1), and by induction P(n) is true for all n € Np. ||
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3.15 Corollary. Let F be an ordered field. Then there is no element x € N
such that
0<z<l.

3.16 Lemma. Let F' be an ordered field. Then
for alln € Np,(n—1 € Np orn=0) (3.17)
Proof: Define a proposition form P on Ng by
P(n) = “(n—1€ Npg) or (n=0)” for all n € Np. (3.18)

Then P(0) is true. Let n € Ng. To show that P(n) = P(n + 1), I'll show
that (n —1 € Np) = P(n+1) and that (n =0) = P(n+1). Well,

(n-1eNp) = ((n—1)+1€Np) = ((n+1)-1 € Np) = P(n+1),
and
(n=0) = (n+1)-1=0) = ((n+1)-1€Np) = P(n+1).
Hence P(n) = P(n+ 1), and by induction, P(n) is true for all n € Np. ||
3.19 Theorem. Let F' be an ordered field and let p,k € Ng. Then
p—kéeNporp—£k<0.

Proof: For each p € Ny define a proposition form P, on Ny by

P,(n) =“p—n € Nporp—n<0” for all n € Np.

I'll show that for each p € N, P,(n) is true for all n € Np. Now P,(0) says
“p € Ng or p < 0” which is true, since p € Ngp. Now let n € Ng. To show
that P,(n) = P,(n + 1), I'll show that

p—n€Np = P,(n+1)

and that
p—n<0= P,(n+1).
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By the previous lemma

p—ne€Np = (p—n)—1€Nporp—n=0
— p—(n+1)eNporp—(n+1)=-1
= p—(n+1)eNporp—(n+1)<0
= P,(n+1).

Also
p—n<0 = (p—-n)-1l1<-1=p—-(n+1)<-1<0
= p—(n+1)<0
= Py(n+1).

This completes the proof that P,(n) = P,(n + 1), so by induction P,(n) is
true for all n € Np. ||

3.20 Corollary. Let F' be an ordered field, and let p,k € Ng. If p > £k,
then p — k € Np.

3.21 Theorem. Let F' be an ordered field and let p € Ng. Then there is no
natural number k such that p < k < p+ 1. In other words,

for allk,p e Np(k>p = k>p+1).
Proof: Suppose
p<k<p+1. (3.22)

Then
0<k-p<l.

Since £k — p > 0, the previous theorem says £ — p € Ng. This contradicts
corollary 3.15, so (3.22) is false. ||

3.23 Theorem (Least Element Principle.) Let F be an ordered field.
Then every non-empty subset S of Np contains a least element, i.e. if S # (),
then there is some element k € S such that k < n for alln € S.

Proof: T will show that if S is a subset of Nz having no least element, then

S=0.



3.1. NATURAL NUMBERS AND INDUCTION 61

Let S be a subset of Nz having no least element. For each n € Ny define
a proposition P(n) by

P(n)=“Forallk € S, (k >n)”.

Now 0 ¢ S, since if 0 were in S it would be a least element for S. Hence all
elements in S are greater than 0, and P(0) is true. Now let n be a generic
element of Ng. Then

P(n) = forallke S, (k>n)
= forallke S, (k>n+1)
= forallke S, (k>n+1)

since if n + 1 were in S, it would be a least element for S. Thus
P(n) = P(n+1),

and by induction, P(n) is true for all n € Np. It follows that S = (), since if
S contained an element 7, then P(n) would say that n > n. ||

3.24 Exercise. Let F' be an ordered field. Show that there is a non-empty
subset S of F't that has no smallest element, i.e. there is a set S C F'* such
that

for every a € S there is some b € S with b < «a.

3.25 Example. Let F' be an ordered field. Let P be the proposition form
on Ny defined by

P(n) = “n® > 5 (n +n).” (3.26)

Then for all n € Ng
P(n) = n2>%(n2+n)

= n2+(2n+1)>%(n2+n)+(2n+1)

— (n+1)2>%(n2+n+4n+2)=%[(n2+2n+1)+(n+1)+2n]

:%[(n+1)2+(n—|—1)]+n2%[(n+1)2+(n+1)]
= (n+1)2>%((n+1)2+(n+1))
= P(n+1).
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Hence P(n) = P(n+1) for all n € Np. Now note:
P(0) says (0 > 0) so P(0) is false!
P(1) says (1 > 1) so P(1) is false!
P(2) says (4 > 3) so P(2) is true.
Since P(0) is false, I cannot apply the induction theorem. Notice that when

I prove P(n) = P(n+ 1) I do not assume that P(n) is true. (Although I
might as well, since I know P(n) = P(n + 1) is true if P(n) is false.)

3.27 Theorem (Induction theorem generalization.) Let F' be an or-
dered field. Let k € Ng and let P be a proposition form defined on
{n € Np:n > k}. Suppose

P(k) is true. (3.28)
Foralln € {n € Np:n >k} P(n) = P(n+1). (3.29)
Then P(n) is true for alln € {n € Np:n > k}.
Proof: Let ) be the proposition form on Ny defined by
Q(n) =P(n+k) for all n € Np

(observe that n € Np = n+k € {n € Ng:n > k} so Q(n) is defined). Then
Q(0) = P(k), so Q(0) is true by (3.28). For all n € Np,
Q(n) < Pn+k) = P(n+k)+1)
& P(n+1)+k) <= Q(n+1)
SO
Q(n) = Q(n+1).

By the induction theorem, Q(n) is true for all n € Np; i.e., P(n+ k) is true
for all n € Ng. To complete the proof, I need to show that

{n+k:neNp}={neNp:n>k}.
It is clear that

{n+k:neNp}C{neNpn>~k}

To show the opposite inclusion, observe that if n € Nr and n > k, then
n = (n—k) + k, and by theorem 3.19, n — k € Np. |
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3.30 Example. Let F' be an ordered field, and let P be the proposition
form on Ny defined by
@, 2 1 2 b
P(n) = “n* > E(n +n).
In example 3.25, we showed that P(n) = P(n + 1) for all n € N and that
P(2) is true. Hence, by our generalized induction theorem we can conclude
that P(n) is true for all n € Np with n > 2.

3.31 Exercise. Let F' be a field and let z € Np. We say z is evenif x = 2-y
for some y € Ng, and we say z is odd if =2 -z + 1 for some z € Np.

a) What are the even numbers in Z5?

b) What are the odd numbers in Z5?
3.32 Exercise.

a) Let F be a field. Prove that every element in N is either even or odd.
HINT: Let P(n) = “n is even or n is odd”.

b) Let F be an ordered field. Prove that no element of N is both even
and odd. Why doesn’t this contradict the result of exercise 3.317

3.33 Note. The question of whether to consider 0 to be a natural number
is not settled. Some authors start the natural numbers at 0, other authors
start them at 1. It is interesting to note that Aristotle did not consider 1 to
be a number.

... for “one” signifies a measure of some plurality, and “a number”
signifies a measured plurality or a plurality of measures. Therefore,
it is also with good reason that unity is not a number; for neither
is a measure measures, but a measure is a principle, and so is unity
.... |5, page 237, N, 1, 1088a5]

Zero was first recognized to be a number around the ninth century. Ac-
cording to [31, page 185] Mahavira (ninth century) noted that any number
multiplied by zero produces zero, and any number divided by zero remains
unchanged! Bhaskara (1114-1185) said that a number divided by 0 is called
an infinite quantity.
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Although arguments that are essentially arguments by induction appear in
Euclid, the first clear statement of the induction principle is usually credited to
Blaise Pascal (1623-1662) who used induction to prove properties of Pascal’s
Triangle.[36, page 73]

I believe that the idea of defining the natural numbers to be things that
are in every inductive set should be credited to Giuseppe Peano [37, page 94,
Axiom 9]. In 1889, Peano gave a set of axioms for natural numbers N (starting
with 1), one of which can be paraphrased as: If K is any set, such that 1 € K
and forallz € N, (r € K = z+1 € K), then N C K.

3.2 Integers and Rationals.

3.34 Definition (Integers in F.) Let F be a field. We define an element
z in F' to be an integer in F' if and only if z can be written as the difference
of two natural numbers; i.e., if and only if

z = q — p for some p,q € Np.
We denote the set of integers in F' by Zp.
3.35 Exercise. What are the integers in Zs5?
3.36 Exercise. Let F' be a field. Show that for all x,y € F',
r€Zrandy€Zyr = x+y € Zp

and that
r€Zrpandy€Zp = v -y € Zp.

Also show that x € Zp — — 1z € Zp.

3.37 Theorem. Let F be an ordered field and let —Np = {—z:x € Ng}.

Then
ZF = NF U (—NF) and NF N (—NF) = {0}
Proof:
neNrp =—=n=n—-0¢€Zp
and

n€—-Np = —ne€Np = 0—(-n) € Zr = n € Zy.
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Hence, Np C Zr and —Ng C Zp, so
NpU(=Np) C Zp. (3.38)

Now suppose n € Zr. Then n = p — ¢ where p,q € Np. If p— ¢ > 0, then
p—q€Np. Ifp—qg<0,theng—p>0,s0q¢—p € Np,s0 —(p—¢q) € Np, so
—n € Ng,son € —Np. Therefore, n € Nporn € —Ng;ie., n € NpU—Npg,
SO

Zp C NpU(—Np).

This combined with (3.38) shows that Zrp = Np U (—Npg). Since all ele-
ments of Nr are > 0, and all elements of —INp are < 0, it follows that
Nr N (—=Npg) C {0}, and clearly 0 € Np N —Np, so Np N (=Npg) = {0}. |

3.39 Definition (Rational numbers in F.) Let F be a field. Let

Qp = {%:n,mEZF andm;é()}.

0
The elements of Q will be called rational numbersin F'. We note (0 = 1 € Qp

1

3.40 Theorem. Let F be a field. Then the set Qp of rational numbers in
F form a field (with the operations of F ).

Proof: The various commutative, associative and distributive laws hold in Qp,
because they hold in F', and we’ve noted that the additive and multiplicative
identities of F' are in Q, and they act as identities in Qj because they are
identities in F'. We note that 4+ and - define binary operations on Q; i.e., th;e

sum and product of elements in Qr isin Qp. Let a,b € Qp writea = —,b = —
q s

where p,q,7,s € Zr and ¢ # 0, s # 0. Then

wib = Py opstar
q S qs
b T pr
a-b = 2. =22
g s gs
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and ps + qr, gs,pr are all in Zr and ¢-s # 0. Hence a + b and a - b are in Q.
Also, —a = — Pl = 2P where —p,q € Zp, s0o —a € Qp and
q q

b#0 — b:fwherer,s#o r,s € Zp
s
s

= b_lz—
T

= b 'leQqQ,.
Hence Qp is a field. ||

3.41 Definition (Even and odd.) In exercise 3.31 we defined even and
odd natural numbers. We now extend this definition to integers. Let I be a
field and let z € Zr. We say x is even if and only if z = 2y for some y € Zp,
and we say z is odd if and only if z = 2z + 1 for some z € Zp.

3.42 Remark. In exercise 3.32 you showed that in an ordered field, every
element of Ny is even or odd, and no element of Nz is both even and odd.
Since Zr = Np U —Np, it follows fairly easily that if F' is an ordered field,
then every element of Zy is even or odd, and no element of Zy is both even
and odd.

3.43 Exercise.
a) Let F be a field, and let n € Zp. Show that
nis even == n?is even,

and
nis odd = n?is odd.

b) Let F' be an ordered field and let n € Zp. Show that

n?iseven = n iseven
n?isodd = nisodd.

I want to show that in any ordered field F', 2 is not a square in Q. To
show this I will use the following lemma.
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3.44 Lemma. Let F be an ordered field. Then every element in Qp can be
written as T, where m,n € Zr and m,n are not both even.
n

Proof: Let F be an ordered field, and let » € Qg. Then r = m where
n

. -m .
m,n € Zr and n # 0. Since r = ——, we may assume without loss of general-
-n
ity that n > 0. Then n € Ny so we can write any element of Qj in the form

m
r=— where m € Zp, n € Np and n > 1. Let
n

S:{QGNF: forsomepGZF<r:§>}.

Then n € S, since r = . By the least element principle, S has a least element
k. We have p
r=7 for some p € Zp.

Then p and k are not both even, since if p = 2P and k£ = 2K where P and K
are in Zg, then

p_ 2P P

k2K K’

and hence K € S. But this is impossible because K = %k < k,ie. K is less
than the least element for S. ||

3.45 Theorem. Let F' be an ordered field. Then 2 is not a square in Q.

Proof: Suppose there were an element r € Qj such that r?> = 2. By our

) m
lemma, we can write r = — where m,n € Zg, m,n not both even. Now
n

2
m

=2 = — =2
n

= m?’=2-n?
= m is even (since n> € Zp).

Now
m is even = m = 2k for some k € Zp,
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SO

m? =2.n?
(2k)?2=2-n?
22k? = 2n?
2k? = n?

n? is even

FEEELY

n 1s even.

Thus the statement r? = 2 implies (m is even and n is even and m,n are not
both even), which is false. The theorem follows. ||

3.46 Note.
When Plato (4277-347B.C.) wrote The Laws, he lamented that most Greeks
at the time believed that all numbers were rational (i.e. that all lines are com-
mensurable):

ATHENIAN: My dear Cleinias, even I took a very long time to
discover mankind’s plight in this business; but when I did, I was
amazed, and could scarcely believe that human beings could suffer
from such swinish stupidity. I blushed not only for myself, but for
Greeks in general.

CLEINIAS: Why so? Go on, sir, tell us what you're getting at.

ATHENIAN: The real relationship between commensurables
and incommensurables. We must be very poor specimens if on
inspection we can’t tell them apart. These are the problems we
ought to keep on putting up to each other, in a competitive spirit,
when we’ve sufficient time to do them justice; and it’s a much more
civilized pastime for old men then draughts.

CLEINIAS: Perhaps so. Come to think of it, draughts is not
radically different from such studies.

ATHENIAN: Well, Cleinias, I maintain that these subjects are
what the younger generation should go in for. They do no harm,
and are not very difficult: they can be learnt in play, and so far
from harming the state, they’ll do it some good[39, book vii,820].
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However, when Aristotle (384-322 BC) wrote the Priora Analytica, he as-
sumed that his reader was familiar with the proof of theorem 3.45 just given.
The following quotation would not be understood by anyone who did not know
that proof.

For all who effect an argument per impossible infer syllogistically
what is false, and prove the initial conclusion hypothetically when
something impossible results from the assumption of its contradic-
tory; e.g., that the diagonal of the square is incommensurate with
the side, because odd numbers are equal to evens if it is supposed
to be commensurate. One infers syllogistically that odd numbers
come out equal to evens, and one proves hypothetically the in-
commensurability of the diagonal since a falsehood results through
contradicting this.[4, 1-23, 41a, 23-31]

The meaning of the word “rational” has changed since the time of Euclid.
He would have said that a line of length /2 was rational, but a rectangle
of area /2 was irrational. The following quotation is from book X of The
FElements[19, vol 3, p10, definitions 3 and 4].

Let then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in length
and in square or in square only, rational, but those which are in-
commensurable with it irrational.

4. And let the square on the assigned straight line be called
rational, and those areas which are commensurable with it rational,
but those which are incommensurable with it ¢rrational.

3.47 Warning. An early commentator on Euclid (quoted in [19, vol III
pagel]) suggested that perhaps

- everything irrational and formless is properly concealed,
and, if any soul should rashly invade this region of life and lay
it open, it would be carried away into the sea of becoming and be
overwhelmed by its unresting currents.

3.48 Notation (N, Z, Q.) We have defined natural numbers N in any field
F', and we’ve seen that the natural numbers in Z5 and the natural numbers in
Q are quite different. However, if F' is an ordered field, then

NF:{0;1:253a47”'}
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where the list contains no repetitions, since when we add a new term to the
list we get something greater than every element already in the list. Hence if
F, G are two ordered fields then Ny and Ng are “essentially the same”. We
will denote the natural numbers in an ordered field by N, and call N “the
natural numbers”. Since we defined Zy in terms of Ny, and we defined Qp in
terms of Zp, the integers in any two ordered fields are “essentially the same”
and the rationals in any two ordered fields are “essentially the same”. We will
denote the integers in any ordered field by Z, and call Z “the integers”.

Z=NU-N={0,1,-1,2,-2,3,-3,---}.

Similarly we will call the rational numbers in an ordered field Q, and call Q
“the rational numbers”

Q:{%:n,mez, ,m;éO}.

3.49 Remark. One can define formally what it means to say Nz and Ng
are “essentially the same,” and one can prove that if F,G are ordered fields,
then N and Ng are “essentially the same” (e.g., see [35, page 35]).

However, one can also construct ordered fields F' and G such that Nz and
N are radically different! (see [41]) The reason that both of these apparently
contradictory things can happen is that our definition of N involves looking
at the set of all inductive subsets of F', and our vague notions of set and
function are just too imprecise to deal with this delicate question. The two
quoted contradictory results are proved using different set theories, which are
not consistent with each other, but both of which are more or less consistent
with everything we’ve used about sets.

3.3 Recursive Definitions.

Our definition of function f: A — B involved the undefined word “rule”. If I
define f:N — N by

fn)=2-n+1forallneN

the rule is perfectly clear. I will often want to define functions by “rules” of
the following sort: f: N — N is given by

f0)=1
{fgn)-i-l):(n—}-l)-f(n) for all n € N. (3.50)
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It is not quite so clear that this is a rule, since the right side of (3.50) involves
the function I am trying to define. However, if I try to use this rule to calculate

f(4),1 get

f4) =

Il
G O O O

(3.51)

and by this example, you recognize that (3.50) defines the familiar factorial
function. In fact, I make this my definition of the factorial function.

3.52 Definition (Factorial function.) We define f: N — N by the rules.

{f(0)=1
f(n+1)=(n+1)-f(n) forallneN.

We call f the factorial function, and denote f(n) by n!. By definition,

=1
{(n—i—l)!:(n—i-l)-n!.

I could use the same rule (3.50) to define a factorial function Zs — Z;. The
calculation (3.51) shows that then

fA)=4-3-2.1-1=24=4,

and
f(B)=5-f(4)=5-4=0.

but in Z5, 5 = 0 so L have f(0) = 0, contradicting f(0) = 1. So I see that (3.50)
is not a “rule”. How do I know that (3.50) is a “rule” when considered as a
function from N — N7?; i.e., how do I know that no contradiction arises when
I use (3.50) to calculate values for n € N? I have decided not to worry about
this question, and to treat definitions analogous to (3.50) where functions on
N are defined by giving f(0) explicitly, and expressing f(n + 1) in terms of
n and f(k) for values of £ < n, as valid “rules”. Such defintions are called
definitions by recursion. A discussion of, and justification for definitions by
recursion can be found in [27].



72 CHAPTER 3. INDUCTION AND INTEGERS

3.53 Definition (Powers.) Let F' be a field, and let a € F. Define a
function

faN— F
by
f0) = 1.
fa(n+1) = fu(n)-aforalln e N. (3.54)
Thus,
fa(4) fa(3) - a
= fa(g) -a-a
= ful)-a-a-a
fa0)-a-a-a-a

= l-a-a-a-a

= a-a-a-a.

We denote the value of f,(n) by a™. Then we can rewrite (3.54) as

{aozl
a1l =q".q forallne N.

Note that 0° =1 and a! = a.
3.55 Theorem. Let F' be a field and let a € F'. Then for all p,n € N,
a?t™ = aP - a".
Proof: Define a proposition form P on N by
P(n) = “for all p € N(a"*™ = a? - a")” for all n € N.

Then P(0) says “for all p € N(a?™® = a? - a°)” which is true, since both sides
of the equation are equal to a?. For all n € N,

aPtm . g = P+l — ap+(n+1)’

and
(aPa™) - a = P (a"a) = aPa™V).
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Hence for all n € N,

P(n) for all p € N(a?*" = a”a"™)
for all p € N((am"") ca = (apan) . a)
for all p € N(ap+(n+1) = aPa"™)

P(n+1).

NN

By induction, P(n) is true for all n € N, i.e.
for all n € N(for all p € N(a’*" = apa”)). I
3.56 Exercise. Let F' be a field, and let a, b be elements of F'. Show that
(ab)" = a™b"™ for all n € N.
3.57 Exercise. Let F' be a field and let a € F'. Show that

(a™)™ = o™ for all m,n € N.

The following results are easy to show and we will assume them.

0"t =0 for all n € N, ( but 0° = 1).
1" =1for all n € N.
a#0 = (a"#0foralln e N).

3.58 Remark. Let F be a field, let ¢ € F\{0} and let n € Z. We know
that n = p — q where p,q € N. Suppose we also have n = P — () where
P,Q € N.

n=n — p—q=P—-Q = p+Q=q+P

= 9 ="’ = ¢Pa? = %"
a? ot
a?  a@

I need this remark for the following definition to make sense.
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3.59 Definition (Integer powers.) Let F be a field. If a € F\{0} and
n € Z, we define

aP
a”zawheren:p—q, p,q € N.

Note that this definition of a~! is consistent with our use of a~! for multiplica-
tive inverse. Also, this definition implies that

1" =1 for all n € Z.
3.60 Theorem. Let F' be a field and let a € F\{0}. Then
for allm,n€Z (a™" =ad™-a").
Proof: Let m,n € Z, and write
m=p—¢q, n=r—swherep,qr,s€N

then p+r € N and ¢ +s € N and

g™t — a(pfq)+(rfs) :a(p—l—'r)f(q—i—s)

a?t’" aPa”

a?ts  ala’
a? a’ m n
TR I
3.61 Remark. If F is a field, and a € F'\ {0}, then by definition 3.59 we
know that

P
al™1 = a_q for all p,q € N.
a

It follows from theorem 3.60 that a?a?~? = aP for all p,q € Z, and hence
aP
a? 1= — for all p,q € Z.
al

3.62 Exercise. Let F be a field, and let a,b € F\{0}. Show that
(ab)™ = a"™b" for all n € Z.

3.63 Corollary (to Exercise 3.62) Let F' be a field, and let a,b € F'\ {0}.
Then

a\" a"
- == Z.
(b) o for alln €
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Proof: By exercise 3.62

a’nn_ 2 n_ n
(5) b _(b b) =qa" for all n € Z.

If we multiply both sides of this equation by (b")~', we get

(%)n ()t = o (b") 7,

(2) -
b) b

3.64 Exercise. Let I’ be a field, and let a € F'\{0}. Show that

1.e.

(@™ = ™ for all m,n € Z.

3.4 Summation.
3.65 Notation (Zs;.) Let k € Z. We define
Zsy={n€Z:n>k}.

In particular Z>o = N.

p
3.66 Definition (> f(j)) Let k € Z and let f: Z>j, — F be a function from
j=k
Z>}, to a field F. Define a function S:Z>; — F by the rules

S(k) = [f(k)
Sn+1) = Sn)+ f(n+1) for all n € Zyy.

Hence, for k = 2,

SG) = 8

I
)
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We denote S(p) by Z f(y) for all p € Z5. Thus,

> f5) = f(k) (3.67)

=k
and

n+1 n

> f0G) (Z ) + f(n+1).

= rt
The letter j in (3.67) has no meaning, and can be replaced by any symbol that

has no meaning in the present context. Thus Z fQ Z flw
=3

3.68 Example.

4
Yot = 0P+ 1P 42243 4+42=30

2333' (=3)+ (—2)+ (1) +0+1+2+3=0.

=3

3.69 Remark. [ will sometimes write things like

LI N N N
~3—j 3-1 3-2 2 2

even though my definition of summation is not strictly applicable here (since

- is not defined for all j € Z»4).

There are many formulas associated with summation notation that are

easily proved by induction; e.g., let f, g be functions from Z, to an ordered
field F', and let ¢ € F'. Then

p P

DG+ 90) i (7)] for all p € Zy.

i=k =k i=k
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P p
If f(j) > g(j) for all j € Z>y, then Zf(j) > Zg(j) for all p € Z5.
=k

j=k

P

SN = _rG)+ D f() forall ¢ € Zoy,p € Zsgia.
=k

j=k j=gq+1

We will assume these results.

3.70 Remark. Usually induction arguments are presented less formally
than I have been presenting them. In the proof of the next theorem I will give
a more typical looking induction argument. (I personally find the more formal
version — where a proposition is actually named — easier to understand.)

3.71 Theorem (Finite geometric series.) Let F' be a field, and let
r € F\{1}. Then for alln € N,

n ) 1— n+1
Sl (3.72)
0 1—7r

0
11—
Proof: (By induction.) When n = 0, (3.72) says » 7/ = 1—T which is true
Jj=0 -
since both sides are equal to 1. Now suppose that (3.72) is true for some

n € N. Then

n+1 ] n ) 1— rn—|—1
SNorl = S ittt = ————
s =0 1—r
1 — pntl + ,r,n-l—l(l _ 7“) 1— T(n+1)+1
N 1—7r N 1—r
SO
n+1 1— T(n+1)+1

Y=
= 1—7
Hence, if (3.72) holds for some n € N, it also holds when n is replaced by

n + 1. By induction (3.72) holds for all n € N. ||

3.73 Remark. I will sometimes denote Y f(j) by f(1)+ f(2)+---+ f(n).
j=1

I am not going to give a formal definition for - - -, and when you see - - - writ-

ten in these notes it is usually an indication that a straightforward induction

argument or a recursive definition is being omitted.
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3.74 Remark. The previous proof was easy, but in order to use the
induction proof, I needed to know the formula. Here I will indicate how one
might discover such a formula. For each n € N, let S5, = 14+7r+ .- 4+ r".
Then

(I4+r+--+r" ) =Q4r+--+r") + " =G, 4" (3.75)

and
(Ttr+-+r")=1+r(l+r+-+7")=1+7S,.

Hence
Sy +r"tt=1+7r8,, (3.76)

and it follows that
Sp(l—7r)=1—p"*

ie. ——

1—7r
Here I have derived the formula (3.72). If you write out the argument from line
(3.75) to line (3.76), without using - - s, and using only properties of sums that
we have explicitly proved or assumed, you will probably be surprised at how
many implicit assumptions were made above. However all of the assumptions
can be justified in a straightforward way.

S, =

3.77 Theorem (Factorization of a"™! — r"*L)) Let F be a field, and let
a, r be elements of F'. Then for all n € N,

(an+1 — rn+1) = (a, — T‘)(Z CLnijTj) (378)
=0
= (a—r)(@" +a"'r+a" 2+ a4+ 7).
Proof: Let n € N. The formula (3.72) for a finite geometric series shows that
(1= =@1-r)Y r foralreF\{1}. (3.79)

§=0

This formula also holds when r = 1, since then both sides of the equation are
equal to zero, so

(1—r")=@0-7r)Y riforallrekF (3.80)

j=0
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This proves our formula in the case a = 1. When a = 0, equation (3.78) says
~("1) = (=) 1"

which is true, so we will suppose that a # 0. Then by (3.80) we have

gttt gl = g (1-(2)”“)
o DEQ 0D ()

n n

= (a—r)za—ﬂ (a—r Za” Ird ||

=0 @

3.81 Remark. The solution to the problem of “factoring” an expression
depends on the field over which we are working. For example, if we work over
Z;, then

2’ +5=(z+3)(z+4),

whereas if F' is an ordered field, then 22 + 5 does not factor in the form
(z+a)(x+0b), where a and barein F. (If 22 +5 = (x +a)(z+0b) forallz € F,
then by taking x = —a we would get a?+ 5 = 0, which is false since a® +5 > 0
in any ordered field.)

3.82 Exercise. Factor five of the following expressions into at least two
factors. Assume that all numbers appearing in your factorization are rational.

r? — 1. (Here p € Z>,.)

a* + bt.

x5 — 5.

)
)
c) a®+ b
)
)
)



80 CHAPTER 3. INDUCTION AND INTEGERS

3.83 Entertainment. Let F' be a field and let » € F\{1}. For all n € Z>,
let

n
To=r+2r*4+3r°+---+n-r"=> jr.
j=1

By looking at T, ;1 — r - T, and using the known formula (3.72), derive the

formula ,

T, = 5 (1 +nr"tt — (n+ 1)7’") .

(1—r)
3.84 Exercise. Let
n 1
Sy = — for all n € Z~,. 3.85
jz::l 3G +1) = (3:85)

Calculate the values for Si, S, S3,54. Write your answers as fractions in the
simplest form you can. Then guess a formula for S,,, and prove that it is valid
foralln € Z>,.

3.86 Exercise. Let

T, =Y (2j—1) forall n € Zs;. (3.87)
j=1

Calculate the values for 71,75, T3, and Ty. Then guess a formula for 7;,, and
prove that your guess is correct.
3.5 Maximum Function

3.88 Definition (max(p,q).) Let F be an ordered field, and let p,q € F.
We define

_[p ifp>gq
maX(p,Q)—{q itp<q
Then
p < max(p,q)
¢ < max(p,q).
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3.89 Definition (Igai(lf(n).) Let F be an ordered field, let j € Z and let
j<n<
f:Z>; — F be a function. Define M:Z; — F by the rules

M(j) = f0)
M(n+1) = max(f(n+1),M(n)) foralln € Z,.

Hence, e.g., if f(n) = (n —1)?,

M(0) = f(0)=1

M(1) = max(f(1),M(0)) = max(0,1) =
M(2) = max(f(2),M(1)) =max(1,1) =
M(3) = max(f(3),M(2)) =max(4,1) =

We write
M(l) = max f(m)

j<m<l

where m is a dummy index, and we think of M (1) as the largest of the numbers
{f(G), fG+1),---, f(1)}. By definition

max_f(m) = f(7)
Jsmsj

and
jamaiy N (f(j T 1),j<2><<lf(m)> '
3.90 Notation (Z;<,<.) Let j,l € Z with j <. Then
Zicna={ne€eZ:j<n<l}

3.91 Theorem. Let F' be an ordered field, let j € Z and let f:Z>; — F be
a function. Then for alll € Z>;,

for allp € Zjcym<i, f(p) < max f(m). (3.92)

T j<m<l

Proof: Let P be the proposition form on Z; such that P(l) is the proposition
(3.92). Then P(j) says

for all p € Zj<im<j, f(p) < Zax. f(m);
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ie.,
for all p € {7}, f(p) < f(4)-
Hence P(j) is true.
Now for all | € Z,

P(l) = forall p € Zjcna, f(p) < max f(m)
- jsm=

— forall p € Zjcpma, f(p) < max (f(l +1), max f(m ))

- jg%%fﬂ f(m).

We also have

f(l+1) < max (f(l+ 1), max f(m)) = max f(m),

j<m<l J<m<I+1
S0
P(l) = forallpe ZjcpaU{l+1}, f(p) < <m%<+1f( m)
= forall j € Zj<m<ir1, f(p) < jSI}lni%ﬁl
= P(l+1).

By induction, P(l) is true for all I € Z5;. ||

3.93 Note. The notation a™ for positive integer powers of a was introduced
by Descartes in 1637[15, vol 1,p 346]. Both Maple and Mathematica denote
a™ by a"n.

The notation n! for the factorial of n was introduced by Christian Kramp

in 1808[15, vol 2, p 66].

The use of the Greek letter ¥ to denote sums was introduced by Euler in
1755[15, vol 2,p 61]. Euler writes
3 2

X X X
Sa? =" — 42

3 2 6
The use of limits on sums was introduced by Augustin Cauchy(1789 1857)

Cauchy used the notation Z fr to denote what we would write as Z f(r
vol 2, p 61].
In Maple, the value of Z f (i) is denoted by sum(f(i),i=1..n) . In Math-

r=m

ematica it is denoted by Sum [£[i],{i,1,n}]



Chapter 4

The Complexification of a Field.

Throughout this chapter, F' will represent a field in which —1 is not a square.
For example, in an ordered field —1 is not a square, but in Zs, (2)2 =4 = -1
so —1 is a square. In Zs,

0°=0, 12=1, 22=1, and —1 =2,

so —1 is not a square in Zg.

Let F be a field in which —1 is not a square. I am going to construct a new
field Cr which contains (a copy of) F and a new element 7 such that > = —1.
The elements of Cr will all have the form

a—+ b

where a and b are in F'. T’ll call Cg the complexification of F'. Before I start
my construction, note that if a, b, ¢, d are in F and 2 = —1, then by the usual
field axioms

(a+bi)+ (c+di) = (a+c)+ (b+d)i, (4.1)

and
(a+ bi)(c+ di) = (ac — bd) + (ad + be)i. (4.2)

4.1 Construction of Cy.

Let F' be a field in which —1 is not a square. Let Cp = F x F' denote
the Cartesian product of F with itself (Cf. definition 1.55). I define two

83
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binary operations @ and ® on Cp as follows (cf. (4.1) and (4.2)): for all
(a,b), (c,d) € Cp,
(a,b) ® (¢,d) = (a+ ¢,b+d)

and
(a,b) ® (¢,d) = (ac — bd, ad + bc).

We will now show that (Cp, ®,®) is a field.

4.3 Theorem (Associativity of ©.) The operation ® is associative on
Cr.

Proof: Let (a,b), (c,d) and (e, f) be elements in Cp. Then
(a,0) © ((c;d) © (e, f))
= (a,b)- (ce —df,cf + de)
= (a(ce —df) — b(cf + de),a(cf + de) + b(ce — df))
= (ace — adf — bef — bde, acf + ade + bee — bdf). (4.4)
Also,
((a,0) © (¢, d)) © (e, f)
= (ac—bd,ad+bc) ® (e, f)

= ((ac = bd)e — (ad + bc) f, (ac — bd) f + (ad + bc)e)
= (ace — bde — adf — bef,acf — bdf + ade + bee). (4.5)

Now by using the field properties of F', we see that the (4.4) and (4.5) are
equal, and hence

(a,0) © ((¢,d) © (e, f)) = ((a,) © (¢, d)) © (e, ).

Hence, ® is associative on Cp. ||
I expect the multiplicative identity for Cr to be 1+ 0i = (1,0).

4.6 Theorem (Multiplicative identity for Cr.) The element (1,0) is an
wdentity for ©® on Cg.

Proof: For all (a,b) € Cp, we have
(1L,0)®(a,b)=(1-a—0-b,1-b+0-a) = (a,b)

and
(a,0) ©(1,0)=(a-1—-b-0,a-0+b-1) = (a,b). |
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4.7 Exercise.

a) Show that @ is associative on Cp.

b) Show that there is an identity for & on Cpg.

¢) Show that every element in Cr has an inverse for &.

d) Show that ® is commutative on Cp.

e) Show that the distributive law holds for Cg.

)
)
)
)
)
)

f) Show that the additive and multiplicative identities for Cr are different.

As a result of exercise 4.7 and the two previous theorems, we have verified
that (Cr, ®, ®) satisfies all of the field axioms except existence of multiplica-
tive inverses. Note that up to this point we have never used the assumption
that —1 is not a square in F.

4.8 Theorem (Existence of multiplicative inverses.) Let F' be a field
in which —1 is not a square and let (a,b) be an element in Cp\{(0,0)}. Then
(a,b) has an inverse for ©.

Proof: Let (a,b) € Cr\{(0,0}. I want to find a point (z,y) € Cp such that
(a,0) © (z,y) = (1,0).

Since multiplication is commutative, this shows that (z,y)®(a,b) = (1,0) and
hence that (z,y) is a multiplicative inverse for (a,b). I want

(ax — by, ay + bx) = (1,0),
so I want
bx +ay=0 (4.9)
and
ar —by = 1. (4.10)
Multiply the first equation by b and the second by a to get
b’z + aby

o’z —aby = a.
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If we add these equations, we get

(a®* +b*)z = a. (4.11)
In the next lemma I'll show that if —1 is not a square then a? + b? # 0 for all
(a,b) € Cp\{(0,0)}, so by (4.11), z =
(4.10) by —b to get

prETE Now multiply (4.9) by a and
a

abr +d’y = 0

—abz + b’y = —b.
If we add these equations, we get
(a®> +b*)y = —b
SO b
V= aip
I've shown that if (a,b) ® (z,y) = (1,0), then (z,y) = <a2 i s a2_+bb2), A

direct calculation shows that this works:

(a,b)@( « b >=< @ P a(—b)+ba>:(1’0)'m

a? + 0% a? +b? a? +02  a?+ b2 a?+b?
4.12 Remark. The above proof shows that for all (a,b) € C\ {(0,0)},

a —b
byt = .
(a,) <a2+b2’a2+b2>
4.13 Lemma. Let F be a field in which —1 is not a square. Let (a,b) be an
element in Cr\{(0,0)}. Then a?® + b*> # 0.

Proof: Since (a,b) # (0,0), either a # 0 or b # 0.
Case 1: Suppose a # 0, then a? # 0, so

2
Ad+¥=0 = a2(1+<2>>20
2
_ 1+(9) 0
a

- (-

Since —1 is not a square in F, a® + b # 0.
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Case 2: Suppose b # 0. Repeat the argument of Case 1 with the roles of a
and b interchanged. ||

We now have verified all of the field axioms so we know that Cr is a field.
Hence we can calculate in Cr using all of the algebraic results that have been
proved to hold in all fields.

4.14 Notation (i,a) Let F' be a field in which —1 is not a square. We
will denote the pair (0,1) € Cp by 4, and if a € F we will denote the pair
(a,0) € Cp by a.

We have 0 = (0,0) is the additive identity for Cp, an
multiplicative identity for Cg. If @ € F, then —a = —(a,0)
Also

(oW
” =
Il
—~
—_
)
~
—
wn
-+
=
@D

2 = (0,1)®(0,1) = (0—1,0) = (—1,0) = —1,

so i is a square root of —1.
If a,b € F, then

ad®(bei)

~—~

a,0) @ ((b,0) ®(0,1))
(a" 0) ©® (Oa b) = (a: b)a

and hence every element (a,b) € Cp can be written in the form @ @ (b @ i).
We have

= (a,0)® (b,0) = (ab,0) = ab
= (a,0)® (b,0) = (a+b,0) =a+b.

=]

S O

©
D

=]

Hence Cp contains a “copy of F”. Each element a in F' corresponds to a
unique ¢ in Cp in such a way that addition in Cp corresponds to addition
in F' and multiplication in Cg corresponds to multiplication in F. We will
henceforth drop the tildes, and we’ll denote @& by + and ® by - as is usual
in fields. Then every element in Cr can be written uniquely as a + bi where
a,b € F and i2 = —1.

We consider F to be a subset of Cp. An element z = (a,b) = a + bi of Cp
isin F if and only if b =0. If a,b,c,d € F, then

a+bi=c+di < (a,b) =(c,d) <= a=candb=d.
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4.15 Examples. I will find the square roots of 2¢ in Cq. Let a,b € Q. Then

(a+bi)?=2i < a®—b"+2abi=2i
< a’>—b* =0 and 2ab =2
< d*=btandab=1
<= (a=band ab=1) or (a = —b and ab = 1).
Now
(a=bandab=1) <= (a=banda®>=1) < a+bi=+(1+1)
and
(a=-bandab=1) = -’ =1= b>=-1

which is impossible. The only possible square roots of 2i are £(1 + 7). You
can easily verify that these are square roots of 2.

4.16 Example. I can solve the quadratic equation
1
22—4z+4—§i:0 (4.17)

in Cq by using the quadratic formula for Az? + Bz + C = 0.

1
B? —4AC =16 — 4 (4 - 51’) = 2i = (1 +1)? (by the previous example). Since
B? — 4AC is a square, the equation has the solution set

{4+(1+¢) 4—(1+i)}:{§+%¢,g 1-}.

2 T 2 2 9

5 1 3 1
4.18 Exercise. Check that 5 + 51’ and 5 §i are solutions to (4.17).

4.19 Exercise.

in the form a + bi where a,b € Q.

1
a) Write 1

b) Find all solutions to
(1-20)22 =22+1=0

in Cq. (You may want to use the result of example 4.15.) Write your
solutions in the form a + b7 where a,b € Q.
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4.20 Entertainment.  We noted earlier that —1 is not a square in Zg,
so Z3 has a complexification, which is a field with 9 elements. Show that if
2z =1+1, then the 9 elements in Cg, are

{0,2,2%, 23, 2%, 2°, 28,27, 28).
Can you figure out before you make any calculations which of these elements
is 17
4.2 Complex Conjugate.

4.21 Definition (Complex conjugate.) Let F be a field in which —1 is
not a square. Let z = (a,b) = a + bi be an element of Cp. We define

z* = (a,—b) = a — bi.
z* is called the conjugate of z.

The following remark will be needed somewhere in the proof of the next
exercise.

4.22 Remark. If F'is a field in which —1 is not a square, then 2 # 0 in F,
since

2=0 = 141=0
= —1=1
= —-1=1°

—> —11is a square .

4.23 Exercise. Let F' be a field in which —1 is not a square. Let z,w € Cp.
Show that

a) (z4+w)* = 2" +w*.

b) (z-w)* = 2z* - w*.
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e) If z=a+ bi € Cp, then 22* = a? + b* € F. If 2 # 0 then 2zz* # 0.

f) 2*=2 < z€F.

4.24 Example. The results of the previous exercise provide a way to write

expressions of the form — in the form a + bi. Write
w

*

w

z z
woow w*
and calculate away. For example, in Cq, we have

2+ B (2+14) (3+9)(4-59)

(B3—d)(4+5)  (3—i)(4+5i) (3+1)(4—5i)
(24d)(17—11i) 45—5i _ 5(9—1)
(32 +12)(42+52) 10-41  5-82
9 1.

R

4.25 Exercise. Write each of the following elements of Cq in the form a+b:
where a,b € Q.

) 4200+ 2)
YV 130 (-1 + 30)

b) (14 4)!

4.26 Note. The first appearance of complex numbers is in Ars Magna
(1545) by Girolamo Cardano (1501-1576).

If it should be said, Divide 10 into two parts the product of which
is 30 or 40, it is clear that this case is impossible. Nevertheless, we
will work thus: - -- [16, page 219].

He then proceeds to calculate that the parts are 5+ +—15 and 5 — y/—15,
and says
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Putting aside the mental tortures involved, multiply 5 4+ v/ —15 by
5 — v/—15 making 25 — (—15) which is +15. Hence this product
is 40 - --. So progresses arithmetic subtlety the end of which, as is
said, is as refined as it is useless [16, page 219-220].

Around 1770, Euler wrote

144. All such expressions as v/-1, v/-2, v/-3, /-4 &c are con-
sequently impossible, or imaginary numbers, since they represent
roots of negative quantities; and of such numbers we may truly
assert that they are neither nothing nor greater than nothing, nor
less than nothing; which necessarily constitutes them imaginary,
or impossible.

145. But notwithstanding this, these numbers present them-
selves to the mind; they exist in our imagination, and we still have
a sufficient idea of them; since we know that by /-4 is meant
a number which, multiplied by itself, produces —4; for this rea-
son also, nothing prevents us from making use of these imaginary
numbers, and employing them in calculation. [20, p 43|

The use of the letter 7 to represent y/—1 was introduced by Euler in
1777.[15, vol 2, p 128] Both Maple and Mathematica use I to denote v/—1.

The first attempts to “justify” the complex numbers appear around 1800.
The early descriptions were geometrical rather than algebraic. The algebraic
construction of Cg used in these notes follows the ideas described by William
Hamilton circa 1835 [25, page 83].

You will often find the complex conjugate of z denoted by Z instead of z*.
The notion of complex conjugate seems to be due to Cauchy[45, page 26], who
called a 4 b7 and a — bi conjugates of each other.



Chapter 5
Real Numbers

5.1 Sequences and Search Sequences

5.1 Definition (Sequence.) Let A be a set. A sequence in A is a function
f:IN — A. I'sometimes denote the sequence f by {f(n)} or {f(0), f(1), f(2),---}.

1
For example, if f: N — Q is defined by f(n) = — I might write

+1
f:{n—li-l}:{ ’%’
1),

i)

3’ .
5.2 Warning. The notation {f(0), f(1), f(2),---} is always ambiguous.
For example,

1

{1,2,4,8,16,---}

might denote {2"}. It might also denote {¢(n)} where ¢(n) is the number of
regions into which a circle is divided when all the segments joining the vertices
of an inscribed regular (n + 1)-gon are drawn.

N 71N
\_/ Y%

n=0 n=1 n=2 n=3

5.3 Entertainment. Show that ¢(4) = 2%, but that it is not true that
¢(n) = 2" for all n € N.

92
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5.4 Warning. The notation for a sequence and a set are the same, but a
sequence is not a set. For example, as sets,

{1,2,3,4,5,6,---} ={2,1,4,3,6,5,---}.
But as sequences,
{1,2,3,4,5,6,---} #{2,1,4,3,6,5,---}.
5.5 Notation (Z;) Recall from section 3.65, that If k¥ € Z, then
Zsr={n€Z:n>k}.

Thus, Z>y = N. Occasionally I will want to consider sequences whose domain
is Z>, where k # 0. I will denote such a sequence by

{£(n) Fnzk-

Hence, if
f: {1a2a3a"'}a
then f(n) =n+1 for all n € N, and if
g = {15 2a 3, o '}nZl:
then g(n) = n for all n € Zs.

5.6 Remark.  Most of the results we prove for sequences {f(n)} have
obvious analogues for sequences { f(n)}n>¢, and I will assume these analogues
without explanation.

5.7 Examples. {i} ={1,4,-1,—1,1,4,---} is a sequence in Cgq.

{02}, ~{pulos] o5

is a sequence of intervals in an ordered field F'.

5.8 Definition (Open and closed intervals.) An interval J in an ordered
field is closed if it contains all of its endpoints. J is open if it contains none of
its endpoints. Thus,

0,[a, b], (=0, al, [a, ), (—oo, 00) are closed intervals.

0, (a,b), (—o0,a), (a,00), (—o0,00) are open intervals.

(a, b], [a,b) where a < b are neither open nor closed.
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5.9 Definition (Binary search sequence.) Let F' be an ordered field. A
binary search sequence {|an,b,|} in F is a sequence of closed intervals with
end points a,, b, in F' such that

1) [ans1,bni1] C [an, by] for all n € N, and

by — ap

on

2) b, —a, = for all n € N.

Condition 1) is equivalent to
an < apa1 < byy1 < by, for all n € N.

5.10 Warning. Note that the intervals in a binary search sequence are
closed. This will be important later.

5.11 Definition (Convergence of search sequence.) Let F' be an or-
dered field, let {[a,,b,]} be a binary search sequence in F, and let x € F.
We say {[an,b,|} converges to x and write {[a,,b,]} — z if z € [a,,b,] for
all n € N. We say {[an,b,]} converges, if there is some z € F such that
{[an, bn]} = x. We say {[an, by]} diverges if there is no such z.

1
5.12 Example. Let F' be an ordered field. Then {[0, Q—R]} is a binary
1
search sequence and {[0, 2—n] } — 0.

5.13 Exercise. Let F' be an ordered field, let a,b € F with a < b. Let
a+b
. Show that

m =
1) a<m<b.
1
2) m—azb—mzi(b—a).
(Conditions 1) and 2) say that m is the midpoint of a and b.)

5.14 Exercise. Let F' be an ordered field and let a,b € F with a < b and
let ¢, d be points in [a, b]. Show that

lc—d[ <b—g;

i.e., if two points lie in an interval then the distance between the points is less
than or equal to the length of the interval.
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5.15 Exercise. Show that 2" > n for all n € N.

5.16 Example (A divergent binary search sequence.) Define a binary
search sequence {|a,,b,|} in Q by the rules

[ao, b()] = [1, 2] )
[ans1, b ] (o, ea5ta] if (2nge)” > 2,
an+1,%+1] =
[t b,] if (o) < 2,
Thus,
a+by  1+2 3 fag+b\ 9 _[2 3]_
5 T g5 T g < 9 >_Z>27so[a1;b1]_ 7' 9|’
a+b  2+3 5 [a+b) 25 [5 6]
= = — —_— — 2 = — = .
9 9 4a 9 16 <2, SO [a2;b2] 45 4 )
2
as+by  34+% 11 as + b 121 [11 12]
9 2 87 2 64< ,SO[CL3, 3] 838
Since 22 + b is the midpoint of [a,, b,], we have
[a’n+1abn+1] C [an:bn]
and 1
bn+1 — Ap41 — E(bn - an) (517)
It follows from (5.17) that
1
b, —a, = 2—n(b0 — ap) for all n € N.

Hence {[ay, b,]} is a binary search sequence. For each n € N, let P(n) be the

proposition
P(n)=“al <2<

Then P(0) says 12 < 2 < 22, so P(0) is true. Let n € N.
3
If (a" ;_ bn) > 2, then

2
+b
Pn) = ag<2gbg:ag+1=a;i<zg(“n2 ) _,

2 2
= lpy <2< by

= P(n+1).
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2
If (“" ‘; b”) < 2, then

2
b
Pn) —s ag<ggb§:>ag+1:(“n'2* ) <2<B =i,

= 0y <2< b,
= P(n+1).

Hence, in all cases, P(n) = P(n+ 1), and by induction, a? < 2 < b2 for all
n C N. Since 2% # 2 for all z € Q, we have

a2 <2< b foralln € N, (5.18)

I now will show that {[a,, b,]} diverges. Suppose, in order to get a contradic-
tion, that for some x € Q, {[an,b,|} — . Then

0<a, <z<b,forallneN,

SO
2 2 2
a, <z°<b,.

Combining this with (5.18), we get

by — ao
2n

2% —2| < b2 —a’ = (b, — a,)(by +a,) < ( 5

) (bo+by) = —  (5.19)

for all n € N. Since 2 is not a square in Q, 22 — 2 # 0. Write |2° — 2| = 2—0,
q

where p,q € Z>,. Then
for all n € N, Z—’gi,
q 2"
SO A
for all n € N, 2"§—q§4q.
p
By exercise 5.15, for all n € N,

n < 2" < 4q. (5.20)

Statement (5.20) is false when n = 4¢ + 1, and hence our assumption that
{lan, bn]} — = was false. ||
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5.2 Completeness

5.21 Definition (Completeness axiom.) Let F' be an ordered field. We
say that F'is complete if it satisfies the condition:
Every binary search sequence in F' converges to a unique point in F'.

5.22 Example. The field Q is not complete, since in example 5.16 we found
a binary search sequence in Q that does not converge.

5.23 Definition (Real field, R.) A real field is a complete ordered field.
We will use the name R to denote a real field.

5.24 Remark. It is not at all clear that any real fields exist. If real
fields do exist, there is a question of uniqueness; i.e., is it the case that any
two real fields are “essentially the same”? I don’t want to worry about what
mathematical existence means, so let me formulate the questions: Are the
axioms for a real field consistent; i.e., is it the case that no contradictions
can be derived from them? Note that we are not entirely free to throw axioms
together. If I were to make a definition that a 3-field is an ordered field in which
3 = 0, I would immediately get a contradiction: 3 =0 and 3 > 0. All I can
say about consistency is that no contradictions have been found to follow from
the real field axioms. There exist proofs that any two real fields are essentially
the same, cf. [35, page 129]. (This source uses a different statement for the
completeness axiom than we have used, but the axiom system is equivalent to
ours.) There also exist constructions of pairs of very different real fields, cf.
[41].

In what follows, I am going to assume that there is a real field R (which
I'll call the real numbers). Any theorems proved will be valid in all real fields.

5.25 Theorem (Archimedean property 1.) Let R be a real field, and let
x € R. Then there is an integer n € N such that n > x.

Proof: Let z € R, and suppose (in order to get a contradiction) that there
isnon € N with n > z. Then z > n for all n. Now {[O, ;—n]} is a binary

x
search sequence in R. Since x > 2", I have 1 < on for all n € N. We see that

x
[0 5
that a binary search sequence has a unique limit, this yields a contradiction,
and proves the theorem. ||

} — 1, but clearly {[O, ;—n]} — 0. Since completeness of R implies
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5.26 Corollary (Archimedean property 2.) Let x € R\{0}. Then there

is some n € Zxy such that — < |z|.
= n

1 1
Proof: By the theorem, there is some n € Z>; with n > —. Then — < |z|. ||
- n

x|

5.27 Corollary (Archimedean property 3.) Let x be a real number, and
let C' be a positive real number. Suppose

lz] < % for alln € Zs,. (5.28)

Then x = 0.

Proof: Let z € R, and let C' € R satisfy
C
|z| < — for all n € Zs;. (5.29)
o >

Suppose, in order to get a contradiction, that x # 0. Then by Archimedian
property 2 there is some n € Zy; such that 1 < %, ie. € < |z]. This
contradicts (5.29). ||

5.30 Theorem. Ift € R, then there is an integer n and a number € € [0, 1)
such thatt =n + €.

In order to prove this theorem, I will use the following lemma.
5.31 Lemma. Ift € R, then the interval (t,t + 1] contains an integer.

Proof:

Case 1. t € [0,00): Suppose t € [0,00) and (t,t + 1] does not contain an
integer. I will show that ¢ > n for all n € N. This contradicts the
Archimedean property, so no such ¢ can exist. For each n € N, let
P(n) = “n < t”. Then P(0) is true, since I assumed that ¢ € [0, c0).
Let n € N be a number such that P(n) is true; i.e., n < t¢. If n + 1 were
> t, we’d have t <n+1 <t+1, and this cannot happen, since (¢,t+ 1]
contains no integers. Hence,

Pn) = n+1<t = P(n+1),

and by induction, ¢t > n for all n € N. This gives the desired contradic-
tion.
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Case 2. t€ R : If t € R, then by Case 1 there is an integer n with
—t<n<—-t+1.
Then
t<—n+1<t+1.
If t < —n+ 1, then (¢,t + 1] contains —n + 1. If ¢t = —n + 1, then
(t,t+1] = (—n + 1, —n + 2| contains —n + 2. ||

Proof of theorem 5.30. Let ¢ € R. By the lemma, there is an integer n with
t<n<t+1. Then
0<t—n+1<1,

and t = (n — 1) 4+ (t —n + 1) gives the desired decomposition. ||
5.32 Theorem. There is a number © € R such that > = 2.

Proof: Let {[an,b,|} be the binary search sequence constructed in example
5.16. We know there is a unique z € R such that 0 < a, < z < b,, for all
n. Then 0 < a2 < 22 < b2, and by our construction 0 < a2 < 2 < b2 for all
n € N, so

|~

12— 2% <02 — a2 = (b, —an)(by+a,) < —-4< (5.33)

n

()
SEIES

for all n € Z>;.
By Archimedean property 3, we conclude that 2 — 22 = 0, i.e., 22 = 2. ||

5.34 Theorem. Letx € R. Then there is a binary search sequence {[ay, b,|}
in R such that a, € Q and b, € Q for all n, and such that {[an,b,]} — x.

Proof: T will suppose x > 0. The case where x < 0 is left to you. By
the Archimedean property of R, there is an integer N such that N > z, so
x € [0, N]. Now build a binary search sequence {[a,, b,]} as follows:
[aOabO] = [O’N]
[an, —“”;“b”] if z < [“”;“b"]
ozt ] 0> [mtta].

[@nt1, Opg1]

2

by — ag

n

From the construction, we have a, < a,41 < by < b, and b, — a, =

A simple induction argument shows that a, € Q and b, € Q for all n € N,
and an induction proof similar to the one in example 5.16 shows that
an, <z < by for all n € N so {[an,b,]} = . |
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5.3 Existence of Roots

5.35 Definition (Graph.) Let f: A — B be a function. The graph of f is

{(a,b) € Ax B:b= f(a)}.

5.36 Remark. If f is a function from R to R, then graph f is

{(z,y) € R%:y = f(2)}.

You may find it useful to think of R as points on a line, and R? as points in
a plane and to represent the graph by a picture. Any such picture is outside
the scope of our formal development, but I will draw lots of such pictures
informally.

-1 0 1 2
graph of f where f(z) = 2? for x € (-1, 2).

5.37 Definition (Sum and product of functions.) Let I be a field, and
let « € F. Let A, B be sets and let f: A — F,g: B — F be functions. We

define functions f +g¢, f — g, f - ¢, af and = by:
g

f+9gANB = F (f+9)(a) = f(a)+ g(a) for alla € AN B.
f—9gANB—=F (f —9)(a) = f(a) — g(a) for all a € AN B.
f-9:(ANB) - F (f-9)(a) = f(a)-g(a) for all a € AN B.

aftA— F (af)(a) = a- f(a) for all a € A.
I, / a @ora a
Do F <g>()_g(a)f llaeD.

where D = {z € AN B:g(z) # 0}.
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5.38 Remark. Let F' be afield, let S be aset, and let f:S — F, ¢g:S — F
be functions with the same domain. Then the operations +, -, — are binary op-
erations on the set S of all functions from S to F'. These operations satisfy the
same commutative, associative and distributive laws that the corresponding
operations on F' satisfy; e.g.,

f-(g+h)=f-g+ f-hforall fg,heS. (5.39)

Proof of (5.39). For all z € S,

(f - (g+h)(z)

= (f-9)(2)
((f-9)

Hence, f-(g9+h) = (f-g)+ (f - h). (Two functions are equal when they have
the same domain, the same codomain, and the same rule.) ||

5.40 Definition (Increasing and decreasing.) Let J be an interval in R
and let f: J — R. We say

f is increasing on J if for all s,t € J (s <t = f(s) < f(t)).
f is strictly increasing on J if for all s,t € J (s <t = [f(s) < f(1)).
f is decreasing on J if for all s,t € J (s <t = f(s) > f(t)).

f is strictly decreasing on J if for all s,t € J (s <t = f(s) > f(t)).

5.41 Remark. Since s = t = f(s) = f(t), we can reformulate the
definitions of increasing and decreasing as follows:

f is increasing on J if for all s,t € J (s <t = f(s) < f(t))-

f is decreasing on J if for all s,t € J (s <t = f(s) > f(t)).
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increasing function decreasing function neither increasing
nor decreasing

5.42 Exercise. Is there a function f: R — R that is both increasing and
decreasing? If the answer is yes, give an example. If the answer is no, explain
why not.

5.43 Exercise. Give an example of a function f:R — R such that f is
increasing, but not strictly increasing.

5.44 Exercise. Let f: R — R and g: R — R be increasing functions. Either
prove that f + ¢ is increasing or give an example to show that f + g is not
necessarily increasing

5.45 Exercise. Let f:R — R and ¢g:R — R be increasing functions.
Either prove that f - g is increasing or give an example to show that f - g is
not necessarily increasing.

5.46 Theorem. Let m € Z>1, leta € R, a > 1. Then a™ > a.
The proof is by induction, and is omitted.

5.47 Theorem. Let m € Zs,. Let fy,(x) = 2™ for all z € [0,00) in R.
Then f,, is strictly increasing on [0, 00).

Proof: The proof follows from induction on m or by factoring 2™ — y™, and is
omitted.
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5.48 Exercise. Let J be an interval in R and let f:J — R be a strictly
increasing function on J. Show that for each a € R the equation f(z) = a has
at most one solution z in J.

5.49 Theorem. Letp € Zsy and let a € [0,00) in R. Then there is a
unique ¢ € [0,00) in R such that

& =a.

Proof: First I will construct a binary search sequence {[a,, b,]} in R such that
ab <a < foralln € N.

By completeness of R, I'll have {[a,, b,]} — ¢ for some ¢ € R.. 'll show ¢ = a,
and the proof will be complete.

Let [ag, bo] = [0, (1 + a)]. Then
ap=0<a<(l4a)<(l+a) =0
For n € N, define

. p
o 3] () >

[enttn by if (ef)” < a

[Ont1,bnta] = {

The proof that {[a,, b,]} is a binary search sequence and that a? < a < bP for
all n € N is the same as the proof given in example 5.16 for ¢ = p = 2, and
will not be repeated here. By completeness {[an,b,]} — ¢ for some ¢ € R.
Since 0 < a,, < ¢ < by, we have a? < P < P, It follows that

la — P| < b —al for all n € N.

By the formula for factoring b — a? (cf. (3.78)), we have

p-1 _ p1 |
ja—¢| < (bn —an) Z bﬁlaﬁ_lﬂ < (b — ay) bzlbfl—l—J
j=0 =
b — b _ bp 1
= (b, —ay)pb~' < 02n“0 _pbg—l < (bo ar(:)p 4

for all n € Z>;. By Archimedean property 3 (cf corollary 5.28), it follows that
a—c?=0,iec =a.

Let f,(x) = . Since f, is strictly increasing on R, it follows from exercise
5.48 that 2P = @ has at most one solution in R and this completes the proof
of the theorem. ||
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5.50 Notation (a%.) If p € Zs; and a € [0,00), then the unique number ¢
1

in [0, co0) such that ¢® = a is denoted by a?, and is called the pth root of a. An

alternative notation for a? is \/a.

5.51 Exercise. Let a € [0,00), let ¢,7 € Z>4, and let p,s € Z.
a) Show that (a%)p = (ap)%.

b) Show that ifg = ;, then (a%)p = (a%)s.

5.52 Definition (a".) If a € R" and r € Q we define a" = (a%)p where
g€ Zs,p€Zandr= P The previous exercise shows that this definition
does not depend on what representation we use for writing r.

5.53 Theorem (Laws of exponents.) Foralla,b € [0,00) and allr,s € Q,

a) (ab)" =a’b".
b) a"a® =a"ts.

c) (a)® = a'm).

p

u
Proof: [of part b)] Let r = =, s = — where u, v are integers and ¢, v are positive
q v

integers. Then (by laws of exponents for integer exponents),

(aras)q.v — (agi .a%)q-v _ (ag)(q.v) ‘ (a%)(q.v)
= (@) (@2)7) 7= @ a2y = aman

ap'u—l—uq .

Also,

e

(@™t = (a(§+ )) qv
_ (a(’”’;—;‘q)) @ = ((abv+0) &) o

= gt

Hence, (a"a®)?% = (a"**)??, and hence a"a® = a"** by uniqueness of ¢ -v roots.
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5.54 Exercise. Prove parts a) and c) of theorem 5.53.
5.55 Entertainment. Show that of the two real numbers
VEI+VBH I8 I+ VB /8B,

one is in Q, and the other is not in Q.

5.56 Note. The Archimedean property was stated by Archimedes in the
following form:

-- - the following lemma is assumed: that the excess by which the
greater of (two) unequal areas exceeds the less can, by being added
to itself, be made to exceed any given finite area. The earlier
geometers have also used this lemma.[2, p 234]

Euclid indicated that his arguments needed the Archimedean property by
using the following definition:

Magnitudes are said to have a ratio to one another which are ca-
pable, when multiplied, of exceeding one another.[19, vol 2, p114]

Here “multiplied” means “added to itself some number of times”, i.e. “multi-
plied by some positive integer”.

Rational exponents were introduced by Newton in 1676.

3,a4, etc., for aa, aaa, aaaa, etc., so I

Since algebraists write a2, a
.1 s s S R A
write a2,a?,a3, for \/a,/a?, /ca®; and I write a ', a 2,03, etc.

for 1, L L “etc.[14, vol 1, p355]
Here v/ca denotes the cube root of a.

Buck’s Advanced Calculus[12, appendix 2] gives eight different characteri-
zations of the completeness axiom and discusses the relations between them.

The term completeness is a twentieth century term. Older books speak
about the continuity of the real numbers to describe what we call completeness.



Chapter 6

The Complex Numbers

Many of the results in this chapter are informal and geometrical, and do not
follow logically from our assumptions. I will freely use properties of similar
triangles, parallelograms, and trigonometric functions. Some of the results
(e.g., those involving trigonometric identities) will be rederived later in a more
rigorous form. Every statement labeled Theorem or Definition is part of
our logical development.

6.1 Absolute Value and Complex Conjugate

6.1 Definition (Complex Numbers, C.) We denote the complexification
of R by C, and we call C the complex numbers.

6.2 Definition (Absolute value.) In exercise 4.23 we showed that (for any
field F' in which —1 is not a square), if z = a + bi = (a,b) € Cp, then

Zz2=ad’+ bW €F.

If we are working in C, then a® + b*> € [0,00) and hence zz* has a unique
square root in [0, 00), which we denote by |z| and call the absolute value of z.

2] = (2*2)'/? for all z € C.
We note that

|zl e RT U{0} for all z € C.
2| =0 <= z=0.

106
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Also note that for z € R, this definition agrees with our old definition of
absolute value in R.

6.3 Definition (Real and imaginary parts.) Let z € C and write
z = x + 1y where z,y € R. We call x the real part of z, and we call y
the imaginary part of z (note that the imaginary part of z is real), and we
write

z=Re(z), y=1Im(z)if z = (z,y) =z + iy.

6.4 Theorem. Let z, w be complex numbers. Then

a) |zw| = |2| Jwl.
2| _ 2l

b) wl = Tw] if w#0.

c) Re(z) = z—;z*
z—2z"

d) Im(z) = 5

¢) [Re(z)| < |z|.

f) Mm(z)] < [z].

g) |z = |].

h) Re(z + w) = Re(z) + Re(w).
i) Im(z + w) = Im(z) + Im(w).

Proof: By using properties of the complex conjugate proved in exercise 4.23,

we have
lzw|® = (2w)*(2w) = 2*w*zw = 2*2zw*w = |2|*|w|?.

Hence by uniqueness of square roots, |zw| = |z| |w|. The proofs of b), c), d),
e), f), g), h) and i) are left to you. ||

6.5 Exercise. Prove parts b), c), d), e), f), g), h) and i) of Theorem 6.4.
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6.6 Theorem (Triangle inequality.) Let z,w € C. Then
|z +w| < |z| + |w].
Proof: For all z,w € C,

z+w? = (z4+w)(z+w) = (" +w)- (2 +w)
224 2w+ wz + wrw
= 2P+ 2w+ w'z + |w]’ (6.7)

Now since z** = z, we have

Z'w + wz (z"w) + (z"w)*
2Re(z*w) < 2|Re(z*w)|

< 22'w| = 2|27 Jw| = 2|7] |w.

Hence, from (6.7),
|2+ wl? < [2]* + 22| Jw| + |w|* = (2] + [w])?,
and it follows that
|2+ w| < [2] + [w]. |
6.2 (Geometrical Representation

Since C = R X R, we can identify complex numbers with points in a plane.

Y
z2=x+ 1y
-z
r=—F—iy 2=z -y
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Then R is identified with the z-axis, and points on the y-axis are of the
form 7y where y is real. 1 will call the z-axis the real azris, and T’ll call the
y-axis the imaginary axis. If z € C, then 2* represents the result of reflecting
z about the real axis. Also —z represents the result of reflecting z through the
origin.

w = (¢,d)

|

|d —b]

|

~— lc—a] — u=(c,b)

z = (a,b)

If 2 = (a,b) and w = (¢, d) are two points in C, and u = (¢, b), then z,u, w
are the vertices of a right triangle having legs of length |c — a|, and |d — b|. By
the Pythagorean theorem, the distance from w to z is \/ (c—a)?+ (d—b)2
Also,

lw—2z = |(c+1id) — (a+ ib)|
= |(c—a)+i(d—0b)|
\/(c—a)2 + (d — b)?

= distance from w to z,

and in particular, for z = 0,

|lw| = distance from w to 0.

Claim: If z,w € C, then z+ w is the fourth vertex of the parallelogram having

consecutive vertices z, 0, w.
S=z+w

Z =z
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To make this look like a geometry proof, I’ll denote points by upper case
letters, and let AB denote the distance from A to B. Let O = 0, W = w,
Z =2,5=2z+w. Then

Z5 =|(z+w) -z = lw| = |w—0] = OW

WS =|(z+w)—w|=|z|=|z—0=0Z.

Hence, since the quadrilateral OW SZ has opposite sides equal, it is a paral-
lelogram.

We can now give a geometrical interpretation for the triangle inequality
(which motivates its name). In the figure above,

|z +w| < |z| + |wl

says
0S<0Z+Z5;

i.e, the sum of two sides of a triangle is greater than or equal to the third side.
This is proposition 20 of book 1 of Euclid [19] “In any triangle, two sides taken
together in any manner are greater than the remaining one.” (Euclid did not
consider triangles in which all three vertices lie on a line.)

It was the habit of the Epicureans, says Proclus ... to ridicule this
theorem as being evident even to an ass, and requiring no proof,
and their allegation that the theorem was “known” (yvdpruov)
even to an ass was based on the fact that, if fodder is placed at
one angular point and the ass at another, he does not, in order to
get his food, traverse the two sides of the triangle but only the one
side separating them [19, vol. I page 287].

6.8 Definition (Circle, disc.) Let a € C,r € R*. The circle with center
« and radius 7 is

Clayr) = {z€C:lz—a|l=71}
= set of points whose distance from a is 7.

The open disc with center a and radius r is

D(a,r)={z€ C:|z — a| < r},
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and the closed disc with center o and radius r is

D(a,r)={2€C:|lz—a| <1}

C(0,1) is called the unit circle, and D(0,1) is called the unit disc. A complex
number z is in the unit circle if and only if |z| = 1.

6.9 Warning. The word “circle” is sometimes used to mean “disc”, al-
though the word “disc” is never used to mean “circle”. When you see the
word “circle” used in a mathematical statement, you should determine from
the context which of the two words is meant. For example, in the statement
“the area of the unit circle is 7”7, the word “circle” means “disc”, since the
unit circle is, in fact, a zero-area set. In these notes the word “circle” always
means “circle” except on page 92.

6.10 Theorem. The product of two numbers in the unit circle is in the unit
circle.

Proof: Let a, 8 € C(0,1); i.e., |a| = |8| = 1. Then |af| = |af|f| =1-1=1,
so af € C(0,1). |
We can also give a geometrical interpretation to the product of two complex

numbers. Let « = A and § = B be complex numbers and let C' = af. Let
O=0andlet I =1.
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Then AOIA is similar to AOBC'. The proof consists in showing that

O IA OA
OB BC 0OC’

(6.11)

6.12 Exercise. Prove the equalities listed in (6.11). Assume « ¢ {0,1} and
B #0.

From the similarity of AOIA and AOBC, we have /IOA = /BOC. In
particular, if we take @ = a € R", we get the picture

Yy af

where
angle(1-0-a)= angle (5-0-af),
which indicates that af lies on the line through 0 that passes through 5. Also

|aB| = la] [B] = alB|

so the length of af is obtained by multiplying the length of 3 by a.
The figure below shows the powers of a complex number a.

D

|a.|<1 |a|>l |a|:]_

Powers of a: I =1, A=a, B=a?, C = a% D = a*.
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In each case the four triangles ATOA, AAOB, ABOC, and ACOD are
all similar. In the third figure, where a is in the unit circle, the triangles

AIOA, AAOB, ABOC and ACOD aée in fact congruent.

af B

If o, B are points on the unit circle, then
angle(3-0-a5) = angle(1-0-a),
which indicates that af is the point in the unit circle such that
angle(1-0-a8) = angle(1-0-a) + angle(1-0-5).
From trigonometry, you know that the point on the unit circle making angle
6 with the segment OI is (cos#,sinf) = cos 6 + isin 6.
The previous geometrical argument suggests that

(cos @ + isin ) (cos ¢ + isin @) = (cos(f + ¢) + isin(f + ¢)) . (6.13)

6.14 Exercise. Using standard trigonometric identities, prove (6.13), and
show that (cosf + isinf) ! = cosf — isinf for all § € R.

6.15 Exercise. Let # € R. Let n € N. Prove that
(cos B + isin #)"™ = cos(nh) + isin(nh). (6.16)

Then show that formula (6.16) is in fact valid for all n € Z. (Formula (6.16)
is called De Moivre’s Formula.)

6.3 Roots of Complex Numbers

I expect from (6.16) that every point (cosf,sin @) in the unit circle has nth
roots for all n € Z>4, and that in fact

<cos (g> + ¢sin <Q>> = cosf +isinf.
n n

In particular, each vertex of the regular n-gon inscribed in the unit circle and
having a vertex at 1 will be an nth root of 1.
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6.17 Exercise. The figure below shows the seventeen points
{( E 27”) 0< '<17}
— in—= | : :
cos - +isin —= <jJ

4 4 10 10
Let w = (cos ll + ¢sin —W> and u = (cos el + ¢sin —7T> Draw the poly-

17 17 17 17
gons l-w-w?---—-w'T and 1-u-u’----u'" on different sets of axes, (i.e. draw
segments connecting 1 to w, w to w?, - - -, w'® to w'”, and segnents joining 1
to u, -+ -, u'® to ul".)

6.18 Exercise. The sixth roots of 1 are the vertices of a regular hexagon
having one vertex at 1. Find these numbers (by geometry or trigonometry) in
terms of rational numbers or square roots of rational numbers, and verify by
direct calculation that all of them do, in fact, have sixth power equal to 1.

6.19 Theorem (Polar decomposition.) Let z € C\{0}. Then we can
write z = ru where r € R™ and v € C(0,1). In fact this representation is

unique, and
z
r=|z|, u=—.

2]

I will call the representation
z =ru wherer € R, u e C(0,1)

the polar decomposition of z, and I’ll call r the length of z, and I'll call u the
direction of z.

Proof: If 2 = ru where r € R* and |u| = 1, then we have

lz| =|ru| =r||ul=7r-1=r.
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This shows that r = |z|, and it then follows that u = Z_ ﬁ Since ﬁ

= W =1, we see ﬂ € C(0,1) and z = |2| W gives the desired decompo-
z 5 -

sition. ||

6.20 Notation (Direction.) I will refer to any number in C(0,1) as a
direction.

6.21 Example. The polar decomposition for —1 + 7 is

(-1+i) = [=1+4] (fli)

—1+i
)

. . 3T 3T
I recognize from trigonometry that

—% + %) = (cosz +isinz).
6.22 Remark. Let z,w € C\{0}. Let z = ru and w = sv be the
polar decompositions of z, w, respectively, so r,s € R";u,v € C(0,1). Then
zw = rusv = (rs)(uv) where rs € R" and uv € C(0,1). Hence we have
length of product = product of lengths
and
direction of product = product of directions.

6.4 Square Roots

Let u be a direction in C'(0,1), with u # —1. Then we know that 1,0, u,1+u
are the vertices of a parallelogram.

u 1+u
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Since |u| = |1| = 1, all four sides of the parallelogram are equal, and thus
the parallelogram is a rhombus. Since the diagonals of a rhombus bisect its
angles, the segment from 0 to 1+ u bisects angle (1-0-u). Hence I expect that

the direction of 1+ u (i.e., |) is a square root of u. I can prove that this

1+
1+u
is the case without using any geometry.

1
6.23 Theorem. Let u be a direction in C with u # —1. Then I I u‘ a
U
square root of u.
. +u
Proof: I just need to square . Well,
11+ ul
1+u 2_(1+u)2_ (1+uw)? 14w
T+ul)  [T4u2  (Q4+u)(l+u) T+u

Now since u is a direction, we know that uu* = 1, and hence
I+u  wu4u  u(u*+1) |||
= = = Uu.
1+u  1+ur (14 u¥)

6.24 Corollary. Fvery complex number has a square root.

Proof: Let o € C. If a = 0, then clearly « has a square root. If o # 0, let ru
14u

11+ ul

be the polar decomposition for a.. If u # —1, then +r2 ( > are square

roots of a. If u = —1, then +724 are square roots of a. ||

6.25 Example. We will find the square roots of 21 —20:. Let o = 21 — 20s.
Then

la| = V212 + 202 = /441 + 400 = /841 = 29.
Hence the polar decomposition for « is
21 — 201
29
The square roots of o are

1+ 5o (Lt~
i2< > = =+ <|1 21 220gz>

11+ ul

21 —20¢

— 99
@ ( 29

)zruwhereT:29andu:

29

= +v29 +/29
<|50—20|> (\5—22\>
Now |5 — 2i| = /25 + 4 = /29, so the square roots of o are (5 — 21).
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6.26 Exercise. Find the square roots of 12+ 5i. Write your answers in the
form a + bi, where a and b are real.

Let a,b € R. There is a formula for the square root of a 4+ bi that allows
you to say

the square roots of 2 + 47 are £ (\/\/5 +1+ z\/\/g — 1) (6.27)

and

the square roots of 6 — 2i are + (\/\/ﬁ +3— i\/\/lO — 3) . (6.28)

6.29 Exercise. Verify that assertions (6.27) and (6.28) are correct.

6.30 Entertainment. Find the square root formula, and prove that it is
correct. (There are at least three ways to do this. Method c) is probably the
easiest. )

a) Suppose the square root is ¢ + di, and equate the real and imaginary
parts of (¢ + di)? and a + bi. Then solve for ¢ and d and show that your
solution works.

b) Let ru be the polar decomposition of a + bi. You know how to find a
square root v for u, and rav will be a square root, of a 4 bi. Write this
in the form c + di.

¢) On the basis of (6.27) and (6.28), guess the formula, and show that it
works.

6.5 Complex Functions

When one studies a function f from R to R, one often gets information by
looking at the graph of f, which is a subset of R x R. If we consider a function
g:C — C, the graph of ¢ is a subset of C x C = (R x R) x (R x R), and
C x C is a “4-dimensional” object which cannot be visualized. We will now
discuss a method to represent functions from C to C geometrically.
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Geometrical Representation of the Function f(z) = 22.

6.31 Example (f(z) = 22.) Let f: C — C be defined by f(z) = 2% Ifzis a
point in the circle C(0,r), then z = ru where u is a direction, and f(z) = r?u?
is a point in the circle C(0,7?) with radius 72. Thus f maps circles of radius
r about 0 into circles of radius r? about 0. Let ug be a direction in C. If 2
is on the ray from 0 passing through ug, then z = ruy for some r € R* so
f(z) = r?u?, which is on the ray from 0 passing through u3. Hence the ray
making an angle # with the positive real axis gets mapped by f to the ray
making an angle 20 with the positive z-axis.

The left part of the figure shows a network formed by semicircles of radius

re{l,2.3,--,91}

and rays making angles

ee{o,il,i

2_7r 87r}
16’7167

4+
16

with the positive z-axis. The right part of the figure shows the network formed
by circles of radius
r?e {1%.2%.-.,.9% 1}

and rays making angles

T 27 8
20 +— 4+— . +—
6{0’ 8 8"’ ’ 8}
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with the positive z-axis. f maps each semicircle in the left part of the figure
to a circle in the right part, and f maps each ray in the left part to a ray in the
right part. Also f maps each curvilinear rectangle on the left to a curvilinear
rectangle on the right. Notice that f(i) = f(—i), and in general f(z) = f(—2z),
so if we know how f maps points in the right half plane, we know how it maps
points in the left half plane. The function f maps the right half plane {z > 0}

onto C \ (( negative real axis ) U {0})

6.32 Definition (Image of a function.) Let S,T be sets, let f:S — T,
and let A be a subset of dom(f). We define

f(A)={f(a):a € A}
and we call f(A) the image of A under f. We call f (dom(f)) the image of f.

6.33 Example (f(z) = 22, continued) In the figure on page 118, the right
half of the figure is the image of the left half under the function f. The figure
on page 120, shows the image of a cat-shaped set under f. The cat on the left
lies in the first quadrant, so its square lies in the first two quadrants. The tip of

2 2
the right ear is 1 +1¢ = V2 (% + 2%), with length /2, and with direction

making an angle % with the positive real axis. The image of the right ear has

length (1/2)? = 2 and makes an angle g with the positive z-axis. You should

examine how the parts of the cat in each curvilinear rectangle on the left part
of the figure correspond to their images on the right part.
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The Square of a Cat

6.34 Exercise. Let (' be the cat shown in the left part of the above figure.
Sketch the image of C under each of the functions g, h, k below:

a) g(z) =2z
b) h(z) =iz
c) k(z) =2iz

6.35 Exercise. Let C' be the cat shown in the left part of the above figure.
Sketch the image of C under G, where G(z) = —2z2.

6.36 Exercise. Let z be a direction in C; i.e., let z € C(0,1). Show that

2 =z"L
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1
6.37 Example. Let v(z) = - for all z € C\{0}. If z is in the circle of
z
1)1 1
o . . rul el ful ]
so v takes points in the circle of radius r» about 0 to points in the circle of

radius 7, then z = ru for some direction u, and |v(z)| =

radius — about 0.

”
Let ug be a direction. If z is in the ray from 0 through ug, then z = ru, for

1
some r € R*,s0ov(z) = ~uy' = ~uj. We noted earlier that ;) is the reflection

of ug about the real axis, so v maps the ray making angle # with the positive
real axis into the ray making angle —f with the positive real axis. Thus v maps
the network of circles and lines in the left half of the figure into the network
on the right half.

The circular arcs in the left half of the figure have radii

re{5,.6,.7 - 1415}

The Inverse of a Cat

Let’s see how v maps the vertical line x = a (a # 0), a € R. We know

1
that v(a) = — and v maps points in the upper half plane to points in the lower
half plane. Points far from the origin get mapped to points near to the origin.

1
I claim that v maps the line z = a into the circle with center 24 and radius
a
1
2lal’
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v maps vertical lines to circles

Let L, = {z:Re(z) = a} = {a + iy:y € R}, so L, is the set of points in
the line z = a. Then

z€L, < z=a+1y forsomey R
I 1 2a—2z 2a—(a+iy) a-—1y

z 2  2az  2a(a+iy)  2a(a+iy)

1 1) |1 a—iy| 1 Ja—dyl 1
z 2l |20 a+iy| |2a|l|a+iy]  |2al’
since |w| = |w*| for all w € C. Hence,
1 1 1 1 1 1
2€Ly = |-——|=— = ~€C|—,— |,
¢ z  2al  |2da z (2& |2a|>

1
and v maps every point in L, into C' (2—, m) . Now I claim that every point
a’ |2a

1 1
in C (2 , m) (except for 0) is equal to v(z) for some z € L,.
a’ 2a
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1 1
2’ [2a]

)vion

Since w = v (v(w)), it will be sufficient to show that if w € C (

then v(w) € L,. I want to show

1 1 1
‘w——z—andw#ﬂ — — = a + 1y for some y € R.
2a| |2a| w
1 1 1 .
Well, suppose |w — —‘ = —,and let — = A+ ¢B where A,B € R. Then
2a| |2q| w
1. A-iB
YTaAriBT 2ypy ™
‘ 1 1 . 12 1
w— —|=— w——| =-—
2a| |2a] 2a 4a?
_. |A-iB 1 21
A2+ B2 2a 4a?
. ( A 1 ) iB 71
A2+ B?  2a A2 4+ B?|  4a?
N A? A N 1 N B? 1
(42 4+ B?)?  a(A2+B2)  4da? ' (A2+B?2)2 da?
. A*+ B> A
(A2 + B2)2 - a(A? + B?)
= A=a,
so (by definition of A)
1 1 1 .
‘w—— =— = — =a+iB where BER. |
2a a w

6.38 Exercise. The argument above does not apply to the vertical line
x = 0. Let Ly = {iy:y € R}. Where does the reciprocal function v map

Lo\{0}7

1
6.39 Entertainment. Let v(z) = — for all z € C\{0}. Show that v maps
z

horizontal lines y = ¢ (¢ # 0) into circles that pass through the origin. Sketch
the images of the lines

x = j, where j € {0,+£1,+2, £3}
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and the lines
y = j, where j € {0,+1,+2,4+3}

on one set of axes using a compass. If you've done this correctly, the circles
should intersect at right angles.

6.40 Exercise.

a) Sketch the image of the network of lines and circular arcs shown below
under the function g, where g(z) = 2% for all z € C.
i

0 e
b) Cube the cat in the picture.

6.41 Note. De Moivre’s formula (cos(f) + isin#)" = cos(nf) + isin(nd),
was first stated in this form by Euler in 1749 ([46, pp. 452-454]). Euler named
the formula after Abraham De Moivre (1667-1754) who never explicitly stated
the formula, but used its consequences several times ([46, pp. 440-450]).

The method for finding mth roots of complex numbers:

0 0
[7(cos @ + isin 0)]% = pm [cos — +isin —]
m m

was introduced by Euler in 1749 [46, pp.452-454).

The idea of illustrating functions from the plane to the plane by distorting
cat faces is due to Vladimir Arnold (1937-77), and the figures are sometimes
called “Arnold Cats”. Usually Arnold cats have black faces and white eyes
and noses, as in [3, pp.6-9].
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Complex Sequences

In definition 5.1, we defined a sequence in C to be a function f:IN — C.
Since we are identifying R with a subset of C, every sequence in R is also a
sequence in C, and all of our results for complex sequences are applicable to
real sequences.

7.1 Some Examples.

7.1 Notation (—) I will say “consider the sequence n +— 2"” or “consider
the sequence f:n +— 2"” to mean “consider the sequence f: N — C such that
f(n) =2" for all n € N”. The arrow — is read “maps to”.

7.2 Definition (Geometric sequence.) For each o € C, the sequence
n+—a”
is called the geometric sequence with ratio a.

I will often represent a sequence f in C by a polygonal line with vertices
f(0), f(1), £(2),- - - The two figures below represent geometric sequences with

1 241 .
and respectively.

ratios

125
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Yy Yy
«) - x - x
()" (&)
Figure a.  Geometric Sequences
7.3 Definition (Geometric series.) If o € C, then the sequence

n

o' — Z o’ is called the geometric series with ratio o.

§=0
go={L,1+a,1+a+ac*1+a+a’+a? -}
Yy Yy
1 1
x x
1 1

2 3

Figure b.  Geometric Series {Z o’ }
i=0

Figure b shows the geometric series corresponding to the geometric se-
quences in figure a. If you examine the figures you should notice a remarkable
similarity between the figure representing {a"} and the figure representing

{éoﬂ}.
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7.4 Entertainment. Describe the apparent similarity between the figure

for {a"} and the figure for {>_a’}. Then prove that this similarity is really
=0
present for all « € C\{1}.

7.5 Definition (Constant sequence.) For each o € C, let & denote the
constant sequence @:n — «; i.e., @ = {a, @, a,a, -}

7.2 Convergence

7.6 Definition (Convergent sequence.) Let f be a complex sequence,
and let L € C. We will say f converges to L and write f — L if for every disc
D(L,r) there is a number N € N such that

for every n € Z>y, (f(n) € D(L,7)).

We say f converges if there is some L € C such that f — L. We say f diverges
if and only if f does not converge.

It appears from figure a on page 126 that for every disc D(0,7) centered

14+3\"
at 0 the terms of the sequence {(%) } eventually get into D(0,7); i.e., it

14+2\" 1+ 20\"
}—>0.

appears that {( } — 0. Similarly, it appears that {(

From figure b, it appears that there are numbers P, () such that
LAY R A nr1 420\
{Z ( —2|_2> } — P, and {Z ( —; l) } — @. You should be able to put
Jj=0 j=0
your finger on P and (), and maybe to guess what their exact values are. We
will return to these examples later.

T+ 241
Let w = + ok

It appears from the figure that there is no number L such that {w"} — L.

. The figure in the margin represents the sequence {w"}.

The following theorem shows that this is the case.

T+24i| /49+576_1)
N 625

7.7 Theorem. Let w € C satisfy |w| > 1 and w # 1. Then {w"} diverges.

(Note that
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Proof: Suppose that |w| > 1 and w # 1. Then for all n € N,

|w™ —w"™| = |w"(1 —w)| = |w|*|1 —w| > |1 —w|>0. (7.8)
Now suppose, to get a contradiction, that there is a number L € C such that
{w"} — L. Then corresponding to the disc D (L, @), there is a number
N € N such that

1 —
nEZZN:>w”ED<L,| 2w|>.

In particular,

1-— 1-—
wNED<L,| w|> and wN+16D<L,| w|>

2 2
SO ) )
™ — L] < 1 —wl and [wNtt — L] < \—27w|
By the triangle inequality,
" — ™ = J(w" = L) + (L —w™)
< "IUN—L|—|-|L—’LUN+1‘
< ‘1_w|_}_‘1_w‘ |1 ‘
=1—w|.
2 2

Combining this result with (7.8), we get
1 —w| < |Jw" — w1 < |1 —w,

so |1 —w| < |1 — w|. This contradiction shows that {w"} diverges. ||
We can also show that constant sequences converge.
7.9 Theorem. Let o € C. Then the constant sequence & converges to .
Proof: Let o € C. Let D(a, ) be a disc centered at . Then

a(n) = a € D(a,r) for all n € Zx,
Hence, @ — a. ||

For purposes of calculation it is sometimes useful to rephrase the definition

of convergence. Since the disc D(a,r) is determined by its radius r, and for
allz € C, z € D(a,7) <= |z — «a| < r, we can reformulate definition 7.6 as
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7.10 Definition (Convergence.) Let f be a sequence in C, and let L € C.
Then f — L if and only if for every r € R* there is some N € N such that

for every n € Z>y, (|f(n)—L|<r).

7.3 Null Sequences

Sequences that converge to 0 are simpler to work with than general sequences,
and many of the convergence theorems for general sequences can be easily
deduced from the properties of sequences that converge to 0. In this section
we will just consider sequences that converge to 0.

7.11 Definition (Null sequence.) Let f be a sequence in C. We will say
f is a null sequence if and only if for every ¢ € R™ there is some N € N such
that for every n € Zsn, (|f(n)] < ¢).

By comparing this definition with definition 7.10, you see that
(f is a null sequence ) < (f — 0).
Definition 7.11 is important. You should memorize it.

7.12 Definition (Dull sequence.) Let f be a sequence in C. We say f is
a dull sequence if and only if there is some N € N such that for every € in R*,
and for every n € Z>n (|f(n)| <e).

The definitions of null sequence and dull sequence use the same words, but
they are not in the same order, and the definitions are not equivalent.
If f satisfies condition (7.12), then whenever n > N,

for every ¢ in R* (|f(n)| <e¢).

If |f(n)| € RY, this condition would say |f(n)| < |f(n)|, which is false. Hence
if n > N, then |f(n)] ¢ R; ie, if n > N, then f(n) = 0. Hence a dull
sequence has the property that there is some N € N such that f(n) = 0 for
all n > N. Thus every dull sequence is a null sequence. The sequence

111
1.-.-. 2
{’ 3’450’0,0’0’0’ }
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is a dull sequence, but
{1} _{1 111111 }
nfos1 U'2°3°4°5°6°7

1 :
is not a dull sequence. In the next theorem we show that {—},>; is a null
ninz

sequence, so null sequences are not necessarily dull.

7.13 Theorem. For all a € C, {ﬁ

} 1s a null sequence .
nJn>1

Proof: Let ¢ € R". By the Archimedean property for R, there is an N € Z™

such that N > ‘i. Then for alln € Z™,
£

nzN:>n>M:>M<s,
€ n

soforalln e Zsy (‘%‘ < 5)- I

The difference between a null sequence and a dull sequence is that the “N”
in the definition of null sequence can (and usually does) depend on &, while
the “N” in the definition of dull sequence depends only on f. To emphasize
that N depends on ¢ (and also on f), I will often write N(g) or Ny(e) instead
of N.

Here is another reformulation of the definition of null sequence.

7.14 Definition (Precision function.) Let f be a complex sequence. Then
f is a null sequence if and only if there is a function Nj: RT — N such that

for alle > 0 and all n € N; (n > Nf(e) = |f(n)| <e).
I will call such a function Ny a precision function for f.

This formulation shows that in order to show that a sequence f is a null
sequence, you need to find a function N;: RT — N such that

foralln e N (n > Ny(e) = |f(n)] <e).
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In the proof of theorem 7.13, for the sequence g:n — 4 we had
n

Ny(e) = ( some integer N such that % < 5) :

This description for Ny could be made more precise, but it is good enough for
our purposes.

7.15 Theorem. If a € C\{0}, then the constant sequence & is not a null
sequence.

Proof: If o # 0, then i]a| € R*. Suppose, to get a contradiction, that
@ is a null sequence. Then there is a number N € N such that for all
neN (n >N = |a(n)| < %|Oz\) Then for all n € N,

2
If n = N +1 then (7.16) is false and this shows that & is not a null sequence. ||

1 1
(nzN = |a\<§|a\ = 1<—). (7.16)

7.17 Theorem (Comparison theorem for null sequences.) Let f, g be
complex sequences. Suppose that f is a null sequence and that

lg(n)| < |f(n)| for alln € N.
Then g s a null sequence.

Proof: Since f is a null sequence, there is a function Ny: R"™ — N such that
for all n € N,
n> Ni(e) = |f(n)| <e.

Then
n> Ni(e) = [g(n)| < |f(n)] <e = |g(n)| <e.

Hence, we can let N, = Ny. ||

1 1
7.18 Example. We know that n < 2" for all n € N, so on < — for all
n n

1
n € Zs1. Since {—} is a null sequence, it follows from the comparison
n nJn>1

for all

1 1
theorem that {—} is a null sequence. Also, since < —
2" ) >t n4+n_"n

n € Zs1, we see that { } is a null sequence.
N n>1

nz4+n
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7.19 Theorem (Root theorem for null sequences.)
1
Let f:N — [0,00) be a null sequence, and let p € Z>,. Then f7 is a null
1
sequence where f%(n) = (f(n))? for alln € N.

Scratchwork: Let g = f%. I want to find Ny so that for all n € N and all
e €RY,

n > Ny(e) = |g(n)| <e
ie.

n > Ny(e) =

le.
n> Ny(e) = f(n) <e”.
This suggests that I should take Ny(¢) = Ny(eP).

ol
Proof: Let f be a null sequence in [0,00) and let N; be a precision function
for f. Define Nj:R" — N by N,(e) = Nj(eP) for all ¢ € R*. Then for all
n € N,
n>Ny(e) = n> Ny
[f(n)] <&
0< f(n) <eP
n)/? < e

(
g(n) < e.

FEEL

Hence N, is a precision function for g. ||

2

7.20 Examples. Let ¢ € R". Then {C—} is a null sequence in [0, 00),
n n>1

C
so it follows that {—} is a null sequence.
n>1

Vn
- 1
Consider the sequence f:Z>; = C, f:n—n+ 3~ vn? +n.
For all n € Z>4,

00 = (o 4) - vores) L
GRS R N

ntitViEtn A(ntb+verta)
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1
H < —

ence |f(n)] < in
a null sequence.

< —, so it follows from the comparison theorem that f is

1
n

1
Since {—n} is a null sequence, it follows from the root theorem that
n>1

1\" 1 11
— is a null sequence. Now .72 = 49 < =, 50 .7 < \/j =— 50
{<\/§> }n21 ! 2 2 V2

1 n
)" < |—=| for all n € Z-, and by another comparison test, {.7"} is a
V2 -

null sequence. Since ((\a\ <.7) = (Ja"] < .7”)), it follows that {a"},>1 is
a null sequence for all @ € C with |o| < .7.

You probably suspect that {«"} is a null sequence for all @« € C with
|a| < 1. This is correct, but we will not prove it yet.

142\"
7.21 Exercise. Show that the geometric sequences {( ;Z> } and

2 +3\"
{( ;Z> } that are sketched on page 126 are in fact null sequences.

7.22 Exercise. Which, if any, of the sequences below are null sequences?
Justify your answers.

a) {v/n+ 10000 — /I}tusy
n®+1
b) {n?’ + 3n}
n>1

n®>+6
c) 3
ns + 3n 1

7.23 Entertainment. Show that

{(1 = 1072)"} = {.99999999999999999999"}

is a null sequence. (If you succeed, you will probably find a proof that {a"}
is a null sequence whenever |a| < 1.) NOTE: If you use calculator operations,
then {(1 —1072°)"} is not a null sequence on most calculators.
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It follows from remark 5.38 that we can add, subtract and multiply com-
plex sequences, and that the usual associative, commutative, and distributive

laws hold. If f = {f(n)} and g = {g(n)} then f + g = {f(n) +g(n)} and
(fg)(n) ={f(n)-g(n)}. If a, B € C then the constant sequences &, § satisfy

a+B=a+p, of=ap.

7.24 Exercise. Which of the field axioms are satisfied by addition and
multiplication of sequences? Does the set of complex sequences form a field?
(You know that the associative, distributive and commutative laws hold, so
you just need to consider the remaining axioms.

7.25 Notation. If f is a complex sequence, we define sequences f*, Ref,
Imf, and |f| by

= ((n)) for all n € N,
Re (f(n)) for all n € N,
m (f(n)) for all n € N,
)

= |f( | for all n € N.

7.26 Theorem. Let f be a compler null sequence. Then f*, Ref, Imf and
|f| are all null sequences.

Proof: All four results follow by the comparison theorem. We have, for all
n € N:

() = () = [f(n)],
(Ref)(n)] = [Re(f(n))| < |f(n)];
((Imf)(n)| = [Im(f(n))] <|f(n)],

(n)] -l

7.4 Sums and Products of Null Sequences

7.27 Theorem (Sum theorem for null sequences.) Let f,g be complez
null sequences and let o« € C. Then f+ g, f — g, and af are null sequences.
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Scratchwork for af: I want to find N, so that
n > Nople) = |af(n)| <e
i.e. .
n> Nogle) = 1f()| < o7
This suggests that I take Nys(e) = Ny (ﬁ)
Scratchwork for f + g: I want to find Ny, so that

n > Npygle) = |f(n) +g(n)| <e.

135

Now [f(n) + g(n)| < |f(n)] + [g(n)], and T can make |f(n)| + |g(n)| < e by
making |f(n)| < /2 and |g(n)| < /2. Hence I want Ny, ,(¢) > Ns(¢/2) and

Nyig(e) > Ny (%) This suggests that I take Nyy4(¢) = max (Ny(e/2), Ny(g/2)).

Proof: Let f, g be null sequences, and let @ € C. Define Ny, R* — N by

Nyig(e) = max (Ng(e/2), Ny(e/2)) .
Then for all n € N,

n> Npig(e) = n > Ng(e/2) and n > Ny(e/2)
= |[f(n)| <&/2 and |g(n)| < &/2
— [f() + gm)| < |F(m)| + lg(m)] < 5 +

= [(f+9)n)| <e.

€
2

Hence, Ny, is a precision function for f + ¢, and f + g is a null sequence.
If « = 0 then aof = 0 is a null sequence. Suppose a # 0, and define

NafZR+—)be
g
Nysle) =N | — | .
7(€) f<|a|>

n> Ny = nsz<i>

Then for all n € Z,

o

= vmnng

= la| [f(n)|<e
= |af(n)| <e.
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Hence N, is a precision function for af, and hence af is a null sequence.
Since f — g = f + (—1)g it follows that f — ¢ is a null sequence. ||

7.28 Exercise (Product theorem for null sequences.) Let f, g be com-
plex null sequences. Prove that fg is a null sequence.

7.5 Theorems About Convergent Sequences

7.29 Remark. Let f be a complex sequence, and let L € C. Then the
following three statements are equivalent.

a) f— L
b) f—L is a null sequence.

¢) |f —L| is a null sequence.

Proof: By definition 7.10, “f — L” means

for every 7 € R™ there is some N € N such that
for every n € Zsy, (|f(n) — L| <r).

By definition 7.11, “f — L is a null sequence” means

for every e € R™ there is some N € N such that
for every n € Zsy,|(f — L)(n)| <e. (7.30)

Both definitions say the same thing. If we write out the definition for “|f — L
is a null sequence” we get (7.30) with “|(f — L)(n)| < &” replaced by

“If = i|(n)| < e.” Since

)

(f = D)) = [£(n) = L| = || = LI(n)
conditions b) and c) are equivalent. ||

7.31 Theorem (Decomposition theorem.) Let f be a convergent complez
sequence. Then we can write

f=k+e

where k is a null sequence, and ¢ is a constant sequence. If f — L, thenc = L.
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Proof: f=(f—L)+ L. |

7.32 Theorem (Sum theorems for convergent sequences.) Let o € C
and let f,qg be convergent complex sequences. Say f — L and g — M. Then
f+g, f—g and af are convergent and

f+9g - L+ M
f—-9g — L-M
af — alL.

Proof: Suppose f — L and ¢ — M. By the decomposition theorem, we can
write 3 :
f=k+Landg=p+ M

where k£ and p are null sequences. Then
(f£g)—(LEM)=(k+L)+(p+M)—(L+M)=k+p.

By the sum theorem for null sequences, k+p is a null sequence, so (f+g)—L M

is a null sequence, and hence f g — L+ M. |

7.33 Exercise. Prove the last statement in theorem 7.32; i.e., show that if
f — L then af — oL for all o € C.

7.34 Theorem (Product theorem for convergent sequences.) Let f, g
be convergent compler sequences. Suppose f — L and g — M. Then fg is
convergent and fg — LM.

Proof: Suppose f — L and ¢ — M. Write f = k+ L, g = p+ M where k,p
are null sequences. Then

fg = (k+L)p+M)
= kp+Lp+Mk+LM
= kp+Lp+ Mk+ LM.
Now kp, Lp and Mk are null sequences by the product theorem and sum

theorem for null sequences, and LM — LM, so by several applications of the
sum theorem for convergent sequences,

fg—=>0+0+0+LM; ie. fg— LM. |
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7.35 Theorem (Uniqueness theorem for convergent sequences.) Let
f be a complex sequence, and let L,M € C. If f — L and f — M, then
L=M.

Proof: Suppose f — L and f — M. Then f— L and f— M are null sequences,
so (f—L)—(f—M) = M—L =M — Lis a null sequence. Hence, by theorem
715, M — L=0;ie, L=M. |

7.36 Definition (Limit of a sequence.) Let f be a convergent sequence.
Then the unique complex number L such that f — L is denoted by lim f or

Hm{f(n)}.

7.37 Remark. It follows from the sum and product theorems that if f and
g are convergent sequences, then

lim(f +g) =limf +1limg

and
lm(f-g) =limf-limg
and
limef = clim f.

7.38 Warning. @ We have only defined lim f when f is a convergent se-
quence. Hence lim{i"} is ungrammatical and should not be written down.
(We showed in theorem 7.7 that {i"} diverges.) However, it is a standard us-
age to say “lim f does not exist” or “lim{f(n)} does not exist” to mean that
the sequence f has no limit. Hence we may say “lim{i"} does not exist”.

7.39 Theorem. Let f be a compler sequence. Then f is convergent if and
only if both Ref and Imf are convergent. Moreover,

limf = limRef +ilimImf, (7.40)

limRef = Re(lim f),
limImf = Im(lim f).
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Proof: If Ref and Imf are convergent, then it follows from the sum theorem
for convergent sequences that f is convergent and (7.40) is valid.

Suppose that f — L. Then f — L is a null sequence, so Re(f — i) is a null
sequence (by Theorem 7.26). For all n € N,

Re(f — L)(n) = Re (f(n) — L) = Ref(n) — ReL = (Ref — ReL)(n)

so (Ref —ReL) = Re(f—L) is a null sequence and it follows that Ref converges
to ReL. A similar argument shows that Imf — ImL. ||

7.41 Definition (Bounded sequence.) A sequence f in C is bounded, if
there is a disc D(0, B) such that f(n) € D(0,B) for all n € N; ie., fis
bounded if there is a number B € [0, 00) such that

|f(n)] < B for all n € N. (7.42)

Any number B satisfying condition (7.42) is called a bound for f.

n n
zn‘: n <1 for all
n+ n+1 n+1

n € N. The sequence {n} is not bounded since the statement |n| < B for
all n € N contradicts the Archimedean property of R. Every constant se-
quence {L} is bounded. In fact, |L| is a bound for L.

7.43 Examples. is bounded since

7.44 Exercise (Null-times-bounded theorem.) Show that if f is a null
sequence in C, and ¢ is a bounded sequence in C then fg is a null sequence.

The next theorem I want to prove is a quotient theorem for convergent
sequences. To prove this, I will need some technical results.
7.45 Theorem (Reverse triangle inequality.) Let o, 8 € C, then
la— 8] > |al —|B].

Proof: By the triangle inequality.
ol =[(a—B) + B8] < |a— B +|B].

Hence,

ol = 8] < Ja— Bl |
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7.46 Lemma. Let f be a convergent sequence that is not a null sequence;
1
i.e., f — L where L # 0. Suppose f(n) # 0 for alln € N. Then 7 is a

bounded sequence.

Proof: Since f — L, we know that f — L is a null sequence. Let N;_; bea
precision function for f — L. Then for all n € N,

n>N; (%) = |f(n)—L\<%

— B ) s = 1f )

2
L L
— Il 21z - E = s
2 2
. ‘ 1|2,
f)| L]
L
e, it M= N; j (%), then
1 2
n>M—= |—| < —.
‘f(n) L]
Let
. 2 1
— L o | f(m) )
1 1
Then |——| < B for m € Zy<,,<p and ‘—‘ < B for m € Zsy, so
f(m) o f(m) -
‘ﬁ‘ < B for all m € Z>y = N, and hence 7 is bounded. ||

7.47 Theorem (Reciprocal theorem for convergent sequences.) Let
g be a complexr sequence. Suppose that g — L where L # 0, and that g(n) # 0
1

1
for all n € N. Then — is convergent, and — — T
g g
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1
Proof: By the preceding lemma, — is a bounded sequence, and since ¢ — L,
g
L
g

we know that g — L is a null sequence. Hence (g — L)- = =1— = is a null

g
L
sequence, and it follows that — — 1. Then we have
g

- —-1=

@ |

1.
L’

e~ =
e~ =

1

g

.1 . 1 m

ie, — = —.
bl g L

7.48 Exercise (Quotient theorem for convergent sequences.) The
following statement isn’t quite true. Supply the missing hypotheses and prove
the corrected statement.

Let f, g be convergent complex sequences. If f — L and g — M, then i
g
. f L
t and = — —.
is convergent an p i

7.49 Exercise.

a) Let f, g be complex sequences. Show that if f converges and g diverges,
then f + g diverges.

b) Show that if f converges and g diverges, then fg does not necessarily
diverge.

7.50 Exercise. Let f be a divergent complex sequence. Show that if
c € C\{0}, then cf is divergent.

7.51 Example. Let f:Z>; — C be defined by

n?4+in+1
= 7.52
J0) = s am =1 (7.52)
Then
n?(1+i4+% 1+i+%
f(n) — ( ;LZ nf) _ + Ti + n22i. (7.53)
n2(3+g—p) (3—m)+ﬁ
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Hence f can be written as a quotient of two sequences:

1

h:n|—>1+l-|-—2
non

and

1 2
g:nl—>(3——2>+—
n n

where g(n) # 0 for all n € Z>4. Since
- 1 1 1
SR CING
nJ)n>1 nJn>1 nJn>1
~ 1 (1
RO
nJnp>1 nJn>1

it follows from numerous applications of product and sum rules that h — 1

and

1
and g — 3 # 0 and hence f = — — 3 Once I have expressed f(n) in the final

form in (7.53), I can see what the final result is, and I will usually just write

1+£+#}_}1+0+0_1

1 2 9
3 n2+n

Uy ={ e L

7.54 Example. Let g:IN — C be the sequence

_ . 7.55
g {4n n 6”} (7.55)

Then for all n € N,

Cpw m(2

g(n)

Since
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In the last two examples, I was motivated by the following considerations.
I think: In the numerator and denominator for (7.52), for large n the “n®”
term overwhelms the other terms — so that’s the term I factored out. In the
numerator of (7.55), the overwhelming term is 4™, and in the denominator, the
overwhelming term is 6™ so those are the terms I factored out.

7.56 Exercise. Let {f(n)} be a sequence of non-negative numbers and

suppose {f(n)} — L where L > 0. Prove that {\/f(n)} — VL. (NOTE: The
case L = 0 follows from the root theorem for null sequences.

7.57 Exercise. Investigate the sequences below, and find their limits if
they have any.

1+ 3n+ 3in?
wf={——————}
n>1

1+ 2in + 5n?
n?+3in+1
n°+n-+1 n>1
(44—%)2—-16
¢) h=q"—"5—
/ 1
d) k:{ 1+—}
n
n>1

_ 2 _
e) = {\/n +n n}nZI
7.58 Exercise. Show that the sum of two bounded sequences is a bounded
sequence.

7.59 Theorem (Convergent sequences are bounded.) Let {a,} be a
convergent complex sequence. Then {a,} is bounded.

Proof: T will show that null sequences are bounded and leave the general case
to you. Let f be a null sequence and let N be a precision function for f.
Let

B =max (1w (76))).

0<j <Ny
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I claim that B is a bound for f. If n € Zo<j<ny(1), then

[fn)l < | max (IF()]) < B.

0<j<N;
If n € Z>n,q), then n > N(1), so [f(n)] <1 < B. Hence
[f(n)| < B for all n € Zocj<ny1) U Zxny ),
ie, |f(n)| < BforallneN.|

7.60 Exercise. Complete the proof of theorem 7.59; i.e., show that if {a,}
is a convergent complex sequence, then {a,} is bounded.

7.61 Example. It follows from the fact that convergent sequences are
bounded, that {n} is not a convergent sequence.

7.62 Exercise. Give an example of a bounded sequence that is not conver-
gent.

7.6 Geometric Series

7.63 Theorem ({r%} —1.) Ifr e RF, then {r=} — 1.

Proof:

Case 1: [r > 1]. By the formula for factoring s™ — a™ (3.78), we have for all
’I’LEZZl andallszl

(sn—l)z(s—l)zsjz(s—l)ilj:n(s—l)

SO

If we let s = = in this formula, we get

1
Irs — 1| =rs —1< —(r —1).

3

Since {T _

n
for null sequences that {r'/» — 1} — 0; i.e., {r%} 1.

1
} is a null sequence, it follows from the comparison theorem
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1
Case 2: [0 <r < 1] Let R=—. Then R > 1, so by Case 1, {R%} — 1. By
T
1
} — 1; i.e., {r%} — 1.

1
n

the reciprocal theorem {

We have shown that the theorem holds in all cases. ||

7.64 Theorem (Convergence of geometric sequences.) Let o € C.
Then

{a"} = 0if|a| <1
{"} =2 1ifa=1
{a"} diverges if |a| > 1 and o # 1.

Proof: The last assertion was shown in theorem 7.7, and the second statement
is clear, and it is also clear that {a"} — 0if a = 0.
Suppose that 0 < |a| < 1. I will show that

1
lof| < 3 for some k € IN. (7.65)

It will then follow that

" 1

|k = ak"<<—> = — foralln € N.

0= (ol < (3) = 5

Since {5} is a null sequence, it follows from the comparison theorem for null
sequences that {|a"|*} is a null sequence, and then by the root theorem for

null sequences (Theorem 7.19), it follows that {a"} is a null sequence.
1

1. 1
To prove (7.65), let N be a precision function for {(5)" - 1}, and let

k= N(1—|«a|). Then

(1)%—1‘<1—\a\ sol—(l)% <1—lal, so
. 2 ’ 2 ’
la| < (i)z and hence || < I, which is what we wanted to show. ||

7.66 Theorem (Geometric series.) Let a € C. If |a| < 1, then the
geometric series

n
Ja:n > Z o’
=0

converges to . If |a| > 1, then g, diverges.

_a.
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n+1
Proof: We saw in theorem 3.71 that g,(n Z =" forala # 1.

If « =1, go(n) = n+ 1. This sequence dlverges since it is not bounded. If
|a| < 1, then by the previous theorem {a"} — 0, so

1 o 1 o 1

fat} = {7 - arb o - 0=

1—« 1l—-a 1—«a 1—a

Suppose now |« > 1 and « # 1. Then for all n € N we have

1 1 1 — n+1
o = —-a”“z—(l—(l—a)-ia )
o o 1«
_ 1-(-a)sm
o

Hence for all L € C we have

{ga(m)} = L = far} —» L7

By theorem 7.7, if || > 1 and « # 1, then {a"} diverges, and hence
{ga(n)} — L is false for all L € C; i.e., g, diverges. ||

n

7.67 Notation. If {a;};> is a sequence of digits, then we denote > %
j=1

by .aias - - - a,. Thus

14159—1—|—4—|-1—|—5—i-9
10 102 10%  10* 105

and

.351351351

S S T S N T O O
N 10 100 1000 104 105 106 107 108 109
B (351)[1+ L 1]

N 1000 103~ 106

351 A1

1000 & 10%
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7.68 Example. Let a,b,c be digits, and let

1

abc &

=0

so informally, z,, = .abcabc - - - abc. Then {x,} is a convergent sequence, and
N—_— ———

3(n+1) digits

(2.} — abc 1 abc
Tn . =—.
1000 1— o 999
As an example, we have
351 39 13

{.351,.351351,.351351351, - -} — - = = = 2
999 ~ 111 37

7.69 Exercise. Let
{an} = {.672,.67272,.6727272, .672727272, - - '}nZl-

Show that {a,} converges to a rational number.

7.70 Exercise.
n 3\J 4N
a) Let {a,} =< ((g> + <5> 2) . Does {a,} converge? If it does,
=0
find lim{a,} in the form a + bi where a,b € R.

b) Let {b.} =< (32 Z) . Does {b,, } converge? If it does, find lim{b,, }

j=0
in the form a + bi where a,b € R.

c) Let {c,} = {Zn: ((g)J + <%)]>} Does {c,} converge? If it does,

S5

find lim{c,} in the form a + bi where a,b € R.
=0

i(l;i)j}and{

=0

7.71 Exercise. Show that the sequences {

(which are drawn on page 126) converge, and that the limits appear to be in
agreement with Figure b) on page 126.
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7.72 Entertainment (Snowflakes) Let F be an equilateral triangle with

S

Snowflakes

area A, and side s. Note that an equilateral triangle with side s has area 9
Starting with E, we will now construct a sequence {S,} of polygons. S, will
have 4" - 3 sides, all having length ;—n We let Sy = E (so Sy has 4° - 3 sides of

s . . .
length @) To construct S,,;1 from S, we attach an equilateral triangle with

1
side of length 3 side (S,) to the middle third of each side of S,.

The bottom side of S, will be replaced by /' . Each side of

1
S, is replaced by 4 sides of length 3 (3%), 0 Sp41 will have 4-(4"3) = 4"*1.3

The figure shows some of these polygons. I will call the

sides of length Py
polygons S,, snowflake polygons. We have S, C S,41 for all n. The snowflake
S is the union of all of the sets S,; i.e., a point x is in S if and only if it is in
S,, for some n € N.

Find the area of S, (in terms of the area A of F), for example

A 4
—A+3(2)=2a
area(Sh) +3 (9 ) 3

Then find the area of S in terms of A. Make any reasonable assumptions that
you need. What is the perimeter of S?

7.7 The Translation Theorem

7.73 Theorem. Let f be a real convergent sequence, say f — L. If f(n) >0
for all n € N, then L > 0.

Proof: I note that L € R, since if f — L, then Ref — ReL. Suppose, to get a
L
contradiction, that L < 0, (so —3 > 0), and let N, ; be a precision function
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- L - L
for the null sequence f — L. Let N = N,_j <—§> Then |(f — L)(N)| < 5

L L L
so |[f(N)—-L| < —5 and hence f(N) < L — 5=5 < 0. This contradicts

the assumption that f(/NV) > 0 for all n € N. ||

7.74 Exercise (Inequality theorem.) Let f,g be convergent real se-
quences. Suppose that f(n) < g(n) for all n € N. Prove that lim f < limg.

7.75 Exercise. Prove the following assertion, or give an example to show
that it is not true. Let f, g be convergent real sequences. Suppose that
f(n) < g(n) for all n € N. Then lim f < limg.

7.76 Definition (Translate of a sequence.) Let f be a sequence and let
p € N. Then the sequence f,:n — f(n+ p) is called a translate of f.

1 1 1 1

777 Example. If f = {?, ?’ E, Ty, m, .- '}, then

f: { 111 L At late of i

3= 8 oy m Doty gyt L ranslate of a sequence is a sequence
527 62’ 72 (n+5)?

obtained by ignoring the first few terms.

7.78 Theorem (Translation theorem.) If {f(n)} is a convergent complez
sequence, andp € N, then { f(n+p)} converges, and im{ f(n)} = lim{ f(n+p)}.
Conversely, if {f(n+p)} converges, then {f(n)} converges to the same limit.

Proof: Let f — L, let fy(n) = f(n + p) and let N;_; be a precision function

for f — L. 1 claim N;_; is also a precision function for f, — L. In fact, for all
n €N, and alle € R,

n>N; j(e) = n+p>N; j(e) = |[f(n+p)— L[ <e.

Conversely, suppose

{fp(n)} ={f(n+p)} =L
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and let N, _; be a precision function for f, — L. Let N(e) =p+ N, _i(e) for
all e € R". I claim N is a precision function for N; ;. Foralln € N,

n > N(g) n>p+N; ;(e)

n—p>N; ;e)

((fp—L)(n—p)l<e
[fo(n —p) — L| <e
[f(n) = L] <e. |

FEE L

7.79 Example. Let the sequence f be defined by

f0) =1,
1
1) = ———— forall N.
f(n+1) T () oralln e
Then
1 1
I =51=s
1 1 2
1@ = 7T =73173
1+1 2
1 1 3
fB3) = = =z
1+1+% 1+2 5

Suppose I knew that f converged to a limit L. It is clear that f(n) > 0 for all
n, so L must be > 0. By the translation theorem

1 1 1
L=1 D} =1l = =
m{f(n+1)} 1m{1+f(n)} I +lmf(n)  1+L
—14++v144 —-1-+1+4
so L(14+L) = 1;i.e.,, L?>+L—1 = 0. Hence L € { T 5 i : 5 i },
. VE-1 | .
and since L > 0, we conclude L = . I’'ve shown that the only thing
1
that f can possibly converge to is . Now

3—1
0<L<T:1, so [1-L|<1.
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Since L = IJ%L, we have for all n € N,

_ 1 1| L— f(n) L — f(n)|
flo+1) - L] = 1+f(n)_1+L‘_‘(1+f(n))(1+L) S Ti41
= L|L— f(n)| = L[f(n) — L|.

Hence
f(1)—L| < L|f(0)-L|=L|1-L|<L,
f(2) - L| < L|f(1) - L] < L%
f(3)—L| < L|f(2)—L|I<L?

and by induction,
\f(n)— L| < L" for all n € Zs.

By theorem 7.64 {L"} is a null sequence, and by the comparison theorem for
null sequences, it follows that {f(n) — L} is a null sequence. This completes
the proof that f — L. ||

7.80 Exercise. Let

f0) = =2
_ f(n)?+2
f(n+1) = WforallnEN.

a) Assume that f converges, and determine the value of lim{ f(n)}.

b) Calculate f(1), f(2), f(3), f(4), using all of the accuracy of your calcu-
lator. Does the sequence appear to converge?

7.81 Entertainment. Show that the sequence f defined in the previous
exercise converges. We will prove this result in Example 7.97, but you can
prove it now, using results you know.

7.82 Exercise. Let g be the sequence defined by

9(0) = 1,
9(1) = 1,
1 1
gn+2) = MforallnEN.

g9(n)
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a) Assume that g converges, and determine the value of lim{g(n)}.

b) Calculate g(1), ¢(2), 9(3), g(4),g(5), g(6), using all of the accuracy of your
calculator. Does this sequence converge?

7.83 Theorem (Divergence test.) Let f, g be complezr sequences such that
g(n) # 0 for all n € N. Suppose that g — 0 and f — L where L # 0. Then

= diverges.
g

Proof: Suppose, to get a contradiction, that i converges to a limit M. Then
g

by the product theorem, g - i converges to 0 - M = 0; i.e., f — 0. This
g
contradicts our assumption that f has a non-zero limit. ||
7.84 Exercise. Prove the following assertion or give an example to show
that it is not true: Let f, g be complex sequences such that g(n) # 0 for all
n € N, but ¢ — 0. Then i diverges.
g

n3 +3n
n?+1

7.85 Example. Let f(n) = { } for all n € Z;. Then

143) (1A
n?(1+1) (141
Since 5
lim{(1+—2>} =14+0#0,
n n>1
and . .
lim{—<1+—>} —0-(140)=0,
n n/J)n>1

it follows that f diverges.

7.86 Exercise. Let A, B,a,b be complex numbers such that an+ b # 0 for
An+ B

an—+b

all n € Z>;. Discuss the convergence of {

choices for A, B, a,b.

} . Consider all possible
n>1
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7.8 Bounded Monotonic Sequences

7.87 Theorem. Let {[a,,b,]} be a binary search sequence in R. Suppose
{[an, bn]} — ¢ where c € R.Then {b, — a,} is a null sequence. Also {a,} — ¢
and {b,} — c.

by — a.
Proof: We know that b, — a, = — — 0 and that {2%} is a null sequence, so

{b, — a,} is a null sequence. Since {[a,,b,]} — ¢ we know that a, < ¢ < b,
for all n € N, and hence

0 < by — | < |bp — ay| and 0 <lc—an| < |by — ay|

for all n € N. By the comparison theorem for null sequences it follows that
{¢—a,} and {b, — c} are null sequences, and hence {a,} — cand {b,} — c. |

7.88 Definition (Increasing, decreasing, monotonic) Let f be a real
sequence. We say f is increasing if f(n) < f(n+1) for all n € N, and we say
f is decreasing if f(n) > f(n+ 1) for all n € N. We say that f is monotonic
if either f is increasing or f is decreasing.

7.89 Theorem. Let f be an increasing real sequence. Then for all k,n € N
flk) < f(k+n).
Proof: Define a proposition form P on N by
P(n) = “for all k € N(f(k) < f(k+n))”, for all n € N.

Then P(0) says “for all k € N(f(k) < f(k))”, so P(0) is true. Since f is
increasing, we have for all n € N,

P(n) = forall k € N(f(k)

—> for all k € N(f(k)
= P(n+1).

(k+mn) < f((k+n)+1))

<f
< flk+(n+1)))

By induction, we conclude that P(n) is true for all n € N; i.e.

for all n € N(for all k € N(f(k) < f(k+n))). |
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7.90 Corollary. Let f be an increasing real sequence. Then for all
k,n € N,
k<n = f(k) < f(n). (7.91)

Proof: For all k,n € N
k<n— n—keN = [(k) < f(k+(n—k) = f(n). |

7.92 Definition (Upper bound, lower bound.) Let f be a real sequence.

We say that f has an wupper bound if there is a number U € R such that
f(n) < U for all n € N. Any such number U is called an upper bound for
f.- We say that f has a lower bound if there is a number L € R such that
L < f(n) for all n € N. Any such number L is called a lower bound for f.

7.93 Examples. If f(n) = % for all n € N then 1 (or any number
greater than 1) is an upper bound for f, and —1 (or any number less than —1)
is a lower bound for f. The sequence g : n +— n has no upper bound, but 0 is

a lower bound for g.

7.94 Exercise. In definition 7.41, we defined a complex sequence f to
bounded if there is a number B € [0, 00) such that |f(n)| < B for all n € N.
Show that a real sequence is bounded if and only if it has both an upper bound
and a lower bound.

7.95 Theorem (Bounded monotonic sequences converge.) Let f be
an increasing sequence in R, and suppose f has an upper bound. Then f
converges. (Similarly, decreasing sequences that have lower bounds converge.)

Proof: Let B be an upper bound for f. We will construct a binary search
sequence {[a,, b,]} satisfying the following two conditions:

i. For every n € N, b, is an upper bound for f,

ii. For every n € N, a, is not an upper bound for f.
Let

lag,bo] = [f(0) —1,B]
s bns] = { [an, an;bn] if 242 5 an upper bound for

[%, bn] if 222P2 js not an upper bound for f.
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A straightforward induction argument shows that {|a,, b,]} satisfies con-
ditions i) and ii).

Let ¢ be the number such that {[a,,b,]} — ¢. I will show that f — c.

We know that {b, —a,} = {®5%} is a null sequence. Let N be a precision
function for {b, — a,}, so that for all ¢ € R™,

n>N(e) = |b, —a,| <e.

I will use N to construct a precision function K for f —¢.

Let ¢ € R". Since ay(,) is not an upper bound for f, there is a num-
ber K(e) € N such that f(K(e)) > an¢). By condition i), I know that
f(n) < by for all n € N. Hence, since f is increasing, we have for all n € N:

n>K() = ane) < f(K(€)) < f(n) < by
= f(n) € [an(e), bnee)l-

Since {[an, by]} — ¢ we also have
C € [an(), bn(e)]-

Hence
|f(n) —c| < by —ang) < e foralln > K(e).

This says that K is a precision function for {f(n) — c}, and hence f — ¢ ||

7.96 Corollary. Let f be a real sequence. If f has an upper bound, and
there is some N € N such that

f(n+1)> f(n) foralln € Zsy

then f converges. Similarly, if f has a lower bound, and there is some N € N
such that

f(n+1) < f(n) foralln € Zsy

then f converges.

7.97 Example. Let a € R". Define a sequence {z,} by

To = a-+1
2
Tpy1 = mg;afor all n € N.
n
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We have z, > 0 for all n. Suppose {z,} converges to a limit L. Since
20, Tpe1 = xi 4+ a for all n € N, we can use the translation theorem to
show that

2L* = 2lim{z, }lim{x, 1} = lim{z? + a} = L* +q,

so 2L? = L? + a, and hence L? = a, so L must be +y/a. Since z,, > 0 for
all n, it follows from the inequality theorem that L > 0, and hence if {z,}
converges, it must converge to y/a. In order to show that {x,} converges, it
is sufficient to show that {z,} is decreasing. (We’ve already noted that 0 is a

lower bound.)
Well,

24+a 222 -2 —a 12-a
Tp — Tpt1 = Tn — = = )
2%y, 2xy, 2%,

so if T can show that 22 —a > 0 for all n € N, then I'll know that {z,} is
decreasing. Now

) 22 +a)\’ rt + 2022 + a?
i —a = —a= > —a
2z, dzz
_ zp 42022 4+ @ — daz? (22 — a)? >0
4a? 42 T

I also note that 3 —a = a® + a + 1 > 0, so I finally conclude that {z,} is
decreasing, and hence {z,} — /a. In fact, this sequence converges very fast,
and is the basis for the square root algorithm used on most computers.

7.98 Example ({n=}) We will show that {n%}nzl — 1.
Claim: {n%}nzgg is a decreasing sequence.
Proof: For all n € Z>1,

(n+1)n+r1 < = (n+1)" < np"tt

(" : 1)n <n. (7.99)

We will show by induction that (7.99) holds for all n € Z3. Let

n+1
n

) <n” for all n € Z>3.

P =
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Then P(3) says (3)* < 3, which is true since 64 < 81. For all n € Z3,

P(n) = (n+1>n <n

n

G =) (65m)

n+1\" n+1 n?+2n \" n+1
() ozt
n n nZ4+2n+1 n
2 n+1
N (n+ ) <n+l
n+1
= P(n+1).

By induction, P(n) is true for all n € Zs3, and the claim is proved.
Let L = lim{nw}. Then {(2n)2a} — L, since any precision function for
{nw} is also a precision function for {(2n)27}. Hence

* =lim{((2n)%) '} = lim{2+ns} = 1- L = L.

Thus L? = L, and hence L € {0,1}. Since n» > 1for all n € Z>3 it follows
from the inequality theorem that L > 1, and hence L = 1. ||

7.100 Exercise. Show that the sequence
60™
{—'} = {1, 60, 1800, 36000, - - -}
n!

is a null sequence.

7.101 Exercise. Criticize the following argument.

1
We know that {1+—} —-1+0=1.
nJn>1

1 n
Hence {(1 + —) } S|
n n>1

7.102 Note. I got the idea of using precision functions from a letter by
Jan Mycielski in the Notices of the American Mathematical Society[34, p 569].
Mycielski calls precision functions Skolem functions.
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The snowflake was introduced by Helge von Koch(1870-1924) who pub-
lished his results in 1906 [32]. Koch considered only the part of the boundary
corresponding to the bottom third of our polygon, which he introduced as an
example of a curve not having a tangent at any point.

The sequence g from Exercise 7.82 is taken from [12, page 55, ex 20]
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Continuity

8.1 Compositions with Sequences

8.1 Definition (Composition) Let a:n — a(n) be a complex sequence.
Let g: S — C be a function such that dom(g) =S C C, and a(n) € S for all
n € N. Then the composition goa is the sequence such that (goa)(n) = g (a(n))
for all n € N. If a is a sequence, I will often write a,, instead of a(n). Then

a={a,} = goa={g(a,)}

SOSEES

for all z € C\ {—1}, then

8.2 Examples. If

1
and ¢(z) = 12

; 1 { 2" } {1 2 4 }
oOf = ———p = == = = -3
g 1+ 5 on 41 2’3’5

Figure a) below shows representations of z,v o x and K o x where

2 4 4 — 213\
z(n) = xn:g—i-gi—i—( 55 Z) for all n € N,
1
v(z) = 2 for all z € C\{0},
K(z) = z+ ;—‘ for all z € C\{0}.

159
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2 4 2 4
I leave it to you to check that {z,} — R + Si’ and {v(z,)} = v (E + §i>’

2 4
and {K(z,)} = K (6 + gz) Figure b) shows representations for ¢ and K oa

where

7 23i\"
M@—%—(25>,

and K is defined as in (8.3). Here it is easy to check that {a,} — 0. From the
figure, { K (a,)} doesn’t appear to converge.

N %/\

{zn} {v(zn)} {K(2n)}

figure a) Sequence and compositions

{an} {K(an)}

figure b) Sequence and composition
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8.4 Exercise. Let a be a non-zero complex number with 0 < |a| < 1. Let

n

for all n € N.

Jolm) ="+ 2

Under what conditions on « does f, converge? What does it converge to?
(Your answer should show that the sequence {K(a,)} from the previous ex-
ample does not converge.)

8.5 Definition (Complex function.) By a complez function I will mean
a function whose domain is a subset of C, and whose codomain is C. I will
consider functions from R to R to be complex functions by identifying a
function f: S — R with a function f: S — C in the expected manner.

8.2 Continuity

8.6 Definition (Continuous) Let f be a complex function and let p € dom(f).
We say f is continuous at p if

for every sequence z in dom(f) (r =-p = foz — f(p));
i.e., if
for every sequence {z,} in dom(f) ({zn} = p = {f(zn)} — f(p)).

Let B be a subset of S. We say f is continuous on B if f is continuous at ¢
for all ¢ € B. We say f is continuous if f is continuous on dom(f); i.e., if f is
continuous at every point at which it is defined.

8.7 Examples. If f(z) = z for all z € C, then f is continuous. In this case
f ox =z for every sequence x so the condition for continuity at p is

T—=p = T —p.

If a € C, then the constant function @ is continuous since for all p € C, and
all complex sequences z,

T—p= aoxr=a—a=a(p).
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Notice that Re and Im (Real part and imaginary part) are functions from
C to R. In theorem 7.39 we showed if x is any complex sequence and L € C,
then
r — L = Re(z) — Re(L)

and
z — L = Im(z) — Im(L).

Hence Re and Im are continuous functions on C.
8.8 Theorem. If abs and conj are functions from C to C defined by

abs(z) = |z| forallz€ C
conj(z) = z* forall z € C,

then abs and conj are continuous.
Proof: Let a € C and let x be any sequence in C such that {z,} — a; i.e.,
{x, — a} is a null sequence. By the reverse triangle inequality,

|0 — al > [zn| — al

and

|0 — al = a — zn| > [a] — |z,
so we have

—|zn — af <[] —la| < |zn —a
and hence

|zn| = lal| <lzn —al.

It follows by the comparison theorem that {|z,| — |a|} is a null sequence; i.e.,
{|zn|} — |a|. Hence abs is continuous.
Since |z} —a*| = |(z, —a)*| = |z, — al, the comparison theorem shows that

{z,} 2 a = {2z} = a";

i.e., conj is continuous. ||



8.2. CONTINUITY 163

8.9 Example. If
z for z € C\{0},

f(z):{l for z =0,

then f is not continuous at 0, since

()= (L)oo

Notice that to show that a function f is mot continuous at a point a in its
domain, it is sufficient to find one sequence {z,} in dom(f) such that {z,} — a
and either {f(z,)} converges to a limit different from f(a) or { f(z,)} diverges.

8.10 Theorem (Sum and Product theorems.) Let f, g be complex func-
tions, and let a € dom(f)Ndom(g). If f and g are continuous at a, then f+g,
f—g, and f - g are continuous at a.

Proof: Let {x,} be a sequence in domain (f + g) such that {z,} — a. Then
zn € dom(f) for all n and z,, € dom(g) for all n, and by continuity of f and
g at a, it follows that

{f(zn)} — f(a) and {g(zn)} — g(a).

By the sum theorem for sequences,

{(f +9)(zn)} = {f(zn) + g(za)} = f(a) + 9(a) = (f + 9)(a).

Hence f + g is continuous at a. The proofs of continuity for f — g and f - g
are similar.

8.11 Theorem (Quotient theorem.) Let f, g be complex functions and let

a € dom <i> If f and g are continuous at a, then i 1$ continuous at a.
g g

8.12 Exercise. Prove the quotient theorem. Recall that

dom <f> _ (dom(f) N dom(g)) \{z € dom(g): g(2) = O}.
g
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8.13 Theorem (Continuity of roots.) Letp € Z>; and let f,(x) = v for
all x € [0,00). Then f, is continuous.

Proof: First we show f, is continuous at 0. Let {z,} be a sequence in [0, c0)
such that {z,} — 0; i.e., such that {z,} is a null sequence. Then by the

1
root, theorem for null sequences (Theorem 7.19), {xﬁ} is a null sequence; i.e.,

{folzn)} = {xé} — 0 = f,(0), so f, is continuous at 0.

Next we show that f, is continuous at 1. By the formula for a finite
geometric series (3.72), we have for all z € [0, 00)

p—1l p—1l
2P =1 =|(z-1)> 2| =z -1 27 > [z —1]. (8.14)
j=0 j=0

1 1 1
If we replace x by y» in (8.14), we get |y — 1| = |(y?)? — 1| > |y» — 1], i.e.,
\y% —1] < |y —1| for all y € [0, 00).
Let {y,} be a sequence in [0,00). Then
1
[(yn)? — 1] < |yn — 1| for all n € N,
SO

{p} =1 = lya—1/ =0
= |(ya)? — 1] = 0 (by comparison theorem for null sequences)
= {(m)?} =1
= {fp(gn)} = f(1).

Hence f, is continuous at 1.

Finally we show that f, is continuous at arbitrary a € (0,00). Let a € [0, 00),
and let {z,} be a sequence n [0,00). Then

1 1
{tm} =0 = —{z}—-a=1
a a

Zn
== {—}—)1
a
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{(Zn) } — 1 (since f, is continuous at 1)
a

Zn
a,p{(a) }—)ap-l
()2} = 02
{fo(zn)} = f(a).
Thus f, is continuous at a. ||

8.15 Definition (Composition of functions.) Let A, B, C, D be sets, and
let f: A — B, g:C — D be functions. We define a function g o f by the rules:

domain (go f) = {z € domf: f(z) € dom(g)}
(g0 f)(x) = g(f(z)) for all z € dom(g o f).
8.16 Examples. Let f:C — C, g: C — C be defined by

f(z) = Z2+1forallzeC
g(z) = (1+z") forall z € C.

Ll

Then

(fog)2) = fl9(2)=00+2)2+1=1+2"+ (") +1
= 242"+ (2%)%
and

(o)) =9(f(2)) =1+ (Z+1) =1+ (") +1=2+ (")

If f:R— R and g:[—1,00) — R are defined by
fiz)y=2>—-1forallz e R

n
e g(z) =1+ forall z € [—1, 00),
then
(fog)w) = (V1+z)?—1forallze[-1,00)
= 14+z—1forallz € [-1,00)
= g forall z € [-1,00)
and

(go f)(z) =4/1 2_1)=V2?=|z| for all z € R.
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8.17 Theorem (Compositions of continuous functions.) Let f, g be
complex functions. If f is continuous at a € C, and g is continuous at f(a),
then g o f is continuous at a.

Proof: Let {z,} be a sequence in dom(g o f) such that {z,} — a. Then for
all n € N, we have z,, € dom(f) and f(z,) € dom(g). By continuity of f at
a, {f(z,)} — f(a), and by continuity of g at f(a), {g (f(z,))} = g (f(a)). |

8.18 Example. If f(z) = Vvxz?+ 3 for all x € R, then f is continuous (i.e.,
f is continuous at a for all ¢ € R.)

8.19 Exercise. Let f:N — C be defined by f(n) =n! foralln € N. Is f
continuous?

8.3 Limits

8.20 Definition (Limit point.) Let S be a subset of C and let a € C. We
say a is a limit point of S if there is a sequence f in S\{a} such that f — a.

8.21 Example. Let D(0,1) = {z € C:|z| < 1} be the unit disc, and let
a € C. We'll show that « is a limit point of D(0,1) if and only if |a| < 1.

Proof that (« is a limit point of D(0,1)) = || < 1.

Suppose « is a limit point of D(0,1). Then there is a sequence {a,} in
D(0,1)\ {a} such that {a,} — «. Since the absolute value function is contin-
uous, it follows that {|a,|} — |a|. Since a, € D(0,1) we know that |a,| < 1
(and hence |a,| < 1.) for all n € N. By the inequality theorem for limits of
sequences, lim{|a,|} <1, ie. |a < 1.

Proof that (|a] < 1) = « is a limit point of D(0,1).

Case 1: Suppose 0 < |a| < 1. Let fo(n) = %a for all n € Z>;. Then
n >
|fa(n)| =

n <" <1so fa(n) € D(0,1), and clearly f,(n) # a.

o

n+1 “n+1
1
Now {fa(n)}n>1 = 3T o — @, so « is a limit point of D(0,1).
n n>1

Case 2: a = 0. This case is left to you.
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8.22 Exercise. Supply the proof for Case 2 of example 8.21; i.e., show that
0 is a limit point of D(0,1).

8.23 Example. The set Z has no limit points. Suppose o € C, and there
is a sequence f in Z\{a} such that f — a. Let g(n) = f(n) — f(n+ 1) for all
n € N. By the translation thoerem ¢ — a — a = 0; i.e., g is a null sequence.
Let N, be a precision function for g. Then for all n € N,

1
2
= 1f(n) -~ fn+ 1) <5

n2N,(3) = lotl<

Now |f(n) — f(n+1)| € N, so it follows that

w2 N, (L) = [f) = fn+ 1)) =0 = @) = f(n+1)
2

oemr= ()

This contradicts the fact that f(n) € Z\{a} for all n € N. ||

and hence

8.24 Definition (Limit of a function.) Let f be a complex function, and
let a be a limit point of dom(f). We say that f has a limit at a or that liénf

erists if there exists a function F' with dom(F') = dom(f) U {a} such that
F(z) = f(z) for all z € dom(f)\{a}, and F is continuous at a. In this case
we denote the value of F'(a) by lign f or ll_I)I(ll f(2). Theorem 8.30 shows that

this definition makes sense. We will give some examples before proving that
theorem.

8.25 Warning. Notice that li(gn f is defined only when a is a limit point of
dom(f). For each complex number 3, define a function Fz : N U {%} — C by

n! if n € N,
Fs(n) = {5 itn =L,
Then Fjp is continuous, and F'(n) = n! for all n € N. If I did not put the
requirement that a be a limit point of dom(f) in the above definition, I'd have

1
limn! = Fg(=) =B for all B € C.
1 ’62

n—>§

I certainly do not want this to be the case.
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2

1
8.26 Example. Let f(z) = z 1 for all z € C\{1} and let F'(2) =z +1
Z E—
for all z € C. Then f(z) = F(z) on C\{1} and F is continuous at 1. Hence

lim f = F(1) = 2

8.27 Example. If f(z) = {; igr #1 1
rz=

F: z+— z agrees with f on C\{1} and is continuous at 1.

, then li{n f =1, since the function

8.28 Example. If f is continuous at a, and a is a limit point of domain f,
then f has a limit at a, and

lim f = f(a).

8.29 Example. Let f(z) = % for all z € C\ {0}. Then f has no limit at 0.

Proof: Suppose there were a continuous function F' on C such that F(z) = f(z)
' 1

on C\{0}. Let {a,} = {ni 1} and {b,} = {n—ﬂ} Then {a,} — 0 and

{b,} — 0 and so

=t

F(0) =1lim{F(a,)} = lim {”—“} =lim{-1} = -1

n+1

and also )

F(0) = im{F(b,)} = lim {"T“} =lim{1} = 1.

n+l
Hence we get the contradiction —1 = 1. ||

8.30 Theorem (Uniqueness of limits.) Let f be a complex function, and
let a be a limit point of dom(f). Suppose F,G are two functions each having
domain dom(f) U {a}, and each continuous at a, and satisfying f(z) = F(z)
= G(z) for all z € dom(f)\{a}. Then F(a) = G(a).

Proof: F'— G is continuous at a, and F'— G = 0 on dom(f)\{a}. Let {a,} be
a sequence in dom(f)\{a} such that {a,} — a. Since F' — G is continuous at
a, we have

{(F - G)(an)} = (F = G)(a);
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ie.,

{0} = F(a) = G(a),
so F(a) — G(a) = 0; i.e., F(a) = G(a). |
8.31 Exercise. Investigate the following limits. (Give detailed reasons for

your answers). In this exercise you should not conclude from the fact that I've
written lin}) f(w) that the implied limit exists.
w—r

a) lim t5.
14

b) lim n!.
n—2

8.32 Theorem. Let f be a complex function and let a be a limit point of
dom(f). Then f has a limit at a if and only if there exists a number L in C
such that for every sequence y in dom(f)\{a}

y—a=— foy— L. (8.33)

In this case, L = lign f-

Proof: Suppose f has a limit at a, and let F' be a continuous function with
dom(F) = dom(f) U {a}, and F(z) = f(z) for all z € dom(f)\{a}. Let y
be a sequence in dom(f)\{a} such that {y,} — a. Then y is a sequence in
dom(F'), so by continuity of F,

{f(yn)} ={F(yn)} = Fl(a).

Hence, condition (8.33) holds with L = F(a).
Conversely, suppose there is a number L such that

for every sequence y in dom(f)\{a}, (y > a = foy — L.). (8.34)
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Define F':dom(f) U {a} — C by

- {10z <ot

I need to show that F' is continuous at a. Let z be a sequence in dom(F’) such
that z — a. I want to show that F'oz — L.

Let w be a sequence in dom(f) \ {a} such that w — a. (Such a sequence
exists because a is a limit point of dom(f)). Define a sequence y in dom(f)\{a}
by

_(z(n) ifz(n)#a
y(n) {w(n) if z(n) = a.
Let N,_; and N,_; be precision functions for z — @ and w — a respectively.
Let
M(e) = max(N, (), Ny_z(e)) for alle € R*.

Then M is a precision function for y — @, since for all e € R* and all n € N,

n > M(e)
{n >N, a(e) = |2(n) —a|<e = |y(n) —a| <e ifz(n) #a
n> Ny_ale) = |w(n) —a|<e = |y(n) —a| <e if z(n) =a.

Hence y — a, and by assumption (8.34), it follows that foy — L. I now
claim that F'oz — L, and in fact any precision function P for foy — L is a
precision function for F oz — L. For alle € R" and all n € N,

n>Ple) = |f(yn)) - Ll <e

[F(2(n)) — LI = [f(y(n)) — L| <& if 2(n) 7

— { IF(2(n)) — L| = |[F(a) = L| =0 < ¢ if 2(n)

a
a.
This completes the proof. ||

8.35 Example. Let

ry|z|
xt + 9?2

f(z)=flz+iy) = f((z,y)) = + 4y for all z € C\{0}.

I want to determine whether f has a limit at 0, i.e., I want to know whether
there is a number L such that for every sequence z in C\{0}

z— 0= f(z) > L.
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If r € R and v € Q" then

"y r-x-x7 . v 954(14_952(7—2)) Tl = 1+ 22002 T
f((z,27)) = A T 12 - 2 -
x27(x2(2—7) 1) +iz’ = e 11 1 + 1z

Since |2 — | is either 2 — vy or v — 2, we have

x|2_7|

f((%,l‘fy)) == W + 1z,

For each v € QT, define a sequence Zy by

1 1
Zy 1M (—,—) foralln e Z™.
n-nY

Then 2z, — 0, and
1

o) = —22T 4 L

et g W
Hence
fozy, =0 if y#2
1
foz7—>§ if y=2.
It follows that f has no limit at 0.
Let yo € R. It is clear that f maps points on the horizontal line y =

to other points on the line y = y,. I'll now look at the image of the parabola
y = cz? under f.

vex’lz| . o M(

f(x—i—ich):x +icx = )-I—ica:2 for x # 0.

c
1+¢2
So f maps the right half of the parabola y = cz? into the vertical line

T = T and f maps the left half of the parabola to the line z = ﬁ
Parabolas with ¢ > 0 get mapped to the upper half plane, and parabolas
with ¢ < 0 get mapped to the lower half plane. The figure below shows some

parabolas and horizontal lines and their images under f.



172 CHAPTER 8. CONTINUITY

1 . 1

\ AN
W [/
. g

/AN
[T NN
[ AN
7T Y !

Discontinuous Image of a Cat

/
\

8.36 Entertainment. Explain how the cat’s nose in the above picture gets
stretched, while its cheeks get pinched to a point. (Hint: The figure shows the
images of some parabolas y = cx? where |c| > 1. What do the images of the
parabolas y = cz? look like when |¢| < 17?)

8.37 Example. It isn’t quite true that “the limit of the sum is the sum of
the limits.” Let

f(z) = +/z forxe€[0,00)
g(z) = v/—zforx € (~00,0].

Then from the continuity of the square root function and the composition
theorem,

hénf =0 zhgng.
But lién(f + g) does not exist, since dom(f + ¢g) = {0} and 0 is not a limit
point of dom(f + g).

8.38 Theorem (Sum and product theorem.) Let f,g be complex func-
tions and let a be a limit point of dom(f) Ndom(g). If lim f and limg ezist,
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then lic{n(f +9), lign(f —g) and lign(f - g) all exist and

lign(f +g9) = ]ignf +limg,

im(f —g) = limf —limg,
lign(f -g) = liénf . liéng.

If a is a limit point of dom (—) and lim g # 0 then lim / exists and
a a g

lim f !

1m

lim<i>= s
a \yg lim g

Proof: Suppose that lign f and lién g exist. Let z be any sequence in

dom(f + g)\{a} such that x — a. Then z is a sequence in both dom(f) and
dom(g), so
im{ f(z,)} = lim f and lim{g(z,)} = lim g.

By the sum theorem for limits of sequences,
im{(f + g)(n)} = Hm{/ (e)} + lim{g(z,)} = lim / + limg.

Hence f + ¢ has a limit at a, and lién(f +g) = liénf + lign g.
The other parts of the theorem are proved similarly, and the proofs are left
to you. ||

8.39 Exercise. Prove the product theorem for limits; i.e., show that if f, g
are complex functions such that f and ¢ have limits at a € C, and if a is a
limit point of dom(f) N dom(g), then f - ¢ has a limit at a and

lign(f cg) = lignf . ligng.

8.40 Definition (Bounded set and function.) A subset S of C is bounded
if S is contained in some disc D(0, B); i.e., if there is a number B in R* such
that |s| < B for all s € S. We call such a number B a bound for S.

Now suppose f:U — C is a functiom from some set U to C and A is a
subset of U. We say f is bounded on A if f(A) is a bounded set, and any
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bound for f(A) is called a bound for f on A. Thus a number B € R" is a
bound for f on A if and only if

|f(a)] < B for all a € A.

We say f is bounded if f is bounded on dom(f). If f is not bounded on A, we
say f is unbounded on A.

8.41 Examples. The definition of bounded sequence given in 7.41 is a
special case of the definition just given for bounded function.

Let f(z) = for all z € C\{+£i}. Then f is bounded on R since

1+ 22

HOIE e

<1 forall z € R.

However, f is not a bounded function, since

(e -

for alln € Z5;.

Let

xt 42
0 for z = 0.
(F is the real part of the discontinuous function from example 8.35.)
I claim F'is bounded by 1. For all a,b € R,

F(z)={ WL for 2 € 0\{o0)

la| [b] < max(|al, [b])* < a® + 0%,
(NOTE: max(|al, |b])? is either a® or b*.) Hence if (a,b) # (0,0), then

ab
a? + 02| —

To prove my claim, apply this result with a = z|z| and b = y.
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8.42 Exercise. Show that

ab
a? + b?

IN

1
2

for all (a,b) € R x R\{(0,0)}, and that equality holds if and only if |a| = |b|.
(This shows that 3 is a bound for the function F' in the previous example.)
HINT: Consider (|a| — |b])%.

8.43 Exercise. For each of the functions f below:

1) Decide whether f is bounded, and if it is, find a bound for f.

2) Decide whether f is bounded on dom(f)ND(0,1), and if it is, find a bound
for f on dom(f) N D(0,1).

3) Decide whether f has a limit at 0, and if it does, find lign f.

Here z = (z,y) = = + iy.

a) f(z) = = for all z € C\{0}.

2 4 y?

2

b) f(z) = xfny for all z € C\{0}.

2

¢) f(z) = (Z; " for all 2 € C\{0}.

d) f(z) = zi i zi for all z € R\{0}.
¢) f(z) = 7”’21_1 for all 2 € [—1,00)\{0}.



Chapter 9

Properties of Continuous
Functions

9.1 Extreme Values

9.1 Definition (Maximum, Minimum.) Let f: S — R be a function
from a set S to R, and let a € S. We say that f has a marimum at a if
f(a) > f(z) for all x € S, and we say f has a minimum at a if f(a) < f(z)
forall z € S.

9.2 Definition (Maximizing set.) Let f: S — R be a function and let M
be a subset of S. We say M is a mazrimizing set for f on S if for each z € S
there is a point m € M such that f(m) > f(x).

9.3 Examples. If f has a maximum at a then {a} is a maximizing set for

fonS.

If M is a maximizing set for f on S, and M C B C S, then B is also a
maximizing set for f on S.

If f: S — R is any function (with S # (), then S is a maximizing set for f
on S, so every function with non-empty domain has a maximizing set.

f(z):{ﬁ for z #0

Let

0 forz=0.

176
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Then every disc D(0,¢) is a maximizing set for f, since if z € C\{0} we can
11 1 1 1

find n € N with n > max (—,—); then n > —, so — < ¢,s0 — € D(0,¢) and
e’ |z| e n n

1 1 1
f (—) =n > — = f(z). This argument shows that {

n || n+
maximizing set for f.

1:nEN} is also a

9.4 Remark. Let S be a set, and let f:.S — R, and let M be a subset of
S. If M is not a maximizing set for f on S, then there is some point x € S
such that f(z) > f(m) for all m € M.

9.5 Lemma. Let S be a set, let f:S — R be a function, and let M be a
mazimizing set for f on S. If M = AU B, then at least one of A,B is a
mazximizing set for f on S.

Proof: Suppose AUB is a maximizing set for f on S, but A is not a maximizing
set for f on S. Then there is some s € S such that for all a € A, f(s) > f(a).
Since A U B is a maximizing set for f on S, there is an element ¢ in AU B
such that f(t) > f(s), so f(t) > f(a) foralla € A, sot ¢ A, sot € B. Now,
for every x € S there is an element ¢ in AU B with f(c) > f(z). If ¢ € A,
then the element ¢ € B satisfies f(t) > f(c) > f(z) so there is some element
u € B with f(u) > f(z) (if ¢ € A, take u = t; if ¢ € B, take u = ¢.) Hence B
is a maximizing set for f on S. ||

9.6 Theorem (Extreme value theorem.) Let a,b € R with a < b and
let f:[a,b] — R be a continuous function. Then f has a mazimum and a
minimum on |a, b].

Proof: We will construct a binary search sequence {[ay, b,|} with [ag, by| = [a, b]
such that each interval [a,, b,] is a maximizing set for f on [a,b]. We put

[a'O:bO] = [a’b]
[an+1>bn—|—1] = {

[an, %] if [an, @] is a maximizing set for f

[%, bn] otherwise.

By the preceding lemma (and induction), we see that each interval [a,, b, is
a maximizing set for f on [a,b]. Let ¢ be the number such that {[a,,b,]} — ¢
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and let s € [a,b]. Since [a,,b,] is a maximizing set for f on [a,b], there is a
number s, € [a,, b,] with f(s,) > f(s). Since

an < ¢ < b, and a, < s, < by,

(b—a)
2n
{f(sn)} — f(c). Since f(s,) > f(s), it follows by the inequality theorem

for limits that

we have [s, —c¢| < |b, — an| = , 80 {s,} — c¢. By continuity of f,

fle) =lim{f(sn)} = f(s)-
Hence ¢ is a maximum point for f on [a, b]. This shows that f has a maximum.
Since —f is also a continuous function on [a, b], — f has a maximum on |[a, b|;
i.e., there is a point p € [a, b] such that —f(p) > —f(z) for all x € [a,b]. Then
f(p) < f(z) for all € [a, b], so f has a minimum at p. ||

9.7 Definition (Upper bound.) Let S be a subset of R, let b, B € R. We
say B is an upper bound for S if x < B for all z € S, and we say b is a lower
bound for Sifb<z forallz € S.

9.8 Remark. If S is a bounded subset of R and B is a bound for S, then
B is an upper bound for S and —B is a lower bound for S, since

lt] < B = —B<z<B.

Conversely, if a subset S of R has an upper bound B and a lower bound b,then
S is bounded, and max(|b|, |B|) is a bound for S, since

b<z<B = —max(}b|,B|)< —|b| <b<z<B<|B|<max(|p],|B|).

9.9 Theorem (Boundedness theorem.) Let a,b € R with a < b and let
f:la,b] = R be a continuous function. Then f is bounded on [a,b].

Proof: By the extreme value theorem, there are points p, ¢ € [a, b] such that
f(p) < f(z) < f(q) for all z € [a, b].
Hence f([a, b]) has an upper bound and a lower bound, so f([a, b]) is bounded. ||

9.10 Exercise. Give examples of the functions described below, or explain
why no such function exists. Describe your functions by formulas if you can,
but pictures of graphs will do if a formula seems too complicated.
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a) f:[0,1] = R, f is not bounded.

b) ¢:(0,1) — R, g is continuous, g is not bounded.

)
) g

¢) h:[0,00) — R, h is continuous, A is not bounded.

d) k:]0,00) — R, k is strictly increasing, k is continuous, & is bounded.
)

e) 1:[0,1] — R, [ is continuous, [ is not bounded.

9.2 Intermediate Value Theorem

9.11 Theorem (Intermediate Value Theorem.) Leta,b € R witha < b,
and let f:[a,b] — R be a continuous function. Suppose f(a) < 0 < f(b). Then
there is some point ¢ € (a,b) with f(c) = 0.

Proof: We will construct a binary search sequence [a,, b,] with [ag, by] = [a, b]
such that
flan) <0< f(by,) for all n. (9.12)

Let

[ao, b] = [a,b]
T (] () 2
a'fl e [

+15 Un+1 [an-2|—bn ’ bn] if f (an;—bn) < 0.

This is a binary search sequence satisfying condition (9.12).

Let ¢ be the number such that {[a,,b,]} — c¢. Then {a,} — ¢ and
{bn,} — ¢ (cf theorem 7.87), so by continuity of f, {f(a,)} — f(c) and
{f(bn)} = f(c). Since f(b,) > 0 for all n, it follows by the inequality theorem
that f(c) = lim{f(b,)} > 0, and since f(a,) < 0, we have f(c) = im{ f(a,)}< 0.
Hence, f(c) = 0. ||

9.13 Exercise (Intermediate value theorem.) Let a,b € R with a < b
and let f : [a,b] — R be a continuous function with f(a) < f(b). Let y be a
number in the interval (f(a), f(b)). Show that there is some ¢ € (a,b) with
f(¢) =y. (Use theorem 9.11. Do not reprove it.)

9.14 Notation (z is between a and b.) Let a,b,z € R. I say z is between
a and b if either a <z <borb<z < a.
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9.15 Corollary (Intermediate value theorem.) Let a,b € R with a < b.

Let f:[a,b] — R be a continuous function with f(a) # f(b). Ify is any number
between f(a) and f(b), then there is some ¢ € (a,b) such that f(c) =y. In
particular, if f(a) and f(b) have opposite signs, there is a number ¢ € (a,b)
with f(c) = 0.

Proof: By exercise 9.13, the result holds when f(a) < f(b). If f(a) > f(b), let
g = —f. Then g is continuous on [a, b] and g(a) < g(b), so by exercise 9.13
there is a ¢ € (a, b) with g(c) =0, so —f(c) =0so0 f(c) =0. |

9.16 Example. Let A, B,C, D be real numbers with A # 0, and let
f(z) = Az® + B2* + Cz + D.

We will show that there is a number ¢ € R such that f(c¢) = 0. Suppose, in
order to get a contradiction, that no such number ¢ exists, and let

f(-z) —Az*+ Ba*—-Cz+D

= = for all R.
9(x) f(z) A*+ B2+ C+D O ° ve

(I use the fact that f(z) has no zeros here.) Then

B C D
A+t utwtw Jus

—A4+04+0+0
A4+0+0+0

lim{g(n)}n>1 = lim

It follows that g(n) < 0 for some n, so f(—n) and f(n) have opposite signs for
some n, and g is continuous on [—n, n], so by the intermediate value theorem,
g(c) = 0 for some ¢ € (—n,n), contradicting the assumption that g is never
Zero.

9.17 Exercise. Give examples of the requested functions, or explain why
no such function exists. Describe your functions by formulas if you can, but
pictures of graphs will do if a formula seems too complicated.

a) f:[0,1] = R, f has no maximum.
b) ¢:[0,00) = R, g is continuous, g has no maximum.

c¢) k:[0,00) = R, k is continuous, £ has no maximum or minimum.
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d) 1:(0,1) — R, [ is bounded and continuous, ! has no maximum.

9.18 Exercise. Let f(z) = #® — 3z + 1. Prove that the equation f(z) =0
has at least three solutions in R.

9.19 Exercise. Let I be a continuous function from R to R such that
a) For all z € R, ((F(ac) =0) <= (2*= 1))
b) F(2) > 0.

Prove that F'(4) > 0.

9.20 Note. The intermediate value theorem was proved independently by
Bernhard Bolzano in 1817 [42], and Augustin Cauchy in 1821[23, pp 167-168].
The proof we have given is almost identical with Cauchy’s proof.

The extreme value theorem was proved by Karl Weierstrass circa 1861.



Chapter 10

The Derivative

10.1 Derivatives of Complex Functions

You are familiar with derivatives of functions from R to R, and with the
motivation of the definition of derivative as the slope of the tangent to a
curve. For complex functions, the geometrical motivation is missing, but the
definition is formally the same as the definition for derivatives of real functions.

10.1 Definition (Derivative.) Let f be a complex valued function with
dom(f) C C, let a be a point such that a € dom(f), and a is a limit point of
dom(f). We say f is differentiable at a if the limit

()~ ()
zZ—a zZ—aQ
exists. In this case, we denote this limit by f’(a) and call f'(a) the derivative

of f at a.

By the definition of limit, we can say that f is differentiable at a if
a € dom(f), and a is a limit point of dom(f) and there exists a function
D, f :dom(f) — C such that D,f is continuous at a, and such that

f(z) = f(a)

D.f(z) = P for all z € dom(f)\{a}, (10.2)

and in this case f'(a) is equal to D, f(a).

182
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It is sometimes useful to rephrase condition (10.2) as follows: f is differen-
tiable at a if @ € dom(f), a is a limit point of dom(f), and there is a function
D,f:domf — C such that D, f is continuous at a, and

f(z) = f(a) + (z — a) D, f(2) for all z € dom(f). (10.3)
In this case, f'(a) = D,f(a)-

10.4 Remark. It follows immediately from (10.3) that if f is differentiable
at a, then f is continuous at a.

10.5 Example. Let f: C — C be given by
fiz = 22
and let @ € C. Then for all z # a,
f(z) = fla) _2*—a’

= =z +a.
zZ—a zZ—a

If we define D, f: C — C by

D,f(z) =z+aforall z € C,
then D, f is continuous at a, so f is differentiable at a and
f'(a) =D,f(a) =a+a=2aforallaecC.

We could also write this calculation as

_ 2 2
limM:]imu:limz—i—a:a—}-a:Qa.
zZ2—ra zZ—aQ zZ—a A ) zZ—ra

Hence f is differentiable at ¢ and f'(a) = 2a for all a € C.

1

10.6 Example. Let v(z) = — for z € C\{0} and let « € C\{0}. Then for
z

all z € C\{a}

v(z) —v(a) +-1 a—z 1

z—a z—a za(z—a) za
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Let D,v: C\{0} — C be defined by
1
Dyv(z) = P for all z € C\{0}.

Then D,v is continuous at a, so v is differentiable at a, and

1

v'(a) = Dyv(a) = ~

for all a € C\{0}.

10.7 Warning. The function D, f should not be confused with f’. In the
example above

1 ~1
D,v(z) = Y (2) = -
Also it is not good form to say
Dof(z) = 12 =719 (Zi — (J; @) (10.8)

without specifying the condition “for z # a,” since someone reading (10.8)
would assume D, f is undefined at a.

10.9 Example. Let f(z) = z* for all z € C, and let a € C. Let

D.f(z) = f(z) = f(a) _roa for all z € C\ {a}.

z—a z—a
I claim that D, f does not have a limit at a, and hence f is a nowhere differ-

entiable function.
Let

{antnz = {a+ %}

Then {a,}n>1 and {b,},>1 are sequences in dom(f)\{a} both of which con-
verge to a. For all n € Z>q,

n n

a{bn}nZI = {a-l—i} .
>1 n>1

G
Daflon) = i =1=h
a+i) —q =i
Daf(bn) = —(a+n2_a :%:—17
n n

50 {Dyf(an)}n>1 = 1 and {Dqf(bn)}n>1 — —1, and hence D, f does not have
a limit at a.
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10.10 Exercise. Investigate the following functions for differentiability
at an arbitrary point a € C. Calculate the derivatives of any differentiable
functions.

a) f(z)=Az+B A, B are given complex numbers.
1

(z + )2

c) h(z) = Re(z), i.e. h(z +iy) = x.

b) g(z) = z € C\{—1}.

10.11 Theorem (Sum theorem for differentiable functions.) Let f,g
be complex functions, and suppose f and g are differentiable at a € C. Suppose
a is a limit point of dom(f) N dom(g). Then f + g is differentiable at a and

(f +9)'(a) = f'(a) + ¢'(a).

Proof: Since f, g are differentiable at a, there are functions D, f: dom(f) — C,
D,g:dom(g) — g such that D, f, D,g are continuous at a, and

f(z) = f(a)+ (z—a)D.f(2) for all z € dom(f)
g(z) = gl(a)+ (z — a)D.g(z) for all z € dom(g).
It follows that

(f+9)(2)=(f+9)(a) + (z — a)[Dof(2) + Dog(z)] for all z € dom(f + g)

and D, f + D,g is continuous at a.
We can let D,(f + g) = D,f + D,g and we see f + g is differentiable at a
and

(f +9)(a) = (Daf + Dag)(a) = Daf(a) + Dag(a) = f'(a) + ¢'(a). |

10.12 Theorem. Let f be a complex function and let c € C. If f is differ-
entiable at a, then cf is differentiable at a and (cf)'(a) = c- f'(a).

Proof: The proof is left to you. ||

10.13 Theorem (Chain Rule.) Let f,g be compler functions, and let
a € C. Suppose f is differentiable at a, and g is differentiable at f(a), and that
a is a limit point of dom(go f). Then the composition (go f) is differentiable
at a, and

(go f)(a) =4 (f(a))- f(a).
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Proof: From our hypotheses, there exist functions
D, f:dom(f) —» C, Dy(ayg: dom(g) — C
such that D, f is continuous at a, Dy, g is continuous at f(a) and

f(z) = f(a)+ (z—a)D,f(z) for all z € dom(f) (10.14)
o) = (@) + (2 — f(@) Dywg(z) for all > € dom(g). (10.15)

If z € dom(go f), then f(z) € dom(g), so we can replace z in (10.15) by f(z)
to get

9(f(2)) =g (f(a)) + (f(2) = f(a)) D@9 (f(2)) for all z € dom(go f).
Using (10.14) to rewrite f(z) — f(a), we get

(90 f)(z) = (g0 f)(a) + (2 = a)Daf(2)(Dsa)g © f)(2) for all z € dom(g o f).
Hence we have
D,(go f) = Daf - ((Df(a)g) © f)
and D,(g o f) is continuous at a. Hence g o f is differentiable at a and
(9o f)'(a) = Dalgo f)(a) = Daf(a)Dy@g (f(a))
= f'(a)- g (f(a). |

10.16 Theorem (Reciprocal rule.) Let f be a complex function, and let
a € dom(f). If f is differentiable at a and f(a) # 0, then 1 is differentiable

at @ and G)I(a) - (_fj(t ;()0;)2. f
1

Proof: If v(z) = — for all z € C\{0}, we saw above that v is differentiable and
2

1
v'(2) = ——- Let f be a complex function, and let a € C. Suppose f is
z

1
differentiable at a, and f(a) # 0. Then (vo f)(z) = 7 By the chain rule

v o f is differentiable at a, and
1
f(a)?

(vo f)(a) =2 (f(a)) - f'(a) = =3 f'(a). |
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10.17 Exercise (Product rule.) Let f,g be complex functions. Sup-
pose f and g are both differentiable at a, and that a is a limit point of
dom(f) Ndom(g). Show that fg is differentiable at a, and that

(f9)'(a) = f'(a)g(a) + f(a)g'(a).

10.18 Exercise (Power rule.) Let f be a complex function, and suppose
that f is differentiable at a € C. Show that f" is differentiable at a for all
n e ZZI and

(f")(a) = n(f(a)""" f'(a).

(Use induction.)

10.19 Exercise (Power rule.) Let f be a complex function. suppose that
f is differentiable at a € C, and f(a) # 0. Show that f™ is differentiable at a
for all n € Z™, and that

(f")(a) =n(f(a)" " f'(a).

forallneZ.

10.20 Exercise (Quotient rule.) Let f, g be complex functions and let
a € C. Suppose f and g are differentiable at ¢ and g(a) # 0, and a is a limit

point of dom <i> Show that / is differentiable at a and
g g

(f)' (@) = 20I'(@) ~ £(@)'(a)

10.2 Differentiable Functions on R

10.21 Warning. By the definition of differentiablity given in Math 111,
the domain of a function was required to contain some interval (a —¢&,a+¢) in
order for the function be differentiable at a. In definition 10.1 this condition
has been replaced by requiring a to be a limit point of the domain of the
function. Now a function whose domain is a closed interval [a,b] may be
differentiable at a and/or b.

10.22 Definition (Critical point.) Let f be a complex function, and let
a € C. If f is differentiable at a and f'(a) = 0, we call a a critical point for f.
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10.23 Theorem (Critical Point Theorem.) Let f:dom(f) — R be a
function. Suppose f has a mazimum at some point ¢ € dom(f), and that
dom(f) contains an interval (c —e,c+¢) where e € R, If f is differentiable
at ¢, then f'(¢) = 0. The theorem also holds if we replace “mazimum” by
“minimum.”

Proof: Suppose f has a maximum at c,

o) — 1 F@ = 7€)

Tr—C T —C

flan)=f(c) 0 f(bg)—f(c) <0
= e 2

anp—cC

A, ¢ b,
Define two sequences {a,}, {b,} in (¢ —¢,c+¢€) by

foralln e N

a, = Cc—

(n+2)

b, = c+ for all n € N.

3
(n+2)
Clearly {a,} — c and {b,} — ¢, and f(a,) < f(c) and f(b,) < f(c) for all
n € N. We have

flan) = f(e) _ flan) = F(o)

> 0.
n =€ o (VHE-2)

By the inequality theorem,

Also,
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=)
b, —c

Since 0 < f’(¢) < 0, we conclude that f'(c) = 0. The proof for minimum

points is left to you. ||

10.24 Theorem (Rolle’s Theorem.) Let a,b € R with a < b and let
f:la,b] — R be a function that is continuous on [a,b] and differentiable on
(a,b). Suppose that f(a) = f(b). Then there is a number ¢ € (a,b) such that
f(e) =0
Proof: We know from the extreme value theorem that f has a maximum
at some point p € [a,b]. If p € (a,b), then the critical point theorem says
f'(p) = 0, and we are finished. Suppose p € {a,b}. We know there is a point
q € [a,b] such that f has a minimum at ¢q. If ¢ € (a,b) we get f'(¢) = 0 by
the critical point theorem, so suppose g € {a,b}. Then since f(a) = f(b) and
p € {a,b},q € {a,b}, we have f(p) = f(¢), and it follows that f is a constant
function on [a, b], and in this case f'(c¢) = 0 for all ¢ € (a,b). ||

10.25 Theorem (Mean Value Theorem.) Let a,b € R with a < b, and
let f be a function from [a,b] to R such that f is continuous on |a,b] and
differentiable on (a,b). Then there is a point ¢ € (a,b) such that

(b, £ (b))
y = f(z)
= L(z)

(a, f(a))
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This theorem says that the tangent to the graph of f at some point (¢, f(c))
is parallel to the chord joining (a, f(a)) to (b, f(b)).
Proof: Let

(x —a) for all z € R,
so the equation of the line joining (a, f(a)) to (b, f(b)) is y = L(x), and
L'(z) = w for all z € R.

Let
A(z) = f(zx) — L(x) for all z € [a, b].

Then

Ala) = fla) = L(a) = f(a) - f(a) =
Ab) = f(b) = L(b) = f(b) — (b)=

and A is continuous on [a, b] and differentiable on (a,b). By Rolle’s theorem,
there is some ¢ € (a,b) such that A’(c) = 0; i.e., f'(c) — L'(c) = 0; i.e.,

() = () = 1021

10.26 Remark. The mean value theorem does not hold for complex valued
functions. Let
F(t)=(1+it)* for all t € [-1,1].

Then
F(£1) = (1 44)* = (£2i)? = -4,
" P) - F(-1)
1—(=1) '
But

F'(t) = 4i(1 +it)?,
so F'(t) =0 <= t = —i, and there is no point in ¢ € (—1,1) with F'(¢) = 0.
10.27 Definition (Interior point.) Let J be an interval in R. A number

a € J is an interior point of J if and only if a is not an end point of J. The set
of all interior points of J is called the interior of J and is denoted by int(J).
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10.28 Examples. If a < b, then

int([a, b)) = int([a, b]) = int((a, b)) = (a,b),

int([a, 00)) = int((a,0)) = (a,00).

If J is an interval, and s, ¢ are points in J with s < ¢, then every point in (s, ?)
is in the interior of J.

10.29 Theorem. Let J be an interval in R, and let f: J — R be a contin-
uous function on J. Then:

a) If f'(x) > 0 for all x € int(J), then f is increasing on J.
b) If f'(x) > 0 for all x € int(J), then f is strictly increasing on J.

() ()

() ()
¢) If f/(z) < 0 for all z € int(J), then f is decreasing on J.
d) If f'(z) < 0 for all x € int(J), then f is strictly decreasing on J.
() ()

e) If f'(x) =0 for all x € int(J), then f is constant on J.

Proof: All five statements have similar proofs. I’ll prove only part a).

Suppose f'(z) > 0 for all z € int(J). Then for all s,t € J with s < t we
have f is continuous on [s, ] and differentiable on (s, ), so by the mean value
theorem

s<t = wzf(c) for some ¢ € (s,t) C int(J)
= WZOandt—s>0

= f(t)—f(s)>0
= f(t) > f(s).

Hence, f is increasing on .J.

10.30 Exercise. Prove part e) of the previous theorem; i.e., show that if J
is an interval in R and f:J — R is continuous and satisfies f'(¢) = 0 for all
t € int(J), then f is constant on J. [It is sufficient to show that f(s) = f(¢)
for all s,t € J.]
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10.31 Exercise. For each assertion below, either prove that the assertion
is true for all functions f, or give a function f for which the assertion is false.
(A proof may consist of quoting a theorem.)

a) If f is differentiable on (—1,1) and f is strictly increasing on (—1,1),
then f'(t) > 0 for all t € (—1,1).

b) If f is differentiable on [—1,1], and f has a maximum at t, € [—1,1],
then fl(to) =0.

¢) If f is continuous on [—1,1] and f is differentiable on (—1,1), and
f'(t) >0 for all t € (—1,1), then f is strictly increasing on [—1,1].

10.32 Theorem (Restriction theorem) Let S be a subset of C, let
f:8—=C, and let a € S be a point such that f is differentiable at a. Let T
be a subset of S containing a, and let f|r : T — C be the restriction of f to
T, i.e.

flr(z) = f(2) for all z € T.

If a is a limit point of T, then f|r is differentiable at a, and
flr(a) = f'(a).

Proof: Let {z,} be any sequence in 7'\ {a} such that {z,} — a. Then {z,} is
a sequence in S\ {a}, and hence

{f@ﬂ—f@%_+fm)

Zp — G

It follows that

{f|T(zn) — fIT(a)} _ {M} = f'(a).

Zn — Q Zn — Q

I’ve shown that

lim flr(z) = flr(a)

ligg NI )

10.33 Definition (Path, line segment.) If a,b € C, then the path joining
a to b is the function Ag: [0,1] — C

Aap:t = a+t(b—a) for all t € [0,1]

and the set
Aab = Aap([0,1]) ={a+t(b—a):0 <t <1}

is called the line segment joining a to b.
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*

10.34 Example. We showed in example 10.9 that the function conj : z — 2z
is a nowhere differentiable function on C. I will show that for all a, b in C with
a # b, the restriction conj|s,, of conj to the line segment A is differentiable,

and
b* —a*

conj|s,, (2) = for all z € Ag.

Note that all points of A, are limit points of Agy. If 2 € Ay, then for some
real number ¢
z=a+tb—a) (10.35)

and
z¥=a" +t(b* —a*). (10.36)

If we solve equation (10.35) for ¢ we get

,_2—a
Cb—a
By using this value for ¢ in equation (10.36) we get

b* — a*
b—a

Let Hy, : C — C be defined by

2 =a" +

(z—a) for all z € Ag.

b* — a*

H =a"
ab(z) a + b—a

(z—a) for all z € C.

* *

b* —a

Then H,, is differentiable, and H'(z) = for all z € C. We have

—a
Hab|Aab = Conj |Aab’

so by the restriction theorem

) b* —a*
Con-]|Aabl(Z) = H|Aab,(z) = b

for all z € Ag,.

10.37 Exercise. Let C(0,1) denote the unit circle in C. Show that
conj|c(0,1) is differentiable, and that

conjo,y (2) = —(2*)* for all z € C(0,1).
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In general, the real and imaginary parts of a differentiable function are not
differentiable.

10.38 Example. If f(2) = z for all z € C, then f is differentiable
and f'(z) = 1. However, Ref is nowhere differentiable. In fact, if a € C,
Re(z) — Re(2)

1 i
has no limit at a. To see this, let a, =a+ —, b, = a + L for

z—a n n

all n € Z>y. Then {a,} — a, {b,} — a, and

Re(an) — Re(a) _ Re(a + +) — Re(a)

1 =1
a, — a a+ . —a

and
Re(b,) —Re(a) _ Re(a) — Re(a)
b, —a  a+ % —a

Re(an) — Re(a)} and {Re(bn) — Re(a)

Hence, the sequences have
ap, — b, —a o1

Re(z) — Re(a)

Z—Q

=0.

does not exist.

different limits, so lim
zZ—a

However, we do have the following theorem.

10.39 Theorem. Let J be an interval in R and let f: J — C be a function
differentiable at a point a € J. Write f(t) = u(t) + iv(t) where u,v are real
valued. Then u and v are differentiable at a, and f'(a) = u'(a) + V' (a).

Proof: Since f is differentiable at a there is a function D,f on J such that
D, f is continuous at a and

f@) = f(a)+ (t —a)D,f(t) for all t € J.
If r € R and ¢ € C, then Re(rc) = rRe(c) and Im(rc) = rIm(c), so
(Re(f))(t) = (Re(f))(a) + (t — a)(Re(D,f))(t) for all t € J (10.40)
and
(Im(f))(t) = (Im(f))(a) + (¢t — a)(Im(D, f))(¢) for all t € J. (10.41)

Since D, f is continuous at a, Re(D,f) and Im(D, f) are continuous at a, so
equations (10.40) and (10.41) show that Ref and Imf are differentiable and

(Ref)'(a) = (Re(Daf(a)) =Re(f'(a))
(Imf)'(a) = (Im(Dqf(a))) =Im(f'(a)). ||



10.2. DIFFERENTIABLE FUNCTIONS ON R 195

10.42 Example. Let a € R, and let f(t) = (2t + ia)® for all t € R. Then
f is differentiable and (by the chain rule),

f'(t) = 3(2t+ia)?-2
= 6[(4t* — a?) + 4diat]
= (24t — 6a*) + 24iat.

We have by direct calculation,

ft) = 8t +12iat® — 6ta® — ia®
(8t* — 6ta®) + (12at* — a°)i,

SO
f(t) = (241 — 6a?) + (24at)i.

(This example just illustrates that the theorem is true in a special case.)

10.43 Theorem. Let f be a complex function and let a,b € C, and suppose
dom(f) contains the line segment Ay, and that f'(z) = 0 for all z € Ag.
Then f is constant on Agp; i.e., f(2) = f(a) for all z € Ag.

Proof: Define a function F:[0,1] — C by

F(t) = fQAa(t) = f(a+tb—a)).

By the chain rule, Fis differentiable on [0, 1] and F'(¢) = f' (a + t(b — a))-(b—a).
Since f'(z) = 0 for all z € Ag([0,1]), we have F'(t) = 0 for all ¢ € [0, 1]. Hence

(Re(F))'(t) = 0 and (Im(F))"(t) = 0 for all ¢ € [0, 1]

and hence
Re(F') and Im(F') are constant on [0, 1].

If Re(F) = p and Im(F') = ¢, then F(t) = p+iq for all t € [0,1]. ||
10.44 Exercise. Let D(a,¢) be a disc in C.
a) Show that if b € D(a,¢) then the segment Ay is a subset of D(a,¢).

b) Let f: D(a,e) — C be a function such that f'(z) = 0 for all z € D(q,¢).
Show that f is constant on D(a,¢).
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10.3 Trigonometric Functions

10.45 Example. Suppose that there are real valued functions S,C on R
such that

S =, S(0) =0,

You have seen such functions in your previous calculus course. Let H = S2+C?.
Then
H' =288 +2CC"=25C —2CS =0.

Hence, H is constant on R, and since H(0) = S?(0) + C?(0) = 0+ 1, we have
S?+C?=1onR.
In particular,
|S(t)] < 1and |C(t)] <1 forallteR.
Let K(t) = (S(t) + S(—t))* + (C(t) — C(~t))>. By the power rule and

chain rule,

K'(t)

= 2(5(1) +5(=1)) (C@t) - C(=1))
= 0.
Hence K is constant and since K(0) = 0, we conclude that K (¢) = 0 for all

t. Since a sum of squares in R is zero only when each summand is zero, we
conclude that

S(—=t) = —=S(t) for all t € R,
t) = C(t) forallt € R.

Let
Fo(t) =—C(t) +1for all t € R.

Then Fy(t) > 0 for all ¢ € R and Fy(0) = 0. I will now construct a sequence
{F,} of functions on R such that F,,(0) = 0 for alln € N, and F}, ,(t) = F,(t)
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for all ¢t € R. I have

B(t) = =5@)+1,
t2
F(t) = C(t)+ o~ b
ot
Rl = S0+ 5o
t4 2
B = 0+ 5L,
P
It should be clear how this pattern continues. Since F|(t) = Fy(t) > 0, F}
is increasing on [0,00) and since F;(0) = 0, Fy(¢) > 0 for ¢t € [0,00). Since
(0

Fj(t) = Fi(t) > 0 on [0,00), Fy is increasing on [0,00) and since F»(0) =
Fy(t) > 0 for t € [0, 00).

This argument continues (I'll omit the inductions), and I conclude that
F,(t) > 0 for all t € [0,00) and all n € N. Now

2

3

—t

t2 t4
t3 t5
Fift) > 0 and Fif) >0 = 0 < S() 1+ 5 < b
_ 46 - t2 . t4
For each n € N, t € C, define
_ (_1)nt2n
) = oy
1 nt2n+1
sty =
(2n+1)!
n n (_1)jt2j
Cnt) = ci(t) = —

(21 + 1)
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The equations above suggest that for all n € N, ¢ € [0, 00),
C(t) = Cu(t)] < lensa (D) (10.46)

and
15(t) = Su(t)] < |sn41(2)] (10.47)

I will not write down the induction proof for this because I believe that it
is clear from the examples how the proof goes, but the notation becomes
complicated.

Since C(t) = C(-t), Cn(t) = C,(—t) and ¢,(t) = c,(—t), the relation
(10.46) actually holds for all ¢ € R (not just for ¢ € [0,00)) and similarly
relation (10.47) holds for all t € R. From (10.46) and (10.47), we see that if
{cn(t)} is a null sequence, then the sequence {C,(t)} converges to C(t), and
if {s,(t)} is a null sequence, then {S,(¢)} converges to S(t).

We will show later that both sequences {C,(2)} and {S,(z)} converge for
all complex numbers z, and we will define

cos(z) = lim{C,(z)} = lim {i M} (10.48)

sin(z) = lim{S,(2)} =lim {Z M} (10.49)

(21 1)

for all z € C. The discussion above is supposed to convince you that for real
z this definition agrees with whatever definition of sine and cosine you are
familiar with. The figures show graphs of C), and S,, for small n.
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3.
ol

i

Sl

Pl

.3l

Graphs of the polynomials S,, for 1 < n <10

LA

Graphs of the polynomials C, for 1 <n < 10

[=]

10.50 Exercise. Show that {c,(¢)} and {s,(¢)} are null sequences for all
complex ¢ with [¢| < 1.

10.51 Exercise. a) Using calculator arithmetic, calculate the limits of

1 1
{C’n (ﬁ)} and {Sn (E)} accurate to 8 decimals. Compare your results
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1 1
with your calculator’s value of sin (E) and cos (E) [Be sure to use radian
mode.]

b) Calculate cos(z) to 3 or 4 decimals accuracy. Note that cos(i) is real.

So Si

SQ 54

Polynomial Approximations to sine Function
—1.55 <x <155 —155<y<1.55

The figure shows graphical representations for Sy, Sy, Sz, and S;. Note
that Sy is the identity function.
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10.52 Entertainment. Show that for all a,z € R
Cla+z)=C(a)C(x) — S(a)S(x)

and

S(a+z) = S(a)C(z) + C(a)S(z).

Use a trick similar to the trick used to show that S(—z) = —S(z) and
C(—z) = C(x).

10.53 Entertainment. By using the definitions (10.48) and (10.49), show
that

a) For all a € R, cos(ia) is real, and cos(ia) > 1.

b) For all a € R, sin(ia) is pure imaginary, and sin(ia) = 0 if and only if
a=0.

¢) Assuming that the identity

sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
is valid for all complex numbers z and w, show that if « € R\ {0} then sin

maps the horizontal line y = a to the ellipse having the equation

.’L’2 y2

=1.
‘cos(ia)? | [sin(ia)

d) Describe where sin maps vertical lines. (Assume that the identity
sin®(z) + cos?(z) = 1 holds for all z € C.)

10.54 Note. Rolle’s theorem is named after Michel Rolle (1652-1719). An
English translation of Rolle’s original statement and proof can be found in [46,
pages 253-260]. It takes a considerable effort to see any relation between what
Rolle says, and what our form of his theorem says.

The series representations for sine and cosine (10.48) and (10.49) are usu-
ally credited to Newton, who discovered them some time around 1669. How-
ever, they were known in India centuries before this. Several sixteenth century
Indian writers quote the formulas and attribute them to Madhava of Sangam-
agramma (c. 1340-1425)[30, p 294].

The method used for finding the series for sine and cosine appears in the
1941 book What is Mathematics” by Courant and Robbins[17, page 474]. 1
expect that the method was well known at that time.



Chapter 11

Infinite Series

11.1 Infinite Series

11.1 Definition (Series operator.) If f is a complex sequence, we define
a new sequence Y f by

n

O_NHn)=> f@H) foralln e N

=0
or

Y Af(n)} = {Zf )} for all n € N,

We use variations, such as

Z{f( }n>1 {Z f }n>1

Y is actually a function that maps complex sequences to complex sequences.
We call Y f the series corresponding to f.

11.2 Remark. If f, g are complex sequences and ¢ € C, then

YU+ =>2f+> 9

and

Yo(ef) =3 ),

202
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since for all n € N,

(S +0) ) = Y(F+00) = £6)+90)

- z 6) + z a() = (X Hn) + (X 9)(n)

and

(Seh) ) = SehHl) =D e fG) =X F0)

= ¢ (XZHm) = (- X Nn).

11.3 Examples. If {r"} is a geometric sequence, then Y{r"} = {3°7_, 7}

th( l)n
o )
then Y {c,(t)} = {Cy(t)} is the sequence for cos(t) that we studied in the last
chapter.

is a sequence we have been calling a geometric series. If {c, ()} =

11.4 Definition (Summable sequence.) A complex sequence {a,} is
summable if and only if the series Y {a,} is convergent If {a,} is summable,

we denote lim(3"{a,}) by Z an. We call Z a, the sum of the series Y {a,}.

n=0 n=0

11.5 Example. Ifr € C and |r| < 1, then Z r" = hm{z ri} =
n=0

11.6 Example (Harmonic series.) The series

o) {55

is called the harmonic series, and is denoted by {H,},>1. Thus
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1
We will show that {H,},>; diverges; i.e., the sequence {—} is not
- nJn>1

summable. For all n > 1, we have

1 1 1 1 1 1
e T B S R g
. <1+1 +1+1 1+1+1+ N 1 +1
= \2 2 2 4 46 6 2 o
= 1+2+2+2+ +2
2 2 4 6 on
= 1+(1+1+ +1>
2 2 n
1
= - +H,.
5+

1
From the relation H,, > 3 + H,, we have

1 1
Hy, > —-+H =-+1
2 = 2+ 1 2+
H, > 1+H >2+1
4 = 92 2_2
Hgy > l-l-H >3+1
8 2 3 125
and (by induction),
Hyn > 2+ 1 for all n € Zy:.

1
Hence, {H,},>1 is not bounded, and thus {H,} diverges; i.e., {—} is not
N nJn>1

summable.

11.7 Theorem (Sum theorem for series.) Let f, g be summable sequences
and let c € C. Then f+ g and cf are summable, and

f:(]wg)(n) - if(nHig(n)
iocf(n) - cijjoﬂm

If f is not summable, and c # 0, then cf is not summable.
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Proof: The proof is left to you.

11.8 Exercise. Let f,g be summable sequences. Show that f + ¢ is
summable and that

o0

i)f+g Z +gg

11.9 Example. The product of two summable sequences is not necessarily
summable. If

b 1\F \F\F \F
- ) ) 27 2: 37 37 47 47
n>1
1 1 1
Zf:{:l’()i\/;?(]?\/;aoa\/;aoa"'}
n>1

This is a null sequence, so f is summable and Y f(n) = 0. However,
n=1

pofia Ll )
) ’2,2’373)4,4’ n21’

0 (Z(ﬂ)) (2n) = Qi% = 2H,. Thus Y (f?) is unbounded and hence f2 is
=1

then

not summapble.

11.10 Theorem. Ewvery summable sequence is a null sequence. [The con-
verse is not true. The harmonic series provides a counterexample.]

Proof: Let f be a summable sequence. Then {Z f(4)} converges to a limit

7=0
n+1
L, and by the translation theorem {>_ f(j)} — L also. Hence
7=0

n+1

{Zf )} - {Zf )} = L—-L=0;

(f(n+1)} =0

and it follows that f is a null sequence. ||
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11.2 Convergence Tests

In this section we prove a number of theorems about convergence of series of
real numbers. Later we will show how to use these results to study convergence
of complex sequences.

11.11 Theorem (Comparison test for series.) Let f, g be two sequences
of non-negative numbers. Suppose that there is a number N € N such that

f(n) < g(n) for alln € Zsy.

Then
if g is summable, then f is summable,

and
if [ is not summable, then g is not summable.

Proof: Note that the two statements in the conclusion are equivalent, so it is
sufficient to prove the first.

Suppose that g is summable. Then " g converges, so Y g is bounded —
say (X g)(n) < B for all n € N. Then for all n > N +1,

n

> F0G)

if(j) +
> 1)+ 3 00) € 3 £G) + B

YofG) =

IA

;)f(j) + > 9()

j=N+1

<

7=0
Since for n < N we have

n N

IROEDNOESIWHES:S

j=0 7=0

N

we see that 3 f is bounded by > f(j)+ B. Also ¥ f is increasing, since
=0

(S Hn+1) = (S F)n) + f(n+1) > 5 f(n). Hence X f is bounded and

increasing, and hence ) f converges; i.e., f is summable. ||
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11.12 Examples. Since

1 1
%25>0f0r311n6221
1 1
and ) {ﬁ} . diverges, it follows that »_ {%} also diverges. Since
n> n>1

t'ﬂ
> {t"™} converges for 0 <t < 1, — ¢ also converges for 0 <t < 1.
g ol

In order to use the comparison test, we need to have some standard series
to compare other series with. The next theorem will provide a large family of
standard series.

1
11.13 Theorem. Let p € Q. Then {ﬁ} 1s summable if p > 1, and s
n>1
not summable if p < 1.

1
Proof: Let f,(n) = - for n € Zsy. Then for all n € Z», and all p > 0,

(pr)(n) < (pr)(Qn—{—l)

11 111 1 1
TR TR TR +(2n) (2n+1)
S (A A S I
= » o g gp (2n)r " (2n)P
= 1+2<1+1+ - )

2 4qp (2n)p
= 1+3(1+1+ +i)

o \1p ' 20 np
= 14270 fi)(

Hence,
(1-2"7) (X)) <
If p>1,then 1 —p < 0, so 2! < 1 and 1 — 2'7P? is positive. Hence
O fp)(n) < ﬁ; i.e., the sequence Y f, is bounded. It is also increasing,
so it converges.
If p < 1, then 1 > l, so by using the comparison test with the harmonic

series, f, is not summable. ||
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11.14 Remark. For p > 1, the proof of the previous theorem shows that

Hence, we get

* 1 1
>le Ll oo
—n? " 1-2"1
and o 1 . o
— < = —=1.1428 ---.
nz::ln4_1—2_3 7

9] 1 2
Y 5 =—=16449---
n:ln
and
[es) 1 4
> 5 =o-=10823---.
n:ln
11.15 E 1 { 1 } i ble, si
. xXamples. —_— = 1S Summable, Since
P n?+nl/2) 5, ’
1 1
0< 5——75 < — forallneZy

“n24nl2 T n

and {i} is summable.

n2

is not summable since

{1 +nl/? }n21

1 > ! _ ! —1 for all Z
T+ nil2 = pife gz g gz OF AN E L

1
and {—} is not summable.
ni/2 1

3 4 1
11.16 Example. Letw = —+ —i,andlet z € D(0,1). Then { ———

5 5 n?lz —w"| ),
is summable. -
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Proof: By the reverse triangle inequality, we have for all n € Z>;
|z —w"| > |w"| —|z| =1— 2] >0

SO
1 1
< < f Ilné&€Zs.
w2z —wr| = n2(1—z) T

1
Since {c —2} is a summable sequence for all ¢ € C, it follows from the
n >1

comparison test that { is summable. ||

1
n?|z — w"| o1

(99. 99)

11.17 Example. Let f(n) = for all n € N. Then

(99.99)™"  (99.99) - (99.99)"  99.99

ft D=0 = . el I
If n > 100, then n + 1 > 101, so
flnr 1) = 200 () < 2P ()
Hence,
faoy < (352) £aoo)
ra02) < (29 o) < (22 00
fam) < (7)) f(102)s(%)3f(100)

Hence, (by induction)

f(100+n) <

()100)
- (or)

n+100 100
(o) 700

101
(99 99) 100+n
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101
99.99

99.99

100 J
where C' = ( ) f(100); ie., f(j) <C (W) for all j > 100. Since

99.99

J
W) converges, it follows from the comparison

n
the geometric series Z (
Jj=0

" (99.99)7
test that Z( . ) converges also.
j=0 J
11.18 Exercise. Determine whether or not the sequences below are
summable:
(a) {(=1)"}

(d) {n4n+ 1)1
(€) {1 n i ]-}nZl
ol
ofin)

11.19 Exercise. Give examples of the following, or explain why no such
examples exist.

a) Two real sequences f and g such that f and g are not summable, but
f + ¢ is summable.

b) Two real sequences f and g such that f and g are summable, but f + ¢
is not summable.
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¢) Two real sequences f and g such that f(n) < g(n) for alln € N, and ¢
is summable but f is not summable.

11.20 Theorem (Limit comparison test.) Let f,g be sequences of pos-

itive numbers. Suppose that = converges to a non-zero limit L. Then f s

summable if and only if g is summable.

Proof: We know that L > 0. Let N = N;_; be a precision function for i — L.
9 g
Then

ERR
-2

foralln > N (g),

i.e.,

L _f(n) 3L
2

S—S—foralanN(é).
2 2

3L 3L
If ¢ is summable, then 59 is summable, and since f(n) < 7g(n) for all
L
n>N (5), it follows from the comparison test that f is summable. If g is

2
not summable, then since g(n) < 2f(n) for all n > N(3) it follows that ff

is not summable, and hence f is not summable. ||

n?>+5n+1
6n3+3n—2

n?>+5n+1

11.21 Example. [s{——
6n3 + 3n — 2

} summable? Let a,, =
n>1

- 2
1
Note that a,, > 0 for all n € Z~,. For large n, a, is “like” o —,s0I'll
= 6n3  6n

1 1
compare this series with {—} . Let b, = — for all n € Z>;. Then
nJnp>1 n -

an n+5n?+n  14+24+ %

by  6m3+3n—-2 6+ 35— 2’

n

tn 1+2+ % 14040 1
{—} =\rL3 _ 2 — oo -a70
boJost \6+5-3%) ., "6+0+0 6

SO

n?>+5n+1
6n3 4+ 3n — 2

1
Since {bp}n>1 = {—} is not summable, {
- nJn>1

summable.

} is also not
n>1
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11.22 Exercise. Determine whether or not the sequences below are
summable.

) n?+3n+2
a R .
nt+n+1 n>1

2
b) { 3n +n } '
n+n+1 n>1
11.23 Theorem (Ratio test.) Let {a,} be a sequence of positive numbers.
Suppose the {a"+1} converges, and lim{a"H} = R. Then, if R < 1, {a,} is

n a”I’L

summable. If R > 1, {a,} is not summable. (If R =1, the theorem makes no
assertion.)

Proof: Suppose {an+1} — R.
a

n

Case 1: R < 1. Let N be a precision function for {G"H — R}. Then for all

Qn
n € N,
2 an 2
n 1-R R+1
— Dt Ry _hrl
an, 2 2
1— 1
WriteMzN(TR> and S = _;R,SO(0<S<1). Then

n>M = a,11 <S5 -ay,

SO
amr S SOGM
ap+1 < Say
amiz < S-apy1 < Say
aris < S anye < SPan,

and (by an induction argument which I omit)

av+k < Skay for all k € N,
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or
AN +k S SM+k(CLMS_M) for all k € N,

or
an < S™(apS M) for all n € Zs .

Since {S™} is a summable geometric series, it follows from the comparison
test that {a,} is also summable.

Case 2: (R > 1). As before, let N be a precision function for {GZH - R}.
Then for all n € N, "

- 1
nz]\f(ﬂ) a”+1_R‘<R_
2 Qap 2
R—1 R+1
— a”+1>R—< )z LR
an 2 2
- Ap+1 > Q-
Hence {a,} is not a null sequence. So {a,} is not summable. ||
11.24 Warning. The ratio test does not say that if Int1 < 1 for all n,
a’n
1
then {a,} is summable. If a,, = — for n € Z>, then i1 _ _ 1 < 1 for all
n = an n+1

Ap+1
an

n but {a,} is not summable. (In this case, lim{ } = 1, and the ratio test

does not apply.)
1 bn—|—1 ’I'L2
Ifo, = s for all n € Z>, then = CESIE for all n and hence

bn
b
lim{ ZH} =1, and {b,} is summable. These examples show that when
lim { an+1} =1 the ratio test gives no useful information.
a'n
11.25 Remark. If, in applying the ratio test, you find that Gnt1 > 1 for

ip e a
all large n, you can conclude that Y {a,} diverges (even if hm{ n+1} does
Qp
not exist), since this condition shows that {a,} is not a null sequence.
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11.26 Example. Let ¢t be a positive number and let a, = % We
apply the ratio test to the series > {a,}. '
1 (3(n+ 1))t (n!)?
an [(n+ D)3 (3n)ltn
Note that
Bn+1) = Bn+3)!'=Bn+3)Bn+2)!=Bn+3)3n+2)(3n+1)!
(3n+3)(3n +2)(3n + 1)(3n).
Hence

Unst (3n)!t - (3n + 3)(3n+ 2)(3n + 1) ( n! )3
an, (3n)! (n+1)!

_ t(3n+3> <3n+2> <3n—1—1>
N n+1 n+1 n+1
3+2) (3+12
1+1/\1+1
From this we see that { n+1} — 27t. The ratio test says that if 27¢ < 1 (i.e.,

(3n)'t"
(n!)3

ift < 2—17), then { then the sequence is not

summable.

} is summable, and if ¢ > 27,

1 1
Can we figure out what happens in the case ¢t = 2—7? For t = 77 our

formula above gives us

an+1:(1+%)(1+%):1+%+9%2>(1"‘;): n
o (1+3) (1+5) (1+%)2 (1+%)2 n+1
ie., appq > nL—i-la" for n > 1. Thus,
1
ay > 5 @
as > ga >g-1a:1a
3 2 3%.223 1 1
ay > 2%2%'101:1&1
as > éa >é1 _1
5 = 54_5 a1 = —aq
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and (by induction),
ap > lal for n > 1.
n
Since {ﬂ} is not summable, it follows that {a,} is not summable for
) n>1
= 5=

] 24n
11.27 Example. Let b, = (7(121’})' for all n € N. I'll apply ratio test to
>{b,}. For allmn € N,

byt (n+ 1)1247+1  (2n)!
by (2n+2)  (n)247
(n+1)2-4  2m+2 1+1
(2n+1)(2n+2) 2n+1 1+2
Hence bzﬂ } — 1 and the ratio test does not apply. But since QZ i ? > 1 for

all n, I conclude that {b,} is an increasing sequence and hence Y {b, } diverges.

11.28 Exercise. For each of the series below, determine for which z € [0, 00)
the series converges.

)x ()

nl

)%
0% )

AEDN

e) X{na" tn>1
f) >{nlz"}

N2.,.n
g) > { (T(L; ; } [For this series, there is one z € [0, 00) for which you don’t
n)!

need to answer the question.]
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11.3 Alternating Series

11.29 Definition (Alternating series.) Series of the form > {(-1)"a,}
or Y {(-=1)"*'a,} where a; > 0 for all j are called alternating series.

11.30 Theorem (Alternating series test.) Let f be a decreasing sequence
of positive numbers such that {f(n)} — 0. Then {(—=1)"f(n)} is summable.
Moreover,

T_nzo (—1) () < i(—l)ﬁf(j) < Zn%(—l)jf(j)
and . o
2 -1776) = X -1YF0) < Fn+

for all m,n € N.

Proof: Let S, = Y (—=1)/f(j). For alln € N,

j=0
So(n+1) = Sont2 = Son — f(2n+ 1) + f(2n +2) < 5oy

and
Son+1)+1 = Sant1 + f(2n+2) — f(2n + 3) > Sont1.

Thus {Ss,} is decreasing and {Ss,1} is increasing. Also, for all n € N,
S1 < Sony1 = Son — f(2n +1) < Sop

so {Ss,,} is bounded below by S;, and
Sont1 = Sam — f(2n+1) < 8o < 5o

so {San+1} is bounded above by Sj.
It follows that there exist real numbers L and M such that

{Son} — L and Sy, > L for allm € N
{SQVH—I} — M and SQn—H < M for all n € N.

Now

L-M = ]1m{5'2n} — lim{52n+1} = hrn{Sgn - SQn—H}
= lim{f(2n+1)} =0,
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so L =M.
It follows from the next lemma that {S,} — L; i.e.,

M=L=1m§5, = i(—l)"f(n)

n=0
Since for all n € N
Sont+1 < L < Sop,
we have
|L — Son| < Sop, — Sont1 = f(2n+1)

and since

Sont1 <L < Songo
|L — Sont1] < Sony2 — Sont1 = f(2n+2).

n

Thus, in all cases, |L — S,| < f(n + 1); ie, Y (—1)f(j) approximates

j=0
> (—1)/f(j) with an error of no more than f(n+1). |
=0

11.31 Lemma. Let {a,} be a real sequence and let L € R. Suppose
{agn} — L and {azni1} — L. Then {a,} — L.

Proof: Let N be a precision function for {as, — L} and let M be a precision
function for {ag,41 — L}. For all ¢ € R*, define

N, j(e) =max (2N(g),2M(e) +1).

I claim N,_; is a precision function for a — I~/, and hence ¢ — L. Let n € N.
Case 1: n is even. Suppose n is even. Say n = 2k where k£ € N. Then
(n>N, j(e) = 2k>N, ;(e) > 2N(e)
= k>N() = |agpy— L] <e¢
= |a, — L| <e,

Case 2: n is odd. Suppose n is odd. Say n = 2k + 1 where k£ € N. Then
(mn>N, jle) = 2k+1>N, j(e) >2M(e)+1
= k>M(E) = |lagp1— Ll <e
= |a, — L| <e.
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Hence, in all cases,
n>N, je) = |la, — L] <e.||
11.32 Remark. The alternating series test has obvious generalizations for
series such as _ _
DAY} or Y A(=1)F(5)} iz,
and we will use these generalizations.

11.33 Example. If 0<t¢ <1, then

(@) ™ ()

are decreasing positive null sequences, so

__1\n42n _ 1\n+2n+1
(reny (1)
(2n)! (2n + 1)!
are summable; i.e.,

- (1)t n (—1)i
{Z W} and {Z W} converge.

J=0 J=0

(These are the sequences we called {C,,(t)} and {S,(¢)} in example 10.45.)

= (1) (%) 1
Also, Z AL VA, [ , with an error smaller than
s (29)! 200 240000
1
750000000" My calculator says
cos(.1) = 0.995004165
and
1 1
— — 4+ ———— =0.995004166.
200 240000

n
11.34 Entertainment.  Since {—} is a decreasing positive null se-
n>1

n
(_1)n—1tn

quence for 0 < t < 1, it follows that Z{
n

} converges for
n>1



11.3. ALTERNATING SERIES 219

0 <t < 1. We will now explicitly calculate the limit of this series using a
few ideas that are not justified by results proved in this course. We know that
for all z € R\ {—1}, and all n € N,

1—(—2)" 1
l—z+2° =2+ 4 ()" ' = (=2)

17L—|—1 z"
1—(—2x) _1+x+(_) l1+z

Hence, for all ¢ > —1,

n

1— 2 _ n—ld :/ d -1 n+1/ .
/o z+x° 4+ (—x) T A g z + (1) 1tz 3
ie.,

2 3 1 n—lmn t : t gn

PR ) | =M(1+2) +(—1)”+1/ dx

Thus

t2 t3 (_1)n—1tn t

t—— 4+ — 4+ =In(1+¢ _1n+1/ dr.

gty ot — n(l+1) + (1) ) g de

Hence
t2 t3 (_1)n—1tn t gn

N ) N ) (o

‘ 5 + 3 +- 4 - n(1+1) T
for all t > —1. -

If we can show that { / 12_ dx} is a null sequence, it follows that
0 x
t2 t3 (_1)n—1tn
t——+—+---+———7 = In(1+1¢
{ 5 + 3 +--- 4+ - n(l+1t),
or in other words,
0 (_1)j+1tj
In(1+1¢) = Z —t (11.35)
=t

t n

I claim {/ 13:_ dac} is a null sequence for —1 < ¢ < 1 and hence (11.35)
0 T

holds for —1 < ¢t < 1. In particular,
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1
First suppose t > 0, then 7 " <z"for0 <z <t s0
x

xn—f—l t

0 n+1

t 1 t
0= - 2"dx g/ z"dr =
0o 1+=x 0

tn—f—l

n+1

tn+1
Since { n 1} is a null sequence for 0 < ¢ < 1, it follows from the compar-
n

n

t o
ison test that {/
o 1

n dm} is a null sequence for 0 < ¢t < 1. Now suppose
x
—1 <t < 0. Then

1
< fort <x <0,
142~ 1+t
n n
SO 2] < i and
14+2 ~ 1+t
t n 0 n 0 n
il da:‘ = / =1 da:ﬁ/ 2] dx
0o 1+=x t 14+ t 141t
1 0 1 [t]
= —/ |z|"dz = —/ z"dx
1+t /i 1+tJo
. 1 |ttt
14t n+l
I T t gn
If -1 <t<0, then { —— - is a null sequence, so {/ dm} is a
1+t n+1 o 1+x
null sequence. ||
11.36 Entertainment. By starting with the formula
1— (_3,/.2)71
2 4 6 2\n—1 _
for all z € R and using the ideas from the last example, show that
0 (—1)ig2+1
~—————— = arctan(z) for all z € [-1,1]. (11.37)

i (29+1)

Conclude that
1 1 n 1 1 n
5 7 9 11
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11.38 Exercise. Determine whether or not the following series converge.

a) Z{ n+1}n21
b) Z{(—l)”"“}@

n

nth
c) Z{ } (assume here —1 <t < 1).

11.4 Absolute Convergence

11.39 Definition (Absolute Convergence.) Let f be a complex sequence.
We say that f is absolutely summable if and only if |f| is summable; i.e., if

and only if {Z |f(5)|} converges. In this case, we also say that the series 3 f
7=0
is absolutely convergent.

—1)»
11.40 Example. Z{( ) } is convergent, but is not absolutely
n n>1

convergent.

11.41 Theorem. Let f be a complex sequence. If Y f is absolutely conver-
gent, then Y. f is convergent.

Proof:

Case 1: Suppose f(n) is real for all n € N, and that Y |f| converges. Then

0< f(n)+[f(n) < |f(n)] +|f(n)] = 2[f(n)|

for all n € N, so by the comparison test, >(f + |f|) converges. Then
S(f 4+ [f]) = X | f|, being the difference of two convergent sequences, is
convergent; i.e., > f converges.

Case 2: Suppose f is an arbitrary absolutely convergent complex series. We
know that for all n € N,

0 < [Re(f)(n)| < |f(n)|
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and
0 < [Im(f)(n)] < |F(n)],

so by the comparison test, >- |Re(f)| and 3 [Im(f)| are convergent, and
by Case 1, Y (Re(f)) and > (Im(f)) are convergent. It follows that

S (Re(f)) +iX(Im(f)) =3 f is convergent. ||
11.42 Example. Let z be a non-zero complex number. Let
" 2% (—1)!
Z)} = {cn(z)} = o (-
2 Jz:% (25)!
I claim > >{c,} is absolutely convergent (and hence convergent). We have

|Z|2n

)] = o

We have

2n+2 I 2
) _ [ P ey [ oo
len(2)] (2n + 2)! |z|?" (2n+1)(2n + 2)
so by the ratio test, >-{|cn(2)|} converges. Hence > {c,(z)} is absolutely con-
vergent, and hence it is convergent. Clearly {C,(0)} — 1, so {C,(z)} con-

)i g2+
L} i

(27 +1)!

verges for all z € C. In the exercises you will show that Z

also convergent for all z € C.
Motivated by the results of section 10.3, we make the following definitions:

11.43 Definition (sin and cos.) For all z € C, we define

© (-1
COS(Z) = T
= (2))
] 00 )922]—1—1
sin(z) =
jz:% (25 + 1)!

11.44 Remark. It is clear from the definition that
sin(0) = 0 and cos(0) = 1.
sin(—z) = —sin(z) for all z € C.
cos(—z) = cos(z) for all z € C.
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Forallm € N, z € C, let
( 1)j22j
7=0 (2]) ’

n 1)JZ2]+1
Sn(z) =

N
O

|
M s

Then

si) = 2O
= Zn: —C’n(z).

I would now like to be able to say that for all z € C,

{Su(2)} = S(z) = {Si(2)} = S'(2)
= {Cn(2)} = S'(2)
= S'(z) = C(2) (since {C,} = O);

i.e., I would like to have a theorem that says

{fn(2)} = f(2) = {f2(2)} = F'(2)-

However, the next example shows that this hoped for theorem is not true.

11.45 Example. Let f,(z) = 1 +an2 for all z € C, n € Z>,. Then for all

z € C\{0},

z 1 1

{fn(2)} = EW 05720

and

{£2(0)} = {0} =0,
SO i

fu(2) = 0(2) for all z € C.
1 2\ _ 92 2 1— 2

Now f,(2) = 1+ n27) — 2nz = So f/(0) =1 for all n, and thus

(1 +n2?)? (1+ an)
{f1(0)} = 1 # 0'(0). Eventually we will show that sin’ = cos and cos’ = — sin,
but it will require some work.
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11.46 Warning. Defining sine and cosine in terms of infinite series can
be dangerous to the well being of the definer. In 1933 Edmund Landau was
forced to resign from his position at the University of Gottingen as a result of
a Nazi-organized boycott of his lectures. Among other things, it was claimed
that Landau’s definitions of sine and cosine in terms of power series was “un-
German”, and that the definitions lacked “sense and meaning”[33, pp 226—-227].

(_1)nz2n+1

11.47 Exercise. Show that ) {m

} converges for all z € C.
11.48 Exercise.

(+4)
a) Does the series » {%} converge?
n>1

n

dn ;4

{
b) Does the sequence {Z —,} converge?
>1

7j=1
11.49 Exercise.

a) For what complex numbers z does Y- {nz"} converge?

b) For what complex numbers z does {2} converge?

11.50 Note.  The harmonic series was shown to be unbounded by Nicole
Oresme c¢. 1360 [31, p437]. However, many 17th and 18th century mathe-
maticians believed that (in our terminology) every null sequence is summable.
Jacob Bernoulli rediscovered Oresme’s result in 1687, and reported that it con-
tradicted his earlier belief that an infinite series whose last term vanishes must
be finite[31, p 437]. As late as 1770, Lagrange said that a series represents a
number if its nth term approaches 0 [31, p 464].

The ratio test was stated by Jean D’Alembert in 1768, and by Edward
Waring in 1776[31, p 465]. D’Alembert knew that the ratio test guaranteed
absolute convergence.

The alternating series test appears in a letter from Leibniz to Jacob Bernoulli
written in 1713[31, p461].
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The series (11.35) for In(1 + ¢) is called Mercator’s formula after Nicolaus
Mercator who published it in 1668. It was discovered earlier by Newton in
1664 when he was an undergraduate at Cambridge. After Newton read Mer-
cator’s book, he quickly wrote down some of his own ideas (which were much
more general than Mercator’s) and allowed his notes to be circulated, but not
published. Newton used the logarithm formula to calculate In(1.1) to 68 deci-
mals (of which the 28th and 43rd were wrong), but a few years later, he redid
the calculation and corrected the errors.

See [22, chapter 2] for a discussion of Newton’s work on series.

The series representation for arctan (11.37) is called Gregory’s formula after
John Gregory (1638-1675) or Leibniz’s formula after Gottfried Leibniz (1646-
1716). However, it was known to sixteenth century Indian mathematicians
who credited it to Madhava (c. 1340-1425). The Indian version was

B sinf 1sin®# 1sin®60
~ cosf 3cos®f  Hcos®h

(See[30, p292].)



Chapter 12

Power Series

12.1 Definition and Examples

12.1 Definition (Power Series.) Let {a,} be a sequence of complex num-
bers. A series of the form > {a,2"} is called a power series.
We think of a power series as a sequence of polynomials

2 2 3
{ag, ap + a1z, a0 + a1z + as2”, ag + a1z + agz” + azz®, - - -}.

In general, this sequence will converge for certain complex numbers, and di-
verge for other numbers. A power series }{a,2"} determines a function whose
domain is the set of all z € C such that Y {a, 2"} converges.

12.2 Examples. The geometric series > {z"} is a power series that con-

1
verges to : for |z] < 1 and diverges for |z| > 1.
—z

(_1)n 2n )n 2n+1
The series C = Z {W} and S = Z{ o+ 1)1 are power se-

ries that converge for all z € C. C' corresponds to the sequence

1 1
=11 i ..
{an} { ’0’ 250a 24a }

and S corresponds to

1 1
nf — 071707__:07—7"' .
{an} { 6120 }

The limits are cos z and sin z, respectively (by definition 11.43.)

226
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Every power series > {a,2"} converges at z = 0. (The limit is ay.)

The series Y {n!2"} converges only when z = 0 (see exercise 12.5).

bC

12.3 Notation (a*) The expression a* is ambiguous. Since

22*) = 28 = 256,

and
(2%)° = 4* = 64,

we see that in general a®) # (a?)°. We make the convention that

a® means a*).
The expression (a®)” is usually simplified and written without parentheses by
use of theorem 3.64:

((J,b)c — CL(bc) — a,bc_

n2

12.4 Example. 1 would like to consider the series Z {Z—Q} to be a
n n>1

power series. This series corresponds to Y {c,2"} where

1 1
n = 0,1,0,0,—,070’070’_’...
(6} = 0.1.0.0.10.000%.
4 4
z{cnzn} = {0, Ry RyRy R + %,Z—i— ZZ’ . .}’

which is not identical with

n2 n>1_ ) 4’ 4 9’ bl

but you should be able to see that one series converges if and only if the other
does, and that they have the same limits. In the future I will sometimes blur
the distinctions between two series like this.

n

For z # 0, let a, = 2—2 Then
n

2

2
N +2n+1 n

(n+1)2

‘an+1| _
[

— |Z|2n+1( n )2‘
n+1

2n?
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If |2| < 1, then |z>"*! (%
n

2
) < |z[*™*! and lim{ |“”+1|} =0<1,soby
n>1

|an|

n2

z
the ratio test, — converges absolutely for |z| < 1.
n? &
n>1

If |z| > 1 and n > 1, then

2n41 Ly ont1 1
= |z] 1- > |27 2
(n+1) 4

> 1 for large n, and the series diverges. If |z| = 1, then |a,| =

Ap+1
Qp

|an+1|
[

5
n?

n2

. z
so Y {|an|} converges by the comparison test, and » {—2} converges
n
n>1

absolutely. This shows that the function
[e.e] Zﬂ2
f(z) = 7«;1 Py

is defined for all z € D(0,1), and determines a function from D(0,1) into C.

The figure on page 229 shows the images under f of circles of radius I for

1 < 7 < 10 and of rays that divide the disc into twelve equal parts. The
images of the interior circles are nice differentiable curves. The image of the
boundary circle seems to have interesting properties that I do not know how
to demonstrate.

12.5 Exercise.

a) Show that > {n!z"} converges only for z = 0.

on

b) Show that > {Z—n} converges if and only if |z| < 1. ||
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00 ZZ“
n=0 .
The figure on page 230 shows the images under g of circles of radius 1]—0
for 1 < 7 <10, and of rays that divide the disc into 12 equal parts.
00 ZZ"
12.6 Exercise. Let g(z) =) o for |z| < 1. It appears from figure on
n=0

page 230 that g(—1) = 0, and g¢(i) is pure imaginary. Show that this is the
case.
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4
))

".Il’)
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V2
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\‘\,n
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X
5

|y
-
=
Iy
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N
(1%
N

N/

a

Image of ) { on }
[e's} Z2n
12.7 Entertainment. It appears from the image of g(z) = ) o that if
n=0

1 3
w=g+ 27 (a cube root of —1), then g(w) is pure imaginary, and has length

a little larger than the length of g(i). Show that this is the case. (From the
fact that w3 = —1, notice that

4

{wl’ w2, w ,wS, w16, w32, w64, .. } — {w, w2, —w, w2, —w, w2, —w, - })



12.2. RADIUS OF CONVERGENCE 231

12.2 Radius of Convergence

12.8 Theorem. Let Y {a,z"} be a power series. Suppose > {a,w"} con-
verges for some w € C\{0}. Then Y>{a,2"} converges absolutely for all
z € D(0,|w]).

Proof: Since Y {a,w"} converges, {a,w™} is a null sequence, and hence is
bounded. Say |a,w"| < M for all n € N. Let z € D(0, |w|), so |z| < |w|, and
letRz% < 1. Then for all n € N

w

z n
la,2"| = |apw™| —‘ < MR".
w
Now > {MR"} is a convergent geometric series, so by the comparison test,
> {|a,2"|} converges; i.e., > {a,2"} is absolutely convergent. ||

12.9 Corollary. Let >{a,z"} be a power series. Suppose >{a,w"} diverges
for some w € C. Then Y {a,z"} diverges for all z € C with |z| > |w].

Proof: Suppose |z| > |w|. If Y>{a,2"} converges, then by the theorem,
> {a,w™} would also converge, contrary to our assumption. ||

12.10 Theorem. Let Y {c,2"} be a power series. Then one of the following
three conditions holds:

a) Y{cn2"} converges only when z = 0.
b) >{cnz"} converges for all z € C.

c¢) There is a number R € R' such that Y{c,2"} converges absolutely for
|z| < R and diverges for |z| > R.

Proof: Suppose that neither a) nor b) is true. Then there are numbers
w,v € C\{0} such that >{c,w™} converges and > {c,v"} diverges. If ¢ = %,
and b = 2|v|, it follows that > {c,a™} converges and Y {c,b"} diverges. By a
familiar procedure, build a binary search sequence {[ay, bx|} such that [ag, b]
= [a,b], and for all £ € N, >{cna}} converges and > {c,b}} diverges. Let R
be the number such that {[ax, br]} — R. Then a;, < R < by, for all £ € N and
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lim{ax} = lim{b;} = R.
If |z| < R, then for some k£ € N we have |ay — R| < R — |2|, and

lak —R|<R—|z| = ax>R— (R~ |2]) =]
= Y {cn2"} converges.

If |z| > R, then for some k € N we have |by — R| < |z| — R, and

by —R| < |z2| —-R = b, <R+ (2| -R) =7
= > {c,2"} diverges. ||

12.11 Definition (Radius of convergence.) Let {} ¢,z"} be a power
series. If there is a number R € R" such that >{c,2"} converges for |z| < R,
and diverges for |z| > R, we call R the radius of convergence of Y {c,z"}. If
> {cn2"} converges only for z = 0, we say >_{c,2"} has radius of convergence 0.
If >{c,2"} converges for all z € C, we say > {c,2"} has radius of convergence
00.

If a power series has radius of convergence R € R, I call D(0, R) the
disc of convergence for the series, and I call C(0, R) the circle of convergence
for the series. If R = 0o, I call C the disc of convergence of the series (even
though C is not a disc).

n!(2n)!
will apply the ratio test. Since the ratio test applies to positive sequences, I

1.m
(3n)'z for all n € N. Then for
n!(2n)!

3n)z"
12.12 Example. I will find the radius of convergence for Z { (Bn)tz } I

will consider absolute convergence. Let a, =

all z € C\ {0},

ansa| _ Bt DM nl@n)! (304 DEn+2)En+3)

n+D!I2(n+1) @Bn)lz* (n+1)2n+1)(2n+2)
B+2)B+2)(3+ §)| |
.y z|.

n

2+7)2+2)

Hence

|apt1] 3-3-3 27|z|
all 30303, 2k
] 1-2-2 4

By the ratio test, >{a,} is absolutely convergent if |z| < 5=, and is divergent

if [z| > 5. It follows that the radius of convergence for our series is .
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12.13 Exercise. Find the radius of convergence for the following power
series:

a) Y {3"vnz"}u>1.
W {5}

nn
12.14 Exercise. Let r be a positive real number.
a) Find a power series whose radius of convergence is equal to .
b) Find a power series whose radius of convergence is co.

¢) Find a power series whose radius of convergence is 0.

12.3 Differentiation of Power Series

If >>{cn2"} = {co,co+c12, co+ 12+ cp2?, - - -} is a power series, then the series
obtained by differentiating the terms of > {c,2"} is

Z{cnnzn_l} ={0,¢1,¢1 + 2¢32, ¢1 + 2c02 + 3c32?, - - -}
This is not a power series, but its translate
Z{cn+1(n +1)2"} = {c1, 1 + 2¢02, €1 + 2002 + 3c32?, -+ -}
is.

12.15 Definition (Formal derivative.) If >{c,2"} is a power series, then
the formal derivative of > {c,2"} is

D(Y{enz"}) = Ylenn(n+1)2").

I will sometimes write D(3{c,2"}) = > {c,n2""'} when I think this will cause
no confusion.

12.16 Examples.

D {z"Y) = Y An" '} =2 {(n+1)"}
= {1,1+22,1+22+32%---}.
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1)22n+1
CREIE=g)
23 23 23 20
= ((Jzzz 3', 5,2—3'+5!,---}>

22 22 2t
- {1’1’1 . LA
(

() o) )

Our fundamental theorem on power series is:

12.17 Theorem (Differentiation theorem.) Let > {a,z"} be a power se-
ries. Then D(}>{a,z"}) and (> {anz"}) have the same radius of convergence.
The function f associated with >-{a,2z"} is differentiable in the disc of conver-
gence, and the function represented by D(>{a,2™}) agrees with f' on the disc
of convergence.

The proof is rather technical, and I will postpone it until section 12.8. I
will derive some consequences of it before proving it (to convince you that it
is worth proving).

12.18 Example. We know that the geometric series Y {z"} has radius

of convergence 1 and f(z Z 2" for |z| < 1. The differentiation

theorem says D(}>{z"}) = E{nz” 1 also has radius of convergence 1, and
o o
=> n""'=>"(n+1)2" for 2] < 1;
= n=0
i.e.,

1
2" = —— for |z| < 1.
n=0 (1 - Z)2
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We can apply the theorem again and get

> 2
D(n)z" 1= ——— f <1
g(n +1)(n)z L or |z| <1,
o > 1 2 1
Z(n+ J(n+ )z": 5 for [z < 1.
n=0 2 (1 _'Z)
Another differentiation gives us
0o 1 2 n—1
Zn(n—lr Jn+2)2"" 3 or |2 <1,
= 2 (1-2)
o > 1 2 3 1
Z(n+ J(n+2)(n+ )z”:ﬁfor|z|<1.
— 3! (1-2)
The pattern is clear, and I omit the induction proof that for all £k € N
1 B i(n+1)(n+2)(n+3)---(n+k)zn
I—2 = & K
ad k)!
= Z(n+ )z”for|z\<1.
= nlk!
12.19 Exercise. By assuming the differentiation theorem, we’ve shown
(n+k)!

that the series »_ { (
Verify this directly.

g ) z”} has radius of convergence 1 for all £ € N.

o0 o0

12.20 Exercise. Find formulas for Z nz" and Z n2z" that are valid for
n=0 n=0

|z| < 1. (You may assume the differentiation theorem.)

12.21 Example. By the differentiation theorem, if

C(z) = i_o:o 7(_(12):; - and S(z) = 27((_2173? :), :

then C and S are differentiable on C and C’'(z) = —S(z), and S'(z) = C(z).
(We saw in earlier examples that both series have radius of convergence oo,
and that the formal derivatives satisfy DS = C and DC = —8S.) Also, clearly
C(z) and S(z) are real when z is real. The discussion in example 10.45 then
shows that for real z, C' and S agree with the cosine and sine functions you
discussed in your previous calculus course, and in particular that

sin? z + cos?z =1 for all z € R.
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12.4 The Exponential Function

12.22 Example. Suppose we had a complex function F such that F is
everywhere differentable and

E'=FE, and E(0) = 1. (12.23)
Let H(z) = E(z)E(—=z) for all z € C. By the chain and product rules,
H'(z) = E'(2) E(—2) + E(2)[-E'(—2)] = E(2)E(—2) — E(2)E(—2) =0
on C, so H' is constant. Since H(0) = E(0)E(0) =1, we conclude
E(z)E(—z) =1for all z € C. (12.24)
In particular E(z) is never 0, and
E(—2) = (E(2))™" forall z € C.
Now let a € C and define a function H,: C — C by
H,(z) = E(z+ a)E(—2).
We have

Hy(2) = E'(z+a)E(=2) + E(z + a)[-E'(-2)]
= E(z+a)E(—2)— FE(z+a)E(—2) =0

for all z € C, so H, is constant, and H,(0) = E(a)E(0) = E(a). Thus
E(z+a)E(—%2)=E(a) forall z € C, a € C,

and by (12.24),
E(z+a)=FE(a)E(z) forall z€ C, a € C. (12.25)

Next suppose you know some function e:R — R such that €'(t) = e(t) for
all t € R and e(0) = 1. (You do know such a function from your previous
calculus course.) Let

K(t) = E(—t)e(t) for all t € R.
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Then by the product and chain rules,
K'(t) = [-E(—t)]e(t) + E(—t)e(t) = 0 for all t € R,

so K is constant on R, and since K (0) = E(0)e(0) = 1, we have E(—t)e(t) = 1.
By (12.24),
e(t) = E(t) for all t € R.

Now I will try to construct a function F satisfying the differential equation
(12.23) by hoping that E is given by a power series. Suppose

E(z) = ay+az+ as2® + a3z + a2+ for all z € C.
E(Q0) = a+0+0+---.

Since E(0) = 1, we must have ag = 1, and
E(z) =1+aiz + a2’ + a32® + asz* + .
By the differentiation theorem,
E'(2) = a1 + 2a02 + 3a32” + das2® + -+,

and
a; = E'(0) = E(0) = 1.

By the differentiation theorem again,
E'(2) =2-lay+ 3-2a3z +4-3a,2° + -+,

SO
1
2-1lay = E'(0) = F(0) =1 and ay = R
Hence
E(z)=FE'(z) =1+3-2a32 4+ 4-3a,22 +---.

Repeating the process, we get
E'(z)=3-2-laz+4-3-2a42+ -~ -,

SO
1

3-2-1

3-2-1la3=FE'(0) = FE(0) =1 and a3 =

I see a pattern here: a, = -
n!
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12.26 Definition (Exponential function.) Let E denote the power series
n

2" 22 Z . . )
Z {—,} =142+ o1 + -4 —( We will show in exercise 12.31 that F
has infinite radius of convergence. We write

E(z) =exp(z) = > % for all z € C.
n=0 """

12.27 Theorem. exp’ = exp and exp(0) = 1.

Proof: It is clear that exp(0) = 1. The formal derivative of E is
nz"1 (n+1)2" 2"
s{r =G -2 -m

so the [still unproved] differentiation theorem says that exp’ = exp. It follows
from our discussion above that exp(z) is never 0,

exp(—z) = (exp(z)) " for all z € C, (12.28)

and
exp(a + z) = exp(a) exp(z) for all z € C. (12.29)

It is clear that exp(z) is real for all z € R. In fact, we must have exp(z) € R"
for all z € R, since exp is continuous (differentiable functions are continu-
ous) and if exp(t) < 0 for some z, the intermediate value theorem would say
exp(y) = 0 for some y between 0 and ¢. Since exp’(t) = exp(t) > 0 on R, exp
is strictly increasing on R. ||

12.30 Definition (e.) We define e to be the number exp(1); i.e., e = e
n=0 """

n

12.31 Exercise. Show that Z { } has infinite radius of convergence.

z
n!
12.32 Exercise. Use the definition of e to show that e > 2.718.

12.33 Exercise.

a) Show that exp(nz) = (exp(z))” for alln € N, z € C.
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b) Show that exp(nz) = (exp(z))" for all n € Z, z € C.
12.34 Exercise. From the previous exercise, it follows that
exp(nz) = (exp(z))" forall z € C, n € Z.

Use this to prove that
exp <§t> = (exp(t))g forallte R, peZ, g€ ZT;

ie.,
exp(rt) = (exp(t))" forallt € R, r € Q.

(Note that for ¢ = 1, this says

T

exp(r) = (exp(1))" ="

12.35 Notation (e*.) Another notation for exp(z) is e*. This notation is
motivated by the previous exercise. With this notation, we have

et = e%e® for all z,a € C.

()™t = e #forall z€C.
()" = e forallt e R, r € Q.

12.36 Theorem. Every number t € RT can be written as t = exp(s) for a
unique s € R.

Proof: The uniqueness of s follows from the fact that exp is strictly increasing
2

t
on R. Let ¢t € (1,00). From the expansion exp(t) =1+t + o T we

see that exp(t) > ¢. Since exp is continuous, we can apply the intermediate
value theorem to exp on [0,t] to conclude ¢ = exp(s) for some s € (0,t). If

t € (0,1), then ;€ (1, 00), so ;= e’ for some s € (0,00), and ¢t = e * where

—5 € (—00,0). Since 1 = €°, the theorem has been proved in all cases. ||
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12.5 Logarithms

12.37 Definition (Logarithm.) Let ¢t € R". The logarithm of t is the
unique number s € R such that e* = ¢. We denote the logarithm of ¢ by In(¢),

Hence
e =t for all t € RY. (12.38)

12.39 Remark. Since In(e") is the unique number s such that e® = €", it
follows that
In(e") =r for all € R. (12.40)

12.41 Theorem. For all a,b € RY,
In(ab) = Ina + Inb.
Proof:

In(ab) = In(e"™*-e™?) (by (12.38))
ln(e(ln a+In b))

= Ina+1Inb (by (12.40)). ||
12.42 Exercise. Show that
a) In(a™!) = —In(a) for alla € R™.
b) In(a") = rIn(a) for alla € R*, r € Q.
¢) In (%) =Ina—1Inb for all a,b € R™.

12.43 Remark. It follows from the fact that exp is strictly increasing on R
that In is strictly increasing on R": if 0 < ¢ < s, then both of the statements
In(¢) = In(s) and In(¢) > In(s) lead to contradictions.

12.44 Theorem (Continuity of In.) In is a continuous function on R*.

Proof: Let a € R", and let f be a sequence in R such that f — a. I want to
show that Inof — In(a). Let Ny_; be a precision function for f —a@. I want

to construct a precision function M for Inof — In(a).
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Scratchwork: For all e € R, and all n € N,

|In(f(n)) —In(a)| <& <= In(a) —e <In(f(n)) <In(a) +¢
— eln(a)—s < f(n) < eln(a)—l—s
— M _g < fln)—a< en@+s _ g
Note that since In is strictly increasing, e™®+¢ — ¢ and a — e™®~¢ are both
positive. This calculation motivates the following definition:
For all e € R™, let

M(s) — maX(Nf_&(eln(a)-f—E _ a), Nf_a(a N eln(a)—e)).
Then for alln € N, ¢ € RT,

f(n) —a <|f(n) —a| <" —aq
a— f(n) <|f(n) —a| <a—en®e
— 61n(a)—5 < f(n) < eln(a)+s

= In(a) —e <In(f(n)) <In(a) +¢

= |In(f(n)) —In(a)| < e

n>MeE) = {

Hence M is a precision function for Inof — hRZL). I

12.45 Theorem (Differentiability of In.) The function In is differentiable
on RT and

1
In'(z) = - for all z € RY.
Proof: Let a € R' and let {z,} be a sequence in R"\{a}. Then
In(z,) —In(a)  In(z,) —In(a) 1

[ — - eln(zn) _ eln(a) - (eln(Wn)felﬂ(a)) ’
In(z,)—In(a)

(Note, I have not divided by 0.) Since In is continuous, I know {In(z,)} — In(a),

and hence
eln(wn) _ eln(a)

In(z,) — In(a)

hmFm%yJMM}:L

Ty —Q

} — exp’ (In(a)) = @ = q.

Hence,
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ie.,

fi 2(z) —Infe) _ 1
gma g —q a

1
This shows that In'(a) = —.
a

12.6 Trigonometric Functions

Next we calculate exp(it) for t € R.

o
exp(it) = Z teR.
Now {i"} = {1,4,—1,—4,1,4,—1, —i,- - } and it is clear that (i)** = (—1)" € R,
(1)*"*1 = 4(—1)" is pure imaginary. Hence,

Re(exp(it) = 5 " cost
e (exp(it)) = ——=c
= (29)!
[ 00 1)]t2]+1
it)) = = sin t;

m (exp(it)) z S

i.e.,
exp(it) = cost +isint for all t € R. (12.46)

For any complex number (z,y) = x + iy, we have

exp(z +iy) = exp(x)exp(iy) = exp(z)[cos(y) + isin(y)]
= exp(x)cos(y) + iexp(z) sin(y).
Since your calculator has buttons that calculate approximations to exp, sin and
cos, you can approximately calculate the exponential of any complex number
with a few key strokes.
The relation (12.46)
exp(it) = cost + isint
actually holds for all ¢ € C, since
Z 2J n(—1)dz2%+
)

= —~ (2] + 1)

(i)2j+122j—|—1

(2j +1)!

j
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Hence
e¥ =cosz+isinz for all z € C,

SO
e ¥ =cosz—1isinz for all z € C.

We can solve (12.47) and (12.48) for sin(z) and cos(z) to obtain

cos(z) = % for all z € C.

%1 —12

sin(z) = 27; for all z € C.
From (12.47) it follows that

e =1 for all t € R,
i.e., e is in the unit circle for all t € R.

12.51 Exercise (Addition laws for sin and cos.) Prove that

cos(z +a) = cos(z)cos(a) — sin(z)sin(a)

sin(z+a) = sin(z)cos(a) + cos(z) sin(a)

for all z,a € C.

By the addition laws, we have (for all z,y € C),
cos(x + iy) = cos(z) cos(iy) — sin(z) sin(iy)

sin(z + iy) = sin z cos(iy) + cos z sin(iy).
By (12.49) and (12.50)
ez(zy) + efi(iy) ey +eY

cos(iy) = 5 =

and

o W) _ o=illy) o=y _ ey (oY _ 7Y
sin(iy) = 5; = =il

243

(12.47)

(12.48)

(12.49)

(12.50)

(12.52)

(12.53)
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12.54 Definition (Hyperbolic functions.) For all z € C, we define the
hyperbolic sine and hyperbolic cosine of z by

sinh(z) = c _26
cosh(z) = %

Note that if z is real, sinh(z) and cosh(z) are real. Most calculators have
buttons that calculate cosh and sinh. We can now rewrite (12.52) and (12.53)
as

cos(z +1y) = cos(z)cosh(y) — isin(z) sinh(y)
sin(z +14y) = sin(x)cosh(y) + 7 cos(z) sinh(y).

These formulas hold true for all complex x and .

Since
sin’ = cos, cos' = —sin, sin(0) =0 and cos(0) =1,

it follows from our discussion in example 10.45 that

x3 x2 ozt

in(z) >z — = and <1-Z %
sin(z) >z o and cosz < 7 T 51

for all z > 0. In particular

2

sin(ac)Zx(l—%>>OforO<x<\/é

and
(2) <1 : + 10 <0
cos 5 T35 <0
Hence cos’ = —sin < 0 on (0, 2), so cos is strictly decreasing on [0, 2]. More-

over cos is continuous (since it is differentiable) so by the intermediate value
theorem there is a number ¢ in (0, 2) such that cos(c) = 0. Since cos is strictly
decreasing on (0, 2) this number c is unique. (Cf. exercise 5.48.)

12.55 Definition (7.) We define the real number 7 by the condition g is

the unique number in (0, 2) satisfying cos (g) = 0.
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12.56 Theorem. exp is periodic of period 2mi; i.e.,

exp(z + 2mi) = exp(z) for all z € C.

e%r = oS (W) + 2 sin <7r> =1
- 2 2)

i

= (F) =it =1. (12.57)

It follows that e?™+% = ¢?Mie? = 1e* = ¢* for all z € C. ||

and

12.58 Entertainment. If Maple or Mathematica are asked for the numer-
ical values of (—1)%>1* and 7', they agree that

(—1)*14 = —.9048 - - — 4 -.4257 - -

and .
7t =.2078 ..

Can you propose a reasonable definition for (—1)? and i* when z is an arbitrary
complex number, that is consistent with these results? To be reasonable you
would require that when z € Z, (—1)* and 4* give the expected values, and

(—1)*** = (=1)*(—-1)" for all z,w € C,
(1)*™ = %" for all z,w € C.

12.59 Exercise. Prove that:

a) cosm = —1, and sin7m = 0.

b) cos 3; = 0, and sin 37# =—1.

¢) cos2m = 1, and sin 27 = 0.

d) sin(2r —t) = —sint for all t € C.

e) cos(2m —t) = cost for all ¢t € C.
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f) sin(m — t) = sint for all t € C.

g) cos(m —t) = —cost for all t € C.
h) sin(27 +¢) =sint for all ¢ € C.
i) cos(2m +t) = cost for all t € C.

12.60 Theorem. cos(27) =1 and cost < 1 for 0 <t < 2.

Proof: From the previous exercise, cos(27) = cos(0) = 1. We’ve noted that
sint > 0 for ¢ € (0, %],
m m
te (g,w) = §<t<7r == 0<7r—t<§
= sin(r —1¢t) >0
= sin(¢) > 0.

Hence sin(t) > 0 for ¢t € (0,7). Hence cos'(t) = —sin(t) < 0 for t € (0,7).
Hence cos is strictly decreasing on (0,7). Hence cos(z) < cos(0) = 1 for all
z € (0,m).

Now

te(m2r) = n<t<2r = 0<2r—t<nm
= cos(2r—1t) <1
= cost <1,

and since cos(m) = —1 < 1, we’ve shown that cost < 1 for all ¢ € (0, 27). ||

12.61 Theorem. FEvery point (z,y) in the unit circle can be written as
(z,y) = € for a unique t € [0,2m).

Proof: We first show uniqueness.

Suppose (z,y) = x + iy = e = €' where s,t € [0,27). Without loss of
generality, say s < t. Then

oit (o)
- — wWl—S) ___ A
1—6?—6 =cos(t — s) +isin(t — s),

and t — s € [0,27). By the previous theorem, 0 is the only number in [0, 27)
whose cosine is 1, so t — s = 0, and hence t = s.
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Let (,y) be a point in the unit circle, so z>+y? = 1, and hence —1 < z < 1.
Since cos(0) = 1 and cos(m) = —1, it follows from the intermediate value
theorem that x = cost for some t € [0, 7]. Then

y> =1—212° =1 — cos’(t) = sin®(t),
so y = +sin(t).

y =sint = (z,y) = (cost,sint) = ¢"

y=—sint = (z,y) = (cost,—sint) = (cos(2m — t),sin(27 — t)) = €

and since ¢t € [0, 7], we have 27 —t € [, 27]. ||
12.62 Lemma. The set of all complex solutions to e* =1 is {2min : n € Z}.
Proof: By exercise 12.59
e?™ =cos 2 +isin2r =140 =1,

S
p2min _ (ezm')" — 1" =1
Let w = (a,b) = a + ib be any solution to e* = 1; i.e.,

_ _a+tbi __ _a_ib
l=¢ =ec'e

By uniqueness of polar decomposition,

e =1ande® =1,

b
so a = 0 (since for real a, e* =1 <= a = 0). We can write 9. =" + € where
T

n € Z and ¢ € [0,1) by theorem 5.30, so b = 27n + 27e where 27e € [0, 27).
Now

1= ezb — 627rm—|—z27r5 —e

27Ti6.
By theorem 12.61, 2mic =0, so € =0, and b = 27n; i.e., w = 27win. ||

12.63 Definition (Argument.) Let a € C\{0} and write a in its polar
decomposition a = |a|u, where |u| = 1. We know u = ¢ for a unique
A € [0,27m). I will call A the argument of a and write A = Arg(a). Hence

a = |ale8@) A €0,2n).
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12.64 Remark. Our definition of Arg is rather arbitrary. Other natural
definitions are

Arg, (z) is the unique number @ in [—7,7) such that z = |z]e™,

or
Arg,(2) is the unique number b in (—, 7] such that z = |z|e®.

None of these argument functions is continuous; e.g.,

{e_Thr }n21 — 1.

{Arg (e_n”)}n21 = {(27T - g) }n>1 — 21 # Arg(1).

12.65 Theorem. Let a € C\{0}. Then the complezx solutions to the equa-
tion e = a are exactly the numbers of the form

z = In|a| + iArg(a) + 2min where n € Z.
In particular, every non-zero a € C is the exponential of some z € C.

Proof: Since
e(ln\a|+zArg(a)+2mn) — eln\a|ezArg(a)62mn

iArg(a)

= |ale =aq,

the numbers given are solutions to e* = a. Let w be any solution to ¥ = a.
Then ¥ 'lel~iArg(a) — ¢ — 1 Hence, by the lemma 12.62,

w — In |a| + iArg(w) = 2min for some n € Z. ||

We will now look at exp geometrically as a function from C to C.
Claim: exp maps the vertical line x = z; into the circle C(0, e®).
Proof: If z = zy + iy, then

€] = e = [eme| =[] ] = €.
Claim: exp maps the horizontal line y = yg into the ray through 0 with

direction e™o.
Proof: If z = x + 4y, then

e? = T = e . W0 gand €% > 0.

Since exp is periodic of period 27%, exp maps an infinite horizontal strip of
width w into an infinite circular segment making “angle w” at the origin.
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The Exponentials of Some Cats

exp maps every strip {(z,¥): ¥ < y < yo + 27} onto all of C\{0}.
12.66 Theorem (Roots of complex numbers.) Let a € C\{0} and let

n € Z". Then the solutions to 2" = a in C are eractly the numbers

Arg(a)+2nk

z—|a|ne( z )wherekEZandO§k<n.
(These numbers are distinct.)
Proof: These numbers are clearly solutions to 2" = a. Let w = |w|e*A8®) be

any solution to z" = a. Then

[w|PemATE®) = oy = g = |a|e?AE@),

By uniqueness of polar decomposition,

|,w|n — ‘CL‘ and einArg(w) — eiArg(a)’

ie., |w| = |a|'/” and e'MAe(w)—Are()] = 1. Hence, nArg(w) — Arg(a) = 27k for
some k € N and

Arg(a) + 27k
n

Arg(w) = for some k € N.
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Thus

. -( Arg(a)+2nk
tArgw __ 61(7

e ) for some k£ € N.
For each k € Z, the number
1 iArg(a) 2rik

wk:‘w|ﬁe n e n

2mik
is a solution to w™ = a. For 0 < k < n, the numbers —— are distinct
n

numbers in [0, 27), so the numbers e are distinct. For every K € Z,
K
— =M +¢ where M € Z and ¢ € [0,1), so K = nM + en where en € [0,n)
n
and en = K —nM € Z; i.e.,

K=nM+kwhere ke Z and 0 < k < n.

Then £ =M+ £ 5o

- K ; 2mik 2mik
¥ = ?MMe™" = %% where k € Zand 0 < k < n. ||

12.7 Special Values of Trigonometric Functions

We have
coS (Z) = COoS (E — z) —COSECOSE—{—SiHESinE —sini
4) 2 4/ T2 74 27 4 4
Hence 1 = cos? (%) + sin® (%) = 2sin? (%), and hence
1 2
(cos %) = sin (%) =+ 5= :I:%. Since we know sin is positive on (0, 7),

we conclude that
cos (E) = sin <E> = Q
4) 4) 27

Observe that if ¢ € R, then the problem of calculating cos(¢) and sin(t) is
the same as the problem of calculating e*. Let n € ZT. We know that the
complex solutions of z” — 1 =0 are

{62Zik:0§k<n, kEZ},
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so if we can express the solutions to 2" — 1 = 0 in algebraic terms, then we

21k 2k
can express sin (L) and cos <L> in algebraic terms. We have
n n

P-1=0 = (*-1)(’+1) =0 <= (2-1)(Z®+2+1)(2+1)(z*—2+1) = 0.

Here z = 1 and z = —1 are obvious sixth roots of 1, and the other four roots
are the solutions of the quadratic equations

2Z24+z+41=0and 22— 2+1=0.

12.67 Exercise. Find the solutions to 22+ z+1=0and 22 —2+1=10
in terms of square roots of rational numbers. These solutions are

mi 2w 4w Bmi
{63,63,63,63}.

Identify each solution with one of these exponentials. Find cos (g) and

. (71-)
simmi| — .
3
12.68 Exercise. Use the fact that

i i —
6 2

- €

w3,

€6 = ¢

to find cos — and sin . I
6 6

2 2
The numbers cos (%) and sin (g) can also be expressed algebraically.

If 2z=¢5, then 2° — 1 =0, so
=D+ +22+2+1)=0

and since z # 1,
(42 +2+z24+1)=0.

3

The fact that 2% = 1 says 27! = 2* and 272 = 23, so

l+z+2t+22+272=0;
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ie.,
—4mi

2mi —2mi 4mi
1+e5 +e 5 +e5 +e 5 =0,

or
2 4
1+ 2cos (%) + 2 cos (—W) =0.

5
Now for all z € C,

c0s(22) = cos(z+2) = cos?(z)—sin?(z) = cosQ(z)—(l - cosQ(z)) = 2cos?(2)—1,

SO

2 2
1+ 2cos (g) +2 (2 cos? (g) . 1) = 0. (12.69)
2m . ) )
Hence cos <€> satisfies a quadratic equation.

12.70 Exercise.

2 2
a) Solve (12.69), and determine cos (%) and sin (%) in algebraic terms.

2m
b) The quadratic equation has two solutions, one of which is cos (€> What
is the geometrical significance of the other solution?

2
12.71 Entertainment. The algebraic representation for cos “T) shows

that a regular pentagon can be inscribed in a given circle. Let a circle be
2
given, and call its radius 1. If you can construct cos (—) with compass and

n
straightedge (see the figure), then you can construct a side of a regular n-gon

inscribed in the circle (and hence you can construct the n-gon).

(cos 2%, sin 27)

ide of n-gon

cos &
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2 3
For example, since cos (1—7;) = 5> We can construct a dodecagon as follows:
A
00 i B

L

Construction of a Dodecagon

In the figure, make an arc of radius 2 with center at A, intersecting the
2
z-axis at B. Then OB = /3, so if C bisects OB, then OC = cos (%), and

the vertical line through C' intersects the circle at E where IE is a side of the
12-gon.

2
Use the formula for cos (%) to inscribe a regular pentagon in a circle.
12.72 Entertainment. (This problem entertained Gauss. It will probably
not really entertain you, unless you are another Gauss.) Show that a regular
17-gon can be inscribed in a circle using compasses and straightedge.

Gauss discovered this result in 1796 [31, p 754] when he was a nineteen
year old student at Gottingen. The result is [21, p 458]

o 11 1
Y o VT4 — /34— 2V
C05(17) TRETARRTAL 7
1
+§\/17+ 3VAT — /(34 — 2v17) — 24/34 + 2V1T.

12.8 Proof of the Differentiation Theorem

12.73 Lemma. The power series Y {nz"} has radius of convergence equal
to 1.
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12.74 Exercise. Prove lemma 12.73. (We proved this lemma earlier using
the differentiation theorem. Since we need this result to prove the differen-
tiation theorem, we now want a proof that does not use the differentiation
theorem.)

12.75 Lemma. Let > {a,z"} be a power series. Then the two series > {a,2"}
and Y {na,z""1'} have the same radius of convergence.

Proof: T'll show that for all w,v € C\{0}.
a) If > {|na,w™'|} converges, then {3 |a,w"|} converges.
b) If > {|a,w™|} converges and |v| < |w]|, then 3{|na,v" !} converges.
a) follows from the comparison test, since
la,w”| < |na,w" | - |w| for all n € ZF.

To prove b), suppose > {|a,w"|} converges and |v| < |w|. By lemma 12.73,

Z{n v } is bounded. Choose M € R*
w

such that

v
converges, and hence {n|—
w

< M for all n € N.

rv
n JE—
w
Then n|v|™ < M|w"|, and

M
ap,nlv|" | < |a,w™| - — for all n € N.
|

By the comparison test, > {|a,nv™ |} converges. ||

12.76 Corollary. > {a,z"} and >{a,n(n — 1)2"2} have the same radius
of convergence.

Proof: Use the lemma twice. ||

12.77 Theorem. Let Y- {c,2"} be a power series with positive radius of con-
o0

vergence. Let f(z) = Z cp2" for all z in the disc of convergence for f and

n=0
o0

let Df(z) = Z ne,z" "' be the function corresponding to the formal deriva-
n=1

tive of Y{c,2"}. Then f is differentiable on its disc of convergence, and

f'(a) = Df(a) for all a in the disc of convergence.
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Proof: Let a be a point in the disc of convergence, and let z be a different
point in the disc. Then

f(2) - fla) = f: i

o0
= D> ez —a" (since 2° = a°)
n=1
o _
= > culz—a Z —1=igd
n=1 j=0

Let o o
Z . Z o—1=7 47
= j=0
Then
f(z) = f(a) = (z = a)Duf(2)
and since

chZa”I chna ' = Df(a),

n=1 7=0
the theorem will follow if we can show that Da f is continuous at a.
In the calculation below, I quietly use the following facts:
n—1 n—1
a) When n =1, Y 2" '7al — Y a" ' =0

=0

b) When j =n—1, 2" 77 — g7 = .

o] n—1 o o] n—1 o
Dof(2) = Dof(a) = D ead 2" 'dd =Y > a"

n=1  j=0 n=1  j=0
0 n—1

= ch a (2" — g )
n=2  j=0
oo n—2 n—2—j

=ch a(z — a) 22”2]'“’“
n=2 J

=0
0 -2 n—2— ] )
= (z—a)) ¢, Z z"’27]7’“a7+k. (12.78)

n=2 j=0 k=0

S
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R—
Let the radius of convergence of our power series be R, and let ¢ = |a‘.
Then
z—al<e = |z|—|a|<|z—da|] <e¢
R—|a] R+]|d
= |z| <|a|+e=la]+ = :
2 2
R
Let S = + lal < R. Then |a| < S, and
z—al<e = |z|< S
n—2 n—2-j n—2 n—2—j
N z Z Zn—2—j—kaj+k < Z z |Z|n_2_j_k|a‘j+k
j=0 k=0 j=0 k=0
n—2 n—2—j n—2
< §P?=8"2%"(n—1-j)
j=0 k=0 j=0
n—2 n—1
S Sn—Qansn—QZn
=0 J=0
— Sn72 . M S Sn72 . n(n — 1)

(Here I've used the fact that n — 1 —j < n for 0 < j <n—2.) Thus

n—2 n—2—j 00

o0
z—al<e = D lend D PRI <N e, [S" n(n - 1).
n=2 =0 k=0 n=2

We noticed in the corollary to lemma 12.75 that the series > {n(n — 1)c,2" %}

has radius of convergence R, and hence » {|c,|S"*n(n — 1) },>» converges to
a limit M, and by (12.78),

|Dof(2) — Dof(a)| < |z — al - M whenever |z —a| < e.
If {w,} is a sequence in dom(D, f) such that {w,} — a, then
|Daf(wn) = Daf(a)| < |wp —al - M

for all large n, and by the null-times bounded theorem and comparison theorem
for null sequences, {D, f(w,)} — D, f(a). Hence, D, f is continuous at a. ||



12.9. SOME XVIII-TH CENTURY CALCULATIONS 257

12.9 Some XVIII-th Century Calculations

The following proofs that

) DI L
LT TR TR T p T
and
! NI S Y P
- @ @ == J— N N c= —
2 (2n+ 1) 2R P 8

use XVIII-th century standards or rigor. You should decide what parts are

justified. I denote f'(0) by % below. By the geometric series formula,

RS

n=0

1—2

If 2 =re? where r > 0, # € R, then

i pngind _ 1 1—re ™
= C1—ref 1 —reif
SO
x 1—re ¥ (1 —rcosf) +irsinf
n 0 AP (R 0 — _ _ —
;) (r™ cos(nf) 4 ir" sin(nd)) TR )y R ——

By equating the real and imaginary parts, we get

1—rcosf rsin 6

o0
Z r"cosnf =
1

n=0

o0
"sinnf = )
+ 72— 2rcosf’ %T mn 1472 —2rcosf

For r = 1, this yields

icosn@— 71 — cosf —1
- 2—92cosf 2

n=0
> 1

Thus, 1+ Z cosnf = —, so
n=1 2

o0

1
Z cosnf = ——.
n=1 2



258 CHAPTER 12. POWER SERIES

Hence,

d (& sinnb d 1
@(Z—n >—@(‘§")'

n=1

Since two antiderivatives of a function differ by a constant

o0 s 1
Zsmn0 _ —§0+C
n=1

n

for some constant C'. When 6 = 7w, we get

> sinnw 1
0= = —— C
r; - 27r+
1
soC’:§7r and thus
> sinnf 1
=—(m —0). 12.
Y. —— =50 (12.79)

n=1
For 6 = g, this gives us
1 1 N 1 1 n 1 & 1 ( 7T>
- — = - — = — c=—\(\m1T——| =
1 3 5 7 9 2
(which is the Gregory-Leibniz-Madhava formula). We can rewrite (12.79) as

d & cosnf d [ (m—0)
dd = n2  df 4 )

Again, since two antiderivatives of a function differ by a constant, there is a
constant C; such that

> cosnf  (m—6)°

+Ch.

For 6 = 0, this says

and for # = 7, this says
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Subtract the second equation from the first to get

i 1— (=" _=*
n=1 n2 B 4 7
i.e.,
2 2 2 2
24 S+ =+ = =—
+y+5,+ﬁ+&c 1
and thus )
1 1 1 T
I+ttt tde=o (12.80)

1 1 1 1
Let S=1+ 2 + e + = + w2 + &c. Subtract (12.80) from this to get

72 1 1 1 1 1 1
S—— = —4+— 4+ —+4+&c= &
8 T e te TS i T e T T
S PP o
-1 92 T2 T T

3 2 g
Hence, —S = W—, and then § = . I
4 8 6

An argument similar to the following was given by Jacob Bernoulli in 1689

[31, p 443]. Let

1 1 1 1
N=1+=-4+=-4+-+4+= )
ty Tyttt te
Then L0101 1 1
N—-1l=—-4+—-4+-+4+—-+-+&c.
sttt Tstgtle

Subtract the second series from the first to get

R N NNt

R S I I
T 127237345 %"

Therefore,

1:.+.+.+.+&c.

12.81 Exercise.
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a) Explain why Bernoulli’s argument is not valid.

b) Give a valid argument proving that
> 1
) P
n=1 TL(TL + 1)

12.82 Note. The notation 7 was introduced by William Jones in 1706 to
represent the ratio of the circumference to the diameter of a circle[15, vol2,
p9]. Both Maple and Mathematica designate 7 by Pi .

The notation e was introduced by Euler in 1727 or 1728 to denote the base
of natural logarithms[15, vol 2, p 13]. In Mathematica e is denoted by E . In
the current version of Maple there is no special name for e; it is denoted by
exp(1) .
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Appendix A

Associativity and Distributivity
of Operations in Z,

Let n € Z satisfy n > 2. Let Z, = {x € N:z < n}. Let &, and ®, be the
binary operations on Z,, defined by

a®,b = remainder when a + b is divided by n,

a ®,b = remainder when ab is divided by n.
Thus for all a,b € Z,,
a+b=r-n+(a®d,b) for some r € N. (A1)

a-b=s-n+ (a®,b) for some s € N. (A.2)

We will show that &, and ®,, are associative by using the usual properties of
addition and multiplication on Z.

A.3 Lemma. Let z,y € Z,, q,r € Z. If ng+x = nr +y, then x =y and
q=r.

Proof:
Case 1. Suppose y < z. Then by our assumptions,
z—y=n(r—q)

and
0<z—y<xr<n-1.

266
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0<n(r—gq)<n-L

267

Since n > 0, it follows that 0 < r — ¢ < 1 and since r — ¢ is an integer

r—q=0,s0r=¢q. Thenz —y=0,s0x=uy.
Case 2. If y > x, use Case 1 with y and z interchanged. ||
A.4 Theorem. @,, is associative on Z,,.
Proof: Let a,b,c € Z,,. Then

a+b=n-t+ (a®y,b) for some t € Z.

(a®,b)+c=n-s+

(

b+c=n-r+ (b, c) for some r € Z.
((a ®, b) ®, ¢) for some s € Z.
(

a+b®,c)=n-w+ (a®, (bB,c)) for some w € Z.

By adding ¢ to both sides of (A.5), we get
(a+b)+c=nt+ ((a®,b) +¢),
and by adding a to both sides of (A.6), we get
at(b+c)=nr+(a+ (B, 0)).
Replace (a @, b) + ¢ in (A.9) by its value from (A.7) to get
(a+b)+c=n(s+1t)+ ((a®,b) &, ¢
and replace a + (b @, ¢) in (A.10) by its value from (A.8) to get
a+(b+c)=n(r+w)+ (a®, (b&,c))

By (A.11) and (A.12) and the associative law in Z,

n(s+t)+ (a®nb) ®nc)=n(r+w)+ (a®, (DB, ).

the associativity of @,, follows from lemma (A.3). ||

A.13 Theorem. ©, is associative on Z,.

ot

= e

o N O
o — D

(A.9)

(A.10)

(A.11)

(A.12)
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Proof: The proof is nearly identical with the proof that &, is associative.

A.14 Theorem. The distributive law holds in Z,; i.e., for all a,b,c € Z,,

aOn (b®y ¢) = (a®p b) By (a®y ).
Proof: We have
b+c=n-t+ (bd,c) for some t € Z.

a-(b®,c)=n-s+ (a®, (b&,c)) for some s € Z.
a-b=mn-u+ (a®,b) for some u € Z.
a-c=n-v+ (a®,c) for some v € Z.

Multiply both sides of (A.15) by a to get
a-(b+c)=n-at+a-(bd,c).
Replace a - (b &, ¢) in (A.19) by its value from (A.16) to get
a-(b+c)=nl(at+s)+ (a®, (bd,c)).

Now add equations (A.17) and (A.18) to get

a-bt+a-c=n-(ut+v)+ ((a®,b)+ (a O, ).

We know that for some w € Z,

(@G b)+(a®pc)=n-w+ ((a®,b) &, (a O ),

and if we substitute this into (A.21), we obtain

a-b+a-c=nlut+v+w)+ ((a®,b) &, (a®,c)).

From (A.20) and (A.22) and the distributive law in Z, we conclude

(A.20)

(A.21)

(A.22)

n(at+s) + (@ ©, (b®n ) =n(u+v+w)+ ((a ©, b) By, (a ®y €)) .-

The distributive law follows from lemma A.3. ||



Appendix B

Hints and Answers

Exercise 2.11: In each case there is only one invertible element.

Exercise 2.40: Note that the calculator sum of a very small number and a
very large number is the large number. Note that the calculator product
of two small positive numbers is 0.

Exercise 2.55: The system (Q, ®, ®) fails two axioms. The other three each
fail one axiom.

Exercise 2.78: Use (2.75).

Exercise 2.90: For part (b), use (2.74).

Exercise 2.93: Part e) can be done quickly by using parts a), b) and d).
Exercise 2.123: One of the conditions is that a and b have the same sign.

Exercise 2.135: There are nine cases to consider (three for a and three for
y). They can be reduced to five cases, one of which is ((z =0 or y = 0).

Exercise 2.144: There is a very short proof for a).
Exercise 2.145: Apply the product formula for absolute values to |a - a™!|.
Exercise 2.154: Use (2.138).

Exercise 3.24: You can take S = F't.

269
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Exercise 3.32: Suppose n is both even and odd, and derive a contradiction
by using theorems 3.15 and 3.19.

Exercise 3.43: For part b) use part a) together with exercise 3.32

Exercise 3.57: You can let P(n) =“for all m € N((a")™ = a™™)” or
P(m) =“for all n € N((a™)™ = a("™)".

Exercise 3.82: f) Note that 2° + a® = (2?)% — (—a?)?.

Exercise 3.85: S, = nL—H

Exercise 3.87: T,, = n’.
Exercise 4.19: a) Note that - = 2. b) The solutions are i and 2 — 1i.

Exercise 4.23: For part c), write z = w- Z and use part b). Remark 4.22 is
used for part f).

Exercise 4.25: a) 1.  b) 32i.

Exercise 5.15: I let P(n) =“2" > n and 2" > 1” and I used the fact that
2n+l =97 4 9n_ (It would be reasonable to assume 2" > 1 for all n, but
I proved it).

Exercise 5.48: Suppose f(z) = a = f(t), and use trichotomy to show that
T =1

Exercise 5.51: a) If 27 = y9, then x = y. b) If 297 = y"%, then x = y. (We
know the laws of exponents for integer exponents.)

Exercise 5.54: Raise both sides of the equation to the same integer power,
and use laws of exponents for integer powers.

Exercise 6.5: e) Notice that 22 < 12 4+ 2, and use theorem 2.128.

Exercise 6.26: The roots are &+ (% + ﬁ)

Exercise 7.21: I showed |(2)[? < .7, so that |(2£)| < V7. Then I used
the fact that {.7"} is known to be a null sequence, and used the root
theorem and the comparison theorem.
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Exercise 7.22: All three sequences are null sequences. For the last sequence,
2
I showed Zzig < 2 for all n > 1. For the first sequence {a,}, I showed

la,| < % for all n > 1.

Exercise 7.24: The set of all complex sequences does not form a field. All
of the field axioms except one hold.

Exercise 7.28: Ny (e) = max(Ny(e), Ny(1)) works.

Exercise 7.44: You can take Ny4(€) = Ny(57), where [g(n)| < M for all
n € N.

Exercise 7.49: Note that ¢ = (f + ¢g) — f, and show that the assumption
f + g converges is contradictory.

Exercise 7.50: Note that if ¢ # 0, then f = % - cf.

Exercise 7.56: Multiply numerator and denominator of /f(n) — v/L by

Vf(n) + VL.

Exercise 7.57: All of the sequences converge. h — =2

3
Exercise 7.58: If B; is a bound for f, and B, is a bound for g, then B; + B,
is a bound for f + g.

andl—)%.

Exercise 7.60: A convergent sequence is the sum of a null sequence and a
constant sequence. Now use exercise 7.58.

Exercise 7.69: {a,} — 2.
Exercise 7.70: One of the sequences diverges. One of the limits is 28% + %i.
Exercise 7.74: Apply theorem 7.73 to g — f.

Exercise 7.75: The statement is false.
Exercise 7.86: The sequence converges to % or to % or else it diverges.
(You should find exact conditions on a, b, A, and B corresponding to

each case.)

Exercise 7.94: If L < a, < U for all n € N, then either |L| + |U| or
max(|L|, |U]) will be a bound for {a,}
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Exercise 7.100: Use corollary 7.96 to show that the sequence converges.
Note a, 11 = a, - f—fl. Use the translation theorem to show that the limit
is 0.

Exercise 8.4: I used the polar decomposition for a.

Exercise 8.19: Yes. In fact every function from N to C is continuous. The
only integer p that satisfies |p| < 3 is zero.

Exercise 8.43: a) Limit does not exist. b) Let {z, = z,,+iy,} be a sequence
converging to 0. Apply null-times-bounded theorem to {f(z,)}. ¢) I
looked at sequences {%}, where w is a direction.

Exercise 9.10: Four of the requested five functions exist. The other one
doesn’t.

Exercise 9.13: Apply theorem 9.11 to g, where g(z) = f(z) — y
Exercise 9.17: All four functions exist. I described k£ by drawing its graph.

Exercise 9.19: Assume F'(4) < 0 and derive a contradiction from the inter-
mediate value theorem.

Exercise 10.10: h is nowhere differentiable. The same sequences that show
complex conjugation is nowhere differentiable show that h is also.

Exercise 10.17: D,(fg)(z) = f(a)Dag(z)+g(a)Dof(2)+(z—a)D, f(2)Dag(2).

Exercise 10.19: Write f® = -L-, and use the reciprocal rule and exercise

10.18. I
Exercise 10.20: Use the product rule and the reciprocal rule.
Exercise 10.31: Only one of the three statements is true.
Exercise 10.37: Use the result of exercise 6.36
Exercise 10.50: For both parts, compare with {%}nzl

Exercise 10.51: The exact value of cos(i) is 3(e + ). You can’t prove this
(because we have not yet defined e), but you can check your answer using
this.
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Exercise 11.19: c¢) Note that the comparison test holds only for sequences
of non-negative numbers.

Exercise 11.28: In most cases there is one value for which the ratio test gives
no information. However the exceptional values are usually standard test
series. For part g) the exceptional value was considered in example 11.27.

Exercise 11.48: b) Show that the real and imaginary parts of the series
both converge.

Exercise 11.49: Both series converge absolutely for |z| < 1 and diverge for
|z| > 1. (T used the ratio test.)

Exercise 12.6: a) If z = —1 then 2*" =1 for all n > 1, and if z = 4, then
2z*" =1 for all n > 2. Except for the first few terms, both series are
geometric series,

Exercise 12.14: a) Consider geometric series of the form > {c"2"}. ¢) Cf
exercise 12.5.a

Exercise 12.20: The sums are i )2 and (Z 22 > Get the second by differen-
tiating the first.

Exercise 12.33: a) Use induction and (12.29). b) Use part a) and (12.28).
Exercise 12.34: Calculate exp(p-¢) = exp(q - (£ - )) using exercise 12.33

Exercise 12.42: a) Write a = exp(In(a)) and use (12.28). b) Write a = exp(In(a))
and use exercise 12.34.

Exercise 12.51: Write the trig functions in terms of exponentials, and use

ete? = o1t geveral times.

Exercise 12 59: Everything follows from e = i and e’ = cos(t) + i sin(t)
and e%e’ = et

v5-1

Exercise 12.70: cos(%) >



Appendix C

List of Symbols

N natural numbers, 6, 69
Z integers, 6, 69

Q rational numbers, 6, 69
0 empty set, 6

Qf positive rationals, 6
a€ A aisin A, 6

a¢ A a isnot in A, 6
ACB subset, 7

C subset, 7

A=B set equality, 7

a#b a is not equal to b., 9
P = Q P implies Q, 9
P—Q—=—R=—S5 11

P = @ 11

T =1y 12

a=b=c=d 13

P(z), proposition form 14

{r € A: P(x)} the set of all z in A such that P(x) is true, 14
RNT intersection of sets, 15
RUT union of sets, 15

R\T set difference, 15

274



275

8
=
~—

ordered pair, 15
ordered triple, 15

8
=
2}
~—

Ax B Cartesian product, 16

f:A— B function with domain A, codomain B, 16
A symmetric difference, 21

xt inverse for x, 22

c,C calculator numbers, 26

&) calculator addition, 26

S) calculator subtraction, 26

O] calculator multiplication, 26

@ calculator division, 26

Z, {r e N:z <n}, 27

D, addition in Z,, 27

On multiplication in Z,, 27

+ addition in a field, 29

. multiplication in a field, 29

—x additive inverse in a field, 30

! multiplicative inverse in field, 30

Z, a finite field, 33

Dp set, of digits in F', 37

x? x-x, 38

a—b a—+ (—=b), 39

a/b a-b1, 39

e a-b1, 39

FT positive elements in ordered field, 43
F- negative elements in an ordered field, 44
<, <, >, > order relations in an ordered field, 45
|z absolute value, 48

|z —y| distance from z to y, 51

Npg natural numbers in F', 56

Zp integers in F', 64

Qr rational numbers in F', 65

n! factorial function, 71

power function, 72, 74
Zsy, {n€Z:n>k}, 75 93
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Sp)=>_f() summation notation, 76
j=k

hidden induction, 77
max(p, q) maximum of p and ¢, 80
max f(n) maximum, 81
Jj<n<i
ngngl {TL € Z] S n S l}, 81
Cr complexification of F', 83
®,0 operations on Cp, 84
) square root of —1, 87
a, (a,0) element of Cg, 87
z* complex conjugate of z, 89
{f(n)} sequence, 92
{f(0),f(1),f(2),---} sequence, 92
{[an, bn]} — = convergence of search sequence, 94
R real field, 97
av pth root of a, 104
NG square root of a, 104
a” fractional power, 104
C complex numbers, 106
H absolute value, 106
Re(z) real part of z, 107
Im(2) imaginary part of z, 107
C(a,r) circle in C, 110
D(a,T) open disc, 110
D(a,r) closed disc, 111
n+— 2" maps to, 125
a constant sequence, 127
f—L f converges to L, 127
Ny precision function for f, 130
Ref, Imf, f*, |f]| sequences, 134
lim f, im{ f(n)} limit of a sequence, 138
.A1Qy - Ay, decimal notation, 146

goa composition, 159



abs(z)
conj(z)
gof
lignf

lim £(2)

f'(a)
D,f
int(J)
flr

|z|, 162

z*, 162
composition, 165
limit of f at a, 167
limit of f at a, 167

derivative of f at a, 182
182

interior of J, 190
restriction of f to 7', 192
path, 192

line segment, 192

cosine polynomial, 197
sine polynomial, 197
cosine, 198, 222

sine, 198, 222

series corresponding to f, 202
sum of a series, 203
harmonic series, 204

227

exponential function, 238
exp(1), 238

exponential function, 239
logarithm of ¢, 240
hyperbolic sine, 244
hyperbolic cosine, 244
pi, 244

argument of z, 247
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absolute convergence, 221
absolute summability, 221
absolute value, 48
of complex number, 106
product formula for, 49
quotient formula for, 51
addition,
addition (field operation), 29
addition in Z,, 27
addition laws for sine and co-
sine, 243
addition of inequalities, 45
Alembert, Jean (1717-1783), 224
alternating series, 216
alternating series test, 216
ambiguous,
a”, 227
sequence notation, 92
and, logical connective, 8
Archimedean property, 97, 98, 105
Archimedes, 105
argument(of a complex number), 247
Aristotle (384-322 B.C.), 31, 69
Arnold, Vladimir (1937-77), 124
cats, 124
Ars Magna, 90
Artin, Emil (1898-1962) 54
associative operation, 21, 29
associativity of ®, 84, 267
associativity of @, 267

278

axiom, completeness, 97
axioms, 2

for a field, 29

for ordered field, 43
axis,

imaginary, 109

real, 109

Bernoulli, Jacob (1654-1705), 32, 224,
259

between, 179
Bhaskara (born 1114-1185), 63
binary

operation, 19

search sequence, 94
Bolzano, Bernhard, (1781-1848), 181
Boole, George (1815-1864), 29
bound,

for a function, 174

for a set, 173

for sequence, 139

lower, 154

upper, 154
bounded,

function, 173

sequence, 139, 143

set, 173
boundedness theorem, 178
bug, 26
Bubhler, Joe (1950-77), 4
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calculator operations, 26
cancellation law, 23, 33
Cardano, Girolamo (1501-1576), 54,
90
Cartesian product, 16
cat,
Arnold, 124
discontinuous image of, 172
inverse of, 121
square of, 120
exponential of, 249
Cauchy, Augustin (1789-1857), 82,
91, 181
chain rule, 185
circle. 110
of convergence, 232
unit, 111
Clenias, 68
closed interval, 93
codomain of function, 16
commensurable, 69
commutative operation, 24, 29
commutativity of addition in field,
35
comparison test for series, 206
limit comparison test, 211

comparison theorem for null sequences,

131

completeness, 97, 105

completeness axiom, 97
complex,

conjugate, 89

function, 161

numbers, 106
complexification, 83
composition, 159

of continuous functions, 166

of functions, 165

279

conjugate, complex, 89, 91
constant sequence, 127, 128
continuity 105
of exp, (in theorem 12.27), 238
of roots, 164
of In, 240
continuous, 161
at a point, 161
on a set, 161
convergence, 129
of search sequence, 94
absolute, 221
circle of, 232
disc of, 232
of geometric sequence, 145
of geometric series, 145
radius of, 232
convergent sequence, 127, 143
limit of, 138
product theorem, 137
quotient theorem, 141
reciprocal theorem, 140
sum theorem, 137
uniqueness theorem, 138
copy (of F in Cp) 87
cosine, 235, 242, 250
complex, 222
critical point, 187
theorem, 188

D’Alembert, Jean (1717-1783), 224
De Moivre, Abraham (1667-1754),
124
De Moivre’s formula, 113
decimal notation, 146
decimals, 1,
decomposition theorem, 136



280

decreasing,
function, 101
sequence, 153
definition by recursion, 71
derivative, 182
Descartes, Rene, 1596-1650, 82
Dickson, Leonard Eugene, (1874-1954),
31
difference,
of sets, 15
symmetric, 21
differential equation (12.23), 236, 237
differentiation of power series, 234,
253
digits, 37
direction in C , 114, 115
disc,
of convergence, 232
closed, 111
open, 110
unit, 111
distance (in ordered field), 51
distributive law 29, 30
in a field, 39
in Z,, 268
divergence,
of search sequence, 94
of sequence, 127
test for, 152
division in a field, 39
domain of function, 16
double inverse theorem, 22, 34
draughts, 68
dull sequence, 129

e, 238, 260
empty set, 6
endpoints of an interval, 52

INDEX

entertainments, 3
Epicureans, 110
equality,
of functions, 16
of objects, 12
of ordered pairs, 15
of rules, 16
of sets, 7
reflexive property of, 12
symmetric property of, 12
transitive property of, 12
substition property for, 12
equivalence,
of sets of propositions, 43
of propositions, 11
Euclid (365-300BC??), 64, 69, 105,
110
Euler, Leonard (1707-1783), 91, 124,
208, 260
summation notation, 82
even,
integer, 66
number, 63
exercises, 3
exponential function, 238
exponents, rational, 104, 105
extreme value theorem, 177

factorial function, 71, 82
factorization, 79
of a? — rP, 78
feature, 26
field,
axioms for, 29
orderable, 43
real, 97
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functions, 16, 70
addition and multiplication of,
100
complex, 161
increasing and decreasing, 101

Gauss, Carl (1777-1855), 253

geometric sequence, 125, 203
convergence of, 145

geometric series, 77 ,126, 203
convergence of, 145

graph, 100

Gregory, John (1638-1675), 225, 258

Gottingen, 224

Hamilton, William R. (1805-1865),
29, 91

harmonic series, 203, 224

Huntington, Edward (1874-1952), 43,
54

hyperbolic functions, 244

identity element for binary opera-
tion, 20
image of a function, 119
imaginary axis, 109
imaginary part of complex number,
107
implication, 9
incommensurables, 68
increasing,
function, 101
sequence, 153
induction theorem, 57
generalized, 62
inductive, 55
inequalities, addition of, 45, 47
inequality theorem, 149
inequality, triangle, 50
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infinite series, 202
integers, 70
even, 66
odd, 66
in a field, 64
informal definition, 6
interior, 190
interior point, 190,
intermediate value theorem, 179, 180
intersection, 15
interval, 52
closed or open, 93
inverse,
for binary operation, 21
of cat, 121
invertible element for binary opera-
tion, 22

Jones, William, (1675-1749), 260

Koch, Helge von (1870-1924), 158
Kramp, Christian, (1760-1826), 82

Lagrange, Joseph, (1736-1813), 224
Landau, Edmund (1877-1938), 224
laws,
of exponents (fractional), 104
of signs, 46
Laws of Thought, 29
The Laws, 68
least element principle, 60
Leibniz, Gottfried (1646-1716), 224,
225, 258
length of complex number, 114
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limit,
comparison test, 211
of a function, 167
of a sequence, 138
point, 166
uniqueness of, 168
line segment, 192
logarithm, 240
lower bound,
for a sequence, 154
for a set, 178

Madhava of Sangamagramma (c. 1340-
1425), 201, 225, 258

Mahavira (ninth century), 63
Maple, 25, 82, 91, 245, 260
maps to, 125
Mathematica, 82, 91, 245, 260
maximizing set, 176
max function, 80, 81
maximum, 176

critical point theorem, 188
mean value theorem, 189
Mercator, Nicolaus(1620-1687), 225
midpoint, 94
minimum, 176
monotonic sequence, 153
multiplication

(field operation), 29

of inequalities, 47

table, 27

in Z,, 27
Mycielski, Jan, 157

natural numbers, 56, 70
informal definition, 6
negative elements in ordered field,
44

INDEX

Newton, Isaac (1643-1727), 105, 201,
225
not, negation, 8
null sequences, 129
comparision theorem for, 131
root theorem for, 132
sum theorem for, 134
product theorem for, 136
null-times-bounded theorem, 139
number,
complex, 106
even, 63
natural, 56, 70
odd, 63
rational, 70
real, 97

odd,
integer, 66
number, 63
open interval, 93
opposite sign, 46
or, logical connective, 8
orderable field, 43
ordered field,
axioms for, 43
completemess of, 97

ordered,
pair, 15
triple, 15

Oresme, Nicole (1323-1382), 224

pair, ordered, 15

paradox, 17

parentheses, 31

Pascal, Blaise (1623-1662), 64
path, 192

Peano,Giuseppe (1858-1932), 64
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periodicity,
of sin and cos, 12.59 h) and i),
246
of exp, 245
Philitas of Cos, 18
pi (), 244, 260
Plato (4277-347B.C.), The Laws, 68
polar decomposition, 114
polygon representation for a com-
plex sequence, 125
polygon, snowflake, 148
positive elements in ordered field,
43
power,
function, 72, 82
integer, 74
rule for differentiation, 187
series, 226
precedence, 31
precision function, 130, 157
Priora Analytica, 69
Proclus, 110
product,
formula for absolute value, 49
of functions, 100
rule for differentiation, 187
theorem,
for continuous functions, 163
for convergent sequences, 137
for limits of functions, 172
for null sequences, 136
propositions, 7
equivalence of, 11
proposition form, 14
Pythagorean theorem, 109

quadratic formula, 42
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quotient,
formula for absolute value, 51
of functions, 100
rule for differentiation, 187
theorem,
for continuous functions, 163
for convergent sequences, 141

radius of convergence, 232
ratio,
for a geometric sequence, 125
for geometric series, 126
test, 212, 224
rational,
exponents, 105
numbers, 70
in a field, 65
informally defined, 6
in sense of Euclid, 69
real axis, 109
real field, 97
real part of comlex number, 107
reciprocal rule for differentiation, 186
reciprocal theorem for convergent se-
quences, 140
recursion, 71
Reed College, 4
reflexivity of equality, 12
restriction theorem, 192
reverse triangle inequality, 139
Rolle, Michel (1672-1719), 201
Rolle’s theorem, 189
root,
of complex number, 113, 249
of real number (theorem 5.49),
103
theorem for null sequences, 132
continuity of roots, 164
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rule, recursive, 70
Russell, Bertrand (1872-1970), 17
Russell’s paradox, 17

Sangamagramma, Madhava (c. 1340-
1425), 201
Schreier, Otto (1901-1929), 54
search sequence, 94
convergence of, 94
segment, 192
sequence, 92, 125
bounded, 139, 143
constant, 127, 128
convergent, 127, 129, 143
decreasing, 153
divergent, 127
dull, 129
increasing. 153
lower bound for, 154
null, 129
search, 94
summable, 203
upper bound for, 154
series, 202
alternating 216
operator, 202
power series, 226
sum of, 203
Servois, Francois-Joseph (1767-1847),
29
set, o
empty set, 6
set difference, 15
sine 235, 242, 250
complex, 222
Skolem functions, 157
snowflake, 148, 158

INDEX

square,
(- x), 42
of cat, 120
square root, 47
of complex number, 116
subset, 7
substition property of equality, 12
subtraction in a field, 39
sum
of functions, 100
of a series, 203
theorem,
for continuous functions, 163
for convergent sequences, 137
for differentiable functions, 185
for limits of fumctions, 172
for null sequences, 134
for series, 204
summable,
sequence, 203
absolutely, 221
summation, 76
function, 82
symmetric difference, 21
symmetry of equality, 12

transitivity,

of <, 45

of equality, 12

of implication, 9
translate of a sequence, 149
translation theorem, 149
triangle inequality, 50, 110

in C, 108

reverse, 139
trichotomy, 43
trigonometric functions 222, 235, 242,

250
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triple, ordered, 15

union, 15
uniqueness,
of R, 97
of identities, 20
of inverses, 22
of limits, 168
theorem for convergent sequences,
138
unit circle, 111
unit disc, 111
upper bound,
for a sequence, 154
for a set, 178

Waring, Edward, (1734-1798), 224

Weber, Heinrich Martin (1842-1913),
43

Weierstrass, Karl (1815-1897), 54,
181

zero-one law, 30
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