Chapter 5
Real Numbers

5.1 Sequences and Search Sequences

5.1 Definition (Sequence.) Let A be a set. A sequence in A is a function
f:IN — A. I'sometimes denote the sequence f by {f(n)} or {f(0), f(1), f(2),---}.

1
For example, if f: N — Q is defined by f(n) = 1 I might write

f:{n-lu}:{ %% }
1),

5.2 Warning. The notation {f(0), f(1), f(2),---} is always ambiguous.
For example,

1

{1,2,4,8,16,---}

might denote {2"}. It might also denote {¢(n)} where ¢(n) is the number of
regions into which a circle is divided when all the segments joining the vertices
of an inscribed regular (n + 1)-gon are drawn.

N 71N
\_/ Y%

n=0 n=1 n=2 n=3

5.3 Entertainment. Show that ¢(4) = 2%, but that it is not true that
¢(n) = 2" for all n € N.
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5.4 Warning. The notation for a sequence and a set are the same, but a
sequence is not a set. For example, as sets,

{1,2,3,4,5,6,---} ={2,1,4,3,6,5,---}.
But as sequences,
{1,2,3,4,5,6,---} #{2,1,4,3,6,5,---}.
5.5 Notation (Zsj) Recall from section 3.65, that If k£ € Z, then
Zsy={ne€Z:n>k}.

Thus, Z>y = N. Occasionally I will want to consider sequences whose domain
is Z>, where k # 0. I will denote such a sequence by

{F (1) bnzk-

Hence, if
f: {1a2a3a"'}a
then f(n) =n+1 for all n € N, and if
g = {15 2a 3, o '}nZl:
then g(n) = n for all n € Z.

5.6 Remark.  Most of the results we prove for sequences {f(n)} have
obvious analogues for sequences { f(n)}n>¢, and I will assume these analogues
without explanation.

5.7 Examples. {i} ={1,4,-1,—1,1,4,---} is a sequence in Cgq.

{02}, ~{ou o] log].)

is a sequence of intervals in an ordered field F'.

5.8 Definition (Open and closed intervals.) An interval J in an ordered
field is closed if it contains all of its endpoints. J is open if it contains none of
its endpoints. Thus,

0,[a, b], (=0, al, [a, >0), (—oo, 00) are closed intervals.

0, (a,b), (—o0,a), (a,00), (—o0,00) are open intervals.

(a,b],a,b) where a < b are neither open nor closed.
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5.9 Definition (Binary search sequence.) Let F' be an ordered field. A
binary search sequence {|an,b,|} in F is a sequence of closed intervals with
end points a,, b, in F' such that

1) [ans1,bni1] C [an, by] for all n € N, and

by — ap

on

2) b, —a, = for all n € N.

Condition 1) is equivalent to
an < apa1 < byy1 < by, for all n € N.

5.10 Warning. Note that the intervals in a binary search sequence are
closed. This will be important later.

5.11 Definition (Convergence of search sequence.) Let F' be an or-
dered field, let {[a,,b,]} be a binary search sequence in F, and let x € F.
We say {[an,b,|} converges to x and write {[a,,b,]} — z if z € [ay,b,] for
all n € N. We say {[an,b,]} converges, if there is some xz € F such that
{[an, bn]} = x. We say {[an, by]} diverges if there is no such z.

1
5.12 Example. Let F' be an ordered field. Then {[0, Q—R]} is a binary
1
search sequence and {[0, 2—n] } — 0.

5.13 Exercise. Let F' be an ordered field, let a,b € F with a < b. Let
a+b
. Show that

m =
1) a<m<b.
1
2) m—azb—mzi(b—a).
(Conditions 1) and 2) say that m is the midpoint of a and b.)

5.14 Exercise. Let F' be an ordered field and let a,b € F with a < b and
let ¢, d be points in [a, b]. Show that

lc—d| <b—g;

i.e., if two points lie in an interval then the distance between the points is less
than or equal to the length of the interval.
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5.15 Exercise. Show that 2" > n for all n € N.

5.16 Example (A divergent binary search sequence.) Define a binary
search sequence {|a,,b,|} in Q by the rules

[ao, b()] = [1, 2] )
[ans1, b ] (o, ex5ta] if (2nge)” > 2,
Un4+1,0n4+1] =
[t b,] if (o) < 2,
Thus,
2
G,0+b() 142 3 G,0+b() 9 [2 3:|
= = — = — 2 b = — -
92 2 27 < 9 4 > , SO [ala 1] 2a2 )
2
a+b  2+3 5 a1 + by 25 [5 6]
= = — = — < 2 b = |—-. ="
2 2 1 2 16 < 2 s leabal = |17
2
as+by  34+% 11 as + b 121 [11 12]
9 2 87 2 64 < ,SO[CL3, 3] 8’ ]

ntbn . .
Since = + is the midpoint of [a,, b,], we have

[a’n+1a bn+1] C [an: bn]

and
(5.17)

1
bn—i—l — Qp41 = i(bn - an)
It follows from (5.17) that
1

b, —a, = 2—n(b0 — ap) for all n € N.
Hence {[ay, b,]} is a binary search sequence. For each n € N, let P(n) be the
proposition
P(n)=“aZ <2<

Then P(0) says 12 < 2 < 22, so P(0) is true. Let n € N.
3
If (a" ;_ bn) > 2, then

2
+b
Pn) = ag<2gbg:ag+1=a;i<zg(“n2 ) _,

2 2
= py <2< by

= P(n+1).



96 CHAPTER 5. REAL NUMBERS

2
If (an ;_ b") < 2, then

2
b
Pn) —s ai<2§b§:ai+1:<a"; ) <2<B i,

= 0 <2< b,
= P(n+1).

Hence, in all cases, P(n) = P(n+ 1), and by induction, a? < 2 < b2 for all
n C N. Since 22 # 2 for all z € Q, we have

a2 <2< b2 foralln € N. (5.18)

I now will show that {[a,, b,]} diverges. Suppose, in order to get a contradic-
tion, that for some x € Q, {[an,b,|} — . Then

0<a,<z<b,forallneN,

SO
2 2 2
a, <z°<b,.

Combining this with (5.18), we get

by — ao
2n

2% — 2| <02 — a2 = (by — an) (b + ay) < ( 5

) (bo+by) = —  (5.19)

for all n € N. Since 2 is not a square in Q, 22 — 2 # 0. Write |2° — 2| = 2—0,
q

where p,q € Z>;. Then
for all n € N, Z—’gi,
q 2"
SO A
for all n € N, 2"§—q§4q.
p
By exercise 5.15, for all n € N,

n < 2" < 4q. (5.20)

Statement (5.20) is false when n = 4¢ + 1, and hence our assumption that
{lan, bn]} — = was false. ||
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5.2 Completeness

5.21 Definition (Completeness axiom.) Let F' be an ordered field. We
say that F'is complete if it satisfies the condition:
Every binary search sequence in F' converges to a unique point in F'.

5.22 Example. The field Q is not complete, since in example 5.16 we found
a binary search sequence in Q that does not converge.

5.23 Definition (Real field, R.) A real field is a complete ordered field.
We will use the name R to denote a real field.

5.24 Remark. It is not at all clear that any real fields exist. If real
fields do exist, there is a question of uniqueness; i.e., is it the case that any
two real fields are “essentially the same”? I don’t want to worry about what
mathematical existence means, so let me formulate the questions: Are the
axioms for a real field consistent; i.e., is it the case that no contradictions
can be derived from them? Note that we are not entirely free to throw axioms
together. If I were to make a definition that a 3-field is an ordered field in which
3 = 0, I would immediately get a contradiction: 3 =0 and 3 > 0. All I can
say about consistency is that no contradictions have been found to follow from
the real field axioms. There exist proofs that any two real fields are essentially
the same, cf. [35, page 129]. (This source uses a different statement for the
completeness axiom than we have used, but the axiom system is equivalent to
ours.) There also exist constructions of pairs of very different real fields, cf.
[41].

In what follows, I am going to assume that there is a real field R (which
I'll call the real numbers). Any theorems proved will be valid in all real fields.

5.25 Theorem (Archimedean property 1.) Let R be a real field, and let
x € R. Then there is an integer n € N such that n > x.

Proof: Let z € R, and suppose (in order to get a contradiction) that there
isnon € N with n > z. Then z > n for all n. Now {[O, ;—n]} is a binary

search sequence in R. Since x > 2", I have 1 < 2% for all n € N. We see that
0, —

{ on } — 1, but clearly {[O, ;—n]} — 0. Since completeness of R implies

that a binary search sequence has a unique limit, this yields a contradiction,
and proves the theorem. ||
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5.26 Corollary (Archimedean property 2.) Let € R\{0}. Then there

is some n € Zsy such that — < |z|.
= n

1 1
Proof: By the theorem, there is some n € Z>; with n > —. Then — < |z|. ||
= n

x|

5.27 Corollary (Archimedean property 3.) Let x be a real number, and
let C be a positive real number. Suppose

lz] < % for alln € Zs4. (5.28)

Then x = 0.

Proof: Let z € R, and let C € R satisfy
C
|z|] < — for all n € Z;. (5.29)
o >

Suppose, in order to get a contradiction, that x # 0. Then by Archimedian
property 2 there is some n € Zy; such that 1 < %, ie. € < |z]. This
contradicts (5.29). ||

5.30 Theorem. Ift € R, then there is an integer n and a number € € [0, 1)
such thatt =n + €.

In order to prove this theorem, I will use the following lemma.
5.31 Lemma. Ift € R, then the interval (t,t + 1] contains an integer.

Proof:

Case 1. t € [0,00): Suppose t € [0,00) and (t,t + 1] does not contain an
integer. I will show that ¢ > n for all n € N. This contradicts the
Archimedean property, so no such ¢ can exist. For each n € N, let
P(n) = “n < t”. Then P(0) is true, since I assumed that ¢ € [0, c0).
Let n € N be a number such that P(n) is true; i.e., n < t¢. If n + 1 were
> t, we’d have t <n+1 < t+1, and this cannot happen, since (¢,t+ 1]
contains no integers. Hence,

Pn) = n+1<t = P(n+1),

and by induction, ¢t > n for all n € N. This gives the desired contradic-
tion.
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Case 2. t€ R : If t € R, then by Case 1 there is an integer n with
—t<n<—t—+1.
Then
t<-—-n+1<t+1.
If t < —n + 1, then (¢,¢t + 1] contains —n + 1. If ¢ = —n + 1, then
(t,t +1] = (—=n+1,—n + 2] contains —n + 2. ||

Proof of theorem 5.30. Let ¢ € R. By the lemma, there is an integer n with
t<n<t+1. Then
0<t—n+1<1,

and t = (n — 1) 4+ (t —n + 1) gives the desired decomposition. ||
5.32 Theorem. There is a number x € R such that 2% = 2.

Proof: Let {[an,bs]} be the binary search sequence constructed in example
5.16. We know there is a unique z € R such that 0 < a, < z < b, for all
n. Then 0 < a? < 2? < b2, and by our construction 0 < a2 < 2 < b2 for all
n € N, so

|~

12— 22| <b2 —a=(by—an)(bp+a,) < —-4< (5.33)

n

()
SEIES

for all n € Z>;.
By Archimedean property 3, we conclude that 2 — z? = 0, i.e., 22 = 2. ||

5.34 Theorem. Letx € R. Then there is a binary search sequence {[ay, b,|}
in R such that a, € Q and b, € Q for all n, and such that {[an,b,]} — x.

Proof: T will suppose x > 0. The case where x < 0 is left to you. By
the Archimedean property of R, there is an integer N such that N > z, so
x € [0, N]. Now build a binary search sequence {[a,, b,]} as follows:

[ao,bo] = [O,N]
|an, 22tte] if @ < [2ntta]
[%”bn] if 7 > [an+bn].

[ant1, Dpg1]

2

by — ag

n

From the construction, we have a, < a,41 < b1 < b, and b, — a, =

A simple induction argument shows that a, € Q and b, € Q for all n € N,
and an induction proof similar to the one in example 5.16 shows that
an <z < by for all n € N so {[an, b,]} = . |
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5.3 Existence of Roots

5.35 Definition (Graph.) Let f: A — B be a function. The graph of f is

{(a,b) € Ax B:b= f(a)}.

5.36 Remark. If f is a function from R to R, then graph f is

{(z,y) € R%:y = f(2)}.

You may find it useful to think of R as points on a line, and R? as points in
a plane and to represent the graph by a picture. Any such picture is outside
the scope of our formal development, but I will draw lots of such pictures
informally.

-1 0 1 2
graph of f where f(z) = 2? for x € (-1, 2).

5.37 Definition (Sum and product of functions.) Let F be a field, and
let « € F. Let A, B be sets and let f: A — F,g: B — F be functions. We

define functions f +g¢, f — g, f - ¢, af and = by:
g

f+9gANB = F (f+9)(a) = f(a)+ g(a) for alla € AN B.
f—9gANB—=F (f —g9)(a) = f(a) — g(a) for all a € AN B.
f-9:(ANB) - F (f-9)(a) = f(a)-g(a) for all a € AN B.

Q

aftA— F (af)(a) = a- f(a) for all a € A.
I, / a @ora a
Do F <g>()_g(a)f llaeD.

where D = {z € AN B:g(z) # 0}.
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5.38 Remark. Let F' be afield, let S be aset, and let f:S — F, g:S — F
be functions with the same domain. Then the operations +, -, — are binary op-
erations on the set S of all functions from S to F'. These operations satisfy the
same commutative, associative and distributive laws that the corresponding
operations on F' satisfy; e.g.,

f-(g+h)=f-g+ f-hforall fig,heS. (5.39)

Proof of (5.39). For all z € S,

(f - (g+h)(z)

= (f-9)(2)
((f-9)

Hence, f-(g+h) = (f-g)+ (f - h). (Two functions are equal when they have
the same domain, the same codomain, and the same rule.) ||

5.40 Definition (Increasing and decreasing.) Let J be an interval in R
and let f: J — R. We say

f is increasing on J if for all s,t € J (s <t = f(s) < f(t)).
f is strictly increasing on J if for all s,t € J (s <t = [f(s) < f(1)).
f is decreasing on J if for all s,t € J (s <t = f(s) > f(t)).
f is strictly decreasing on J if for all s,t € J (s <t = f(s) > f(t)).

5.41 Remark. Since s = t = f(s) = f(t), we can reformulate the
definitions of increasing and decreasing as follows:

f is increasing on J if for all s,t € J (s <t = f(s) < f(¢)).

f is decreasing on J if for all s,t € J (s <t = f(s) > f(t)).
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increasing function decreasing function neither increasing
nor decreasing

5.42 Exercise. Is there a function f: R — R that is both increasing and
decreasing? If the answer is yes, give an example. If the answer is no, explain
why not.

5.43 Exercise. Give an example of a function f:R — R such that f is
increasing, but not strictly increasing.

5.44 Exercise. Let f: R — R and g: R — R be increasing functions. Either
prove that f + ¢ is increasing or give an example to show that f + g is not
necessarily increasing

5.45 Exercise. Let f:R — R and ¢g:R — R be increasing functions.
Either prove that f - g is increasing or give an example to show that f - g is
not necessarily increasing.

5.46 Theorem. Let m € Z>1, leta € R, a > 1. Then a™ > a.
The proof is by induction, and is omitted.

5.47 Theorem. Let m € Zsy. Let fy,(x) = 2™ for all z € [0,00) in R.
Then f,, is strictly increasing on [0, 00).

Proof: The proof follows from induction on m or by factoring 2™ — y™, and is
omitted.
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5.48 Exercise. Let J be an interval in R and let f:JJ — R be a strictly
increasing function on J. Show that for each a € R the equation f(z) = a has
at most one solution z in J.

5.49 Theorem. Letp € Zs, and let a € [0,00) in R. Then there is a
unique ¢ € [0,00) in R such that

& =a.

Proof: First I will construct a binary search sequence {[a,, b,]} in R such that
ab <a < foralln € N.

By completeness of R, I'll have {[a,, b,]} — ¢ for some ¢ € R. I'll show ¢ = a,
and the proof will be complete.
Let [ag, bo] = [0, (1 + a)]. Then

ap=0<a<(l+a)<(l+a)=0.
For n € N, define
[an, —”"+b“] if (—“”;’b")p >a

2
. p
[entte b, ] if (222)” <

[Ont1, bnta] = {

The proof that {[a,, b,]} is a binary search sequence and that a? < a < bP for
all n € N is the same as the proof given in example 5.16 for « = p = 2, and
will not be repeated here. By completeness {[a,,b,]} — ¢ for some ¢ € R.
Since 0 < a,, < ¢ < by, we have a? < P < P, It follows that

la — P| < b —al for all n € N.

By the formula for factoring b — a? (cf. (3.78)), we have

p—l ) p=1 .
o= < (bn—an) Y 0hah™ T < (by —an) D_UAHT
j=0 =
b — b _ bp 1
= (b, — an)pbﬁ—1 < 02n“0 _pbg—l < (bo ar(:)p 4

for all n € Z>;. By Archimedean property 3 (cf corollary 5.28), it follows that
a—c?=0,iec® =a.

Let f,(x) = 2. Since f, is strictly increasing on R, it follows from exercise
5.48 that 2P = @ has at most one solution in R and this completes the proof
of the theorem. ||
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5.50 Notation (a%.) If p € Zs; and a € [0,00), then the unique number ¢
1

in [0, co0) such that ¢® = a is denoted by a?, and is called the pth root of a. An

alternative notation for a? is \/a.

5.51 Exercise. Let a € [0,00), let ¢,7 € Z>4, and let p,s € Z.
a) Show that (a%)p = (ap)%.

b) Show that ifg = ;, then (aé)p = (a%)s.

5.52 Definition (a".) If a € R" and r € Q we define a" = (a%)p where
g€ Zs,p€Zandr= P The previous exercise shows that this definition
does not depend on what representation we use for writing 7.

5.53 Theorem (Laws of exponents.) Foralla,b € [0,00) and allr,s € Q,

a) (ab)" =a’b".
b) a"a® =a"ts.

c) (a)® = alm.

p

u
Proof: [of part b)] Let r = =, s = — where u, v are integers and ¢, v are positive
q v

integers. Then (by laws of exponents for integer exponents),

(aras)q.v — (agi .a%)q-v _ (ag)(q.v) ‘ (a%)(q.v)
= (@) (@2)7) 7= @ a2y = aman

ap'u—l—uq .

Also,

e

(@™t = (a(§+ )) qv
_ (a(’”’;—;‘q)) @ = ((abv+0) &) o

= Pt

Hence, (a"a®)?% = (a"**)??, and hence a"a® = a"** by uniqueness of ¢ -v roots.
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5.54 Exercise. Prove parts a) and c) of theorem 5.53.
5.55 Entertainment. Show that of the two real numbers
VEI+VBH Y2 -VB I+ VB /8B,

one is in Q, and the other is not in Q.

5.56 Note. The Archimedean property was stated by Archimedes in the
following form:

-- - the following lemma is assumed: that the excess by which the
greater of (two) unequal areas exceeds the less can, by being added
to itself, be made to exceed any given finite area. The earlier
geometers have also used this lemma.[2, p 234]

Euclid indicated that his arguments needed the Archimedean property by
using the following definition:

Magnitudes are said to have a ratio to one another which are ca-
pable, when multiplied, of exceeding one another.[19, vol 2, p114]

Here “multiplied” means “added to itself some number of times”, i.e. “multi-
plied by some positive integer”.

Rational exponents were introduced by Newton in 1676.

3,a4, etc., for aa, aaa, aaaa, etc., so I

Since algebraists write a2, a
.1 s s S R A
write a2,a?,a3, for \/a,v/a?, /ca®; and I write a ', a 2,03, etc.

for 1, L L “etc.[14, vol 1, p355]
Here v/ca denotes the cube root of a.

Buck’s Advanced Calculus[12, appendix 2] gives eight different characteri-
zations of the completeness axiom and discusses the relations between them.

The term completeness is a twentieth century term. Older books speak
about the continuity of the real numbers to describe what we call completeness.



