Chapter 7

Still More Area Calculations

7.1 Area Under a Monotonic Function

7.1 Theorem. Let f be a monotonic function from the interval $[a, b]$ to $\mathbf{R}_{\geq 0}$. Let $\left\{P_{n}\right\}$ be a sequence of partitions of $[a, b]$ such that $\left\{\mu\left(P_{n}\right)\right\} \rightarrow 0$, and let

$$
A_{a}^{b} f=\alpha\left\{(x, y) \in \mathbf{R}^{2}: a \leq x \leq b \text { and } 0 \leq y \leq f(x)\right\}
$$

Then

$$
\left\{\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\} \rightarrow A_{a}^{b} f
$$

and

$$
\left\{\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)\right\} \rightarrow A_{a}^{b} f .
$$

(The notation here is the same as in theorem 5.40 and exercise 5.47.)
Proof: We noted in theorem 5.40 and exercise 5.47 that

$$
\begin{equation*}
0 \leq \alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right) \leq \mu\left(P_{n}\right) \cdot|f(b)-f(a)| . \tag{7.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
\lim \left\{\mu\left(P_{n}\right) \cdot|f(b)-f(a)|\right\} & =|f(b)-f(a)| \lim \left\{\mu\left(P_{n}\right)\right\} \\
& =|f(b)-f(a)| \cdot 0=0,
\end{aligned}
$$

we conclude from the squeezing rule that

$$
\begin{equation*}
\lim \left\{\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\}=0 \tag{7.3}
\end{equation*}
$$

We also have by (5.43) that

$$
\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right) \leq A_{a}^{b} f \leq \alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)
$$

so that

$$
0 \leq A_{a}^{b} f-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right) \leq \alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)
$$

By (7.3) and the squeezing rule

$$
\lim \left\{A_{a}^{b} f-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\}=0
$$

and hence

$$
\lim \left\{\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\}=A_{a}^{b} f .
$$

Also,

$$
\begin{aligned}
\lim \left\{\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)\right\}= & \lim \left\{\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)+\left(\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right)\right\} \\
= & \lim \left\{\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\} \\
& \quad+\lim \left\{\left(\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)-\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right)\right\} \\
= & A_{a}^{b} f+0=A_{a}^{b} f . \|
\end{aligned}
$$

7.4 Definition (Riemann sum). Let $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition for an interval $[a, b]$. A sample for P is a finite sequence $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ of numbers such that $s_{i} \in\left[x_{i-1}, x_{i}\right]$ for $1 \leq i \leq n$. If f is a function from $[a, b]$ to \mathbf{R}, and P is a partition for $[a, b]$ and S is a sample for P, we define

$$
\sum(f, P, S)=\sum_{i=1}^{n} f\left(s_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

and we call $\sum(f, P, S)$ a Riemann sum for f, P and S. We will sometimes write $\sum([f(t)], P, S)$ instead of $\sum(f, P, S)$.
7.5 Example. If f is an increasing function from $[a, b]$ to $\mathbf{R}_{\geq 0}$, and $P=\left\{x_{0}, \cdots, x_{n}\right\}$ is a partition of $[a, b]$, and $S_{l}=\left\{x_{0}, \cdots, x_{n-1}\right\}$, then

$$
\sum\left(f, P, S_{l}\right)=\alpha\left(I_{a}^{b}(f, P)\right)
$$

If $S_{r}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, then

$$
\sum\left(f, P, S_{r}\right)=\alpha\left(O_{a}^{b}(f, P)\right)
$$

If $S_{m}=\left\{\frac{x_{0}+x_{1}}{2}, \cdots, \frac{x_{n-1}+x_{n}}{2}\right\}$ then

$$
\sum\left(f, P, S_{m}\right)=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(x_{i}-x_{i-1}\right)
$$

is some number between $\alpha\left(I_{a}^{b}(f, P)\right)$ and $\alpha\left(O_{a}^{b}(f, P)\right)$.
7.6 Theorem (Area theorem for monotonic functions.) Let f be a monotonic function from the interval $[a, b]$ to $\mathbf{R}_{\geq 0}$. Then for every sequence $\left\{P_{n}\right\}$ of partitions of $[a, b]$ such that $\left\{\mu\left(P_{n}\right)\right\} \rightarrow 0$, and for every sequence $\left\{S_{n}\right\}$ where S_{n} is a sample for P_{n}, we have

$$
\left\{\sum\left(f, P_{n}, S_{n}\right)\right\} \rightarrow A_{a}^{b} f
$$

Proof: We will consider the case where f is increasing. The case where f is decreasing is similar.

For each partition $P_{n}=\left\{x_{0}, \cdots, x_{m}\right\}$ and sample $S_{n}=\left\{s_{1}, \cdots, s_{m}\right\}$, we have for $1 \leq i \leq m$

$$
\begin{aligned}
x_{i-1} \leq s_{i} \leq x_{i} & \Longrightarrow f\left(x_{i-1}\right) \leq f\left(s_{i}\right) \leq f\left(x_{i}\right) \\
& \Longrightarrow f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right) \leq f\left(s_{i}\right)\left(x_{i}-x_{i-1}\right) \leq f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) .
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{m} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right) \leq \sum_{i=1}^{m} f\left(s_{i}\right)\left(x_{i}-x_{i-1}\right) \leq \sum_{i=1}^{m} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right),
$$

i.e.,

$$
\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right) \leq \sum\left(f, P_{n}, S_{n}\right) \leq \alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)
$$

By theorem 7.1 we have

$$
\left\{\alpha\left(I_{a}^{b}\left(f, P_{n}\right)\right)\right\} \rightarrow A_{a}^{b} f
$$

and

$$
\left\{\alpha\left(O_{a}^{b}\left(f, P_{n}\right)\right)\right\} \rightarrow A_{a}^{b} f
$$

so by the squeezing rule,

$$
\left\{\sum\left(f, P_{n}, S_{n}\right)\right\} \rightarrow A_{a}^{b} f
$$

7.2 Calculation of Area under Power Functions

7.7 Lemma. Let r be a rational number such that $r \neq-1$. Let a be a real number with $a>1$. Then

$$
A_{1}^{a}\left[t^{r}\right]=\left(a^{r+1}-1\right) \lim \left\{\frac{a^{\frac{1}{n}}-1}{a^{\frac{r+1}{n}}-1}\right\} .
$$

(For the purposes of this lemma, we will assume that the limit exists. In theorem 7.10 we will prove that the limit exists.)

Proof: Let n be a generic element of \mathbf{Z}^{+}. To simplify the notation, I will write

$$
p=a^{\frac{1}{n}},(\text { so } p>1)
$$

Let

$$
P_{n}=\left\{1, a^{\frac{1}{n}}, a^{\frac{2}{n}}, \cdots, a^{\frac{n}{n}}\right\}=\left\{1, p, p^{2}, \cdots, p^{n}\right\}=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right\}
$$

and let

$$
S_{n}=\left\{1, p, p^{2}, \cdots, p^{n-1}\right\}=\left\{s_{1}, s_{2}, s_{3} \cdots, s_{n}\right\} .
$$

Then for $1 \leq i \leq n$

$$
x_{i}-x_{i-1}=p^{i}-p^{i-1}=p^{i-1}(p-1),
$$

so

$$
\mu\left(P_{n}\right)=p^{n-1}(p-1) \leq p^{n}(p-1)=a\left(a^{\frac{1}{n}}-1\right) .
$$

It follows by the nth root rule (theorem 6.48) that $\left\{\mu\left(P_{n}\right)\right\} \rightarrow 0$. Hence it follows from theorem 7.6 that

$$
\begin{equation*}
A_{1}^{a}\left[t^{r}\right]=\lim \left(\sum\left(\left[t^{r}\right], P_{n}, S_{n}\right)\right) \tag{7.8}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum\left(\left[t^{r}\right], P_{n}, S_{n}\right) & =\sum_{i=1}^{n} s_{i}^{r}\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n}\left(p^{(i-1)}\right)^{r} p^{i-1}(p-1)
\end{aligned}
$$

$$
\begin{align*}
& =(p-1) \sum_{i=1}^{n}\left(p^{r+1}\right)^{(i-1)} \tag{7.9}\\
& =(p-1)\left(\frac{p^{(r+1) n}-1}{p^{r+1}-1}\right)=\left(\left(p^{n}\right)^{r+1}-1\right)\left(\frac{p-1}{p^{r+1}-1}\right) \\
& =\left(a^{r+1}-1\right) \frac{\left(a^{\frac{1}{n}}-1\right)}{\left(a^{\frac{r+1}{n}}-1\right)}
\end{align*}
$$

Here we have used the formula for a finite geometric series. Thus, from (7.8)

$$
\begin{aligned}
A_{1}^{a}\left[t^{r}\right] & =\lim \left\{\left(a^{r+1}-1\right) \frac{\left(a^{\frac{1}{n}}-1\right)}{\left(a^{\frac{r+1}{n}}-1\right)}\right\} \\
& =\left(a^{r+1}-1\right) \lim \left\{\frac{a^{\frac{1}{n}}-1}{a^{\frac{r+1}{n}}-1}\right\} . \|
\end{aligned}
$$

Now we want to calculate the limit appearing in the previous lemma. In order to do this it will be convenient to prove a few general limit theorems.
7.10 Theorem. Let $\left\{x_{n}\right\}$ be a sequence of positive numbers such that $\left\{x_{n}\right\} \rightarrow 1$ and $x_{n} \neq 1$ for all $n \in \mathbf{Z}^{+}$. Let β be any rational number. Then

$$
\left\{\frac{x_{n}^{\beta}-1}{x_{n}-1}\right\} \rightarrow \beta
$$

Proof: Suppose $x_{n} \neq 1$ for all n, and $\left\{x_{n}\right\} \rightarrow 1$.
Case 1: Suppose $\beta=0$. Then the conclusion clearly follows.
Case 2: Suppose $\beta \in \mathbf{Z}^{+}$. Then by the formula for a geometric series

$$
\frac{x_{n}^{\beta}-1}{x_{n}-1}=1+x_{n}+\cdots+x_{n}^{\beta-1}
$$

By the sum theorem and many applications of the product theorem we conclude that

$$
\begin{aligned}
\lim \left\{\frac{x_{n}^{\beta}-1}{x_{n}-1}\right\} & =\lim \{1\}+\lim \left\{x_{n}\right\}+\cdots+\lim \left\{x_{n}^{\beta-1}\right\} \\
& =1+1+1+\cdots+1 \\
& =\beta
\end{aligned}
$$

Case 3: Suppose $\beta \in \mathbf{Z}^{-}$. Let $\gamma=-\beta$. Then $\gamma \in \mathbf{Z}^{+}$, so by Case 2 we get

$$
\begin{aligned}
\lim \left\{\frac{x_{n}^{\beta}-1}{x_{n}-1}\right\} & =\lim \left\{\frac{x_{n}^{\gamma}\left(x_{n}^{\beta}-1\right)}{x_{n}^{\gamma}\left(x_{n}-1\right)}\right\}=\lim \left\{\frac{1-x_{n}^{\gamma}}{x_{n}^{\gamma}\left(x_{n}-1\right)}\right\} \\
& =\lim \left\{\frac{1}{-x_{n}^{\gamma}}\left(\frac{x_{n}^{\gamma}-1}{x_{n}-1}\right)\right\} \\
& =\lim \left\{\frac{1}{-x_{n}^{\gamma}}\right\} \lim \left\{\frac{x_{n}^{\gamma}-1}{x_{n}-1}\right\} \\
& =\frac{1}{-1} \cdot \gamma=-\gamma=\beta .
\end{aligned}
$$

Case 4: Suppose $\beta=\frac{p}{q}$ where $q \in \mathbf{Z}^{+}$and $p \in \mathbf{Z}$. Let $y_{n}=x_{n}^{\frac{1}{q}}$. Then

$$
\frac{x_{n}^{\beta}-1}{x_{n}-1}=\frac{x_{n}^{\frac{p}{q}}-1}{x_{n}-1}=\frac{y_{n}^{p}-1}{y_{n}^{q}-1}=\frac{\left(\frac{y_{n}^{p}-1}{y_{n}-1}\right)}{\left(\frac{y_{n}^{q}-1}{y_{n}-1}\right)} .
$$

Now if we could show that $\left\{y_{n}\right\} \rightarrow 1$, it would follow from this formula that

$$
\lim \left\{\frac{x_{n}^{\beta}-1}{x_{n}-1}\right\}=\frac{\lim \left\{\frac{y_{n}^{p}-1}{y_{n}-1}\right\}}{\lim \left\{\frac{y_{n}^{q}-1}{y_{n}-1}\right\}}=\frac{p}{q}=\beta
$$

The next lemma shows that $\left\{y_{n}\right\} \rightarrow 1$ and completes the proof of theorem 7.10 .
7.11 Lemma. Let $\left\{x_{n}\right\}$ be a sequence of positive numbers such that $\left\{x_{n}\right\} \rightarrow 1$, and $\left\{x_{n}\right\} \neq 1$ for all $n \in \mathbf{Z}^{+}$. Then for each q in $\mathbf{Z}^{+},\left\{x_{n}^{\frac{1}{q}}\right\} \rightarrow 1$.

Proof: Let $\left\{x_{n}\right\}$ be a sequence of positive numbers such that $\left\{x_{n}\right\} \rightarrow 1$. Let $y_{n}=x_{n}^{\frac{1}{\bar{q}}}$ for each n in \mathbf{Z}^{+}. We want to show that $\left\{y_{n}\right\} \rightarrow 1$. By the formula for a finite geometric series

$$
1+y_{n}+\cdots+y_{n}^{q-1}=\frac{\left(1-y_{n}^{q}\right)}{1-y_{n}}=\frac{\left(1-x_{n}\right)}{1-y_{n}}
$$

so

$$
\left(1-y_{n}\right)=\frac{\left(1-x_{n}\right)}{1+y_{n}+\cdots+y_{n}^{q-1}} .
$$

Now

$$
0 \leq\left|1-y_{n}\right|=\frac{\left|1-x_{n}\right|}{\left|1+y_{n}+\cdots+y_{n}^{q-1}\right|}=\frac{\left|1-x_{n}\right|}{1+y_{n}+\cdots+y_{n}^{q-1}} \leq\left|1-x_{n}\right|
$$

Since $\left\{x_{n}\right\} \rightarrow 1$, we have $\lim \left\{\left|1-x_{n}\right|\right\}=0$, so by the squeezing rule $\lim \left\{\left|1-y_{n}\right|\right\}=0$, and hence

$$
\lim \left\{y_{n}\right\}=1 . \|
$$

7.12 Lemma (Calculation of $A_{1}^{b}\left[t^{r}\right]$.) Let b be a real number with $b>1$, and let $r \in \mathbf{Q} \backslash\{-1\}$. Then

$$
A_{1}^{b}\left[t^{r}\right]=\frac{b^{r+1}-1}{r+1} .
$$

Proof: By lemma 7.7,

$$
A_{1}^{b}\left[t^{r}\right]=\left(b^{r+1}-1\right) \lim \left\{\frac{b^{\frac{1}{n}}-1}{b^{\frac{r+1}{n}}-1}\right\}
$$

By theorem 7.10,

$$
\lim \left\{\frac{b^{\frac{1}{n}}-1}{b^{\frac{r+1}{n}}-1}\right\}=\lim \left\{\frac{1}{\frac{b^{\frac{r+1}{n}}-1}{b^{\frac{1}{n}}-1}}\right\}=\frac{\lim \{1\}}{\lim \left\{\frac{b^{++1}}{b^{\frac{1}{n}}-1}\right\}}=\frac{1}{r+1},
$$

and putting these results together, we get

$$
A_{1}^{b}\left[t^{r}\right]=\frac{b^{r+1}-1}{r+1}
$$

7.13 Lemma. Let $r \in \mathbf{Q}$, and let $a, c \in \mathbf{R}^{+}$, with $1<c$. Then

$$
A_{a}^{c a}\left[t^{r}\right]=a^{r+1} A_{1}^{c}\left[t^{r}\right] .
$$

Proof: If

$$
P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}
$$

is a partition of $[1, c]$, let

$$
a P=\left\{a x_{0}, a x_{1}, \ldots, a x_{n}\right\}
$$

be the partition of $[a, c a]$ obtained by multiplying the points of P by a. Then

$$
\begin{equation*}
\mu(a P)=a \mu(P) \tag{7.14}
\end{equation*}
$$

If

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

is a sample for P, let

$$
a S=\left\{a s_{1}, a s_{2}, \ldots, a s_{n}\right\}
$$

be the corresponding sample for $a P$. Then

$$
\begin{aligned}
\sum\left(\left[t^{r}\right], a P, a S\right) & =\sum_{i=1}^{n}\left(a s_{i}\right)^{r}\left(a x_{i}-a x_{i-1}\right) \\
& =\sum_{i=1}^{n} a^{r} s_{i}^{r} a\left(x_{i}-x_{i-1}\right) \\
& =a^{r+1} \sum_{i=1}^{n} s_{i}^{r}\left(x_{i}-x_{i-1}\right) \\
& =a^{r+1} \sum\left(\left[t^{r}\right], P, S\right)
\end{aligned}
$$

Let $\left\{P_{n}\right\}$ be a sequence of partitions of $[1, c]$ such that $\left\{\mu\left(P_{n}\right)\right\} \rightarrow 0$, and for each $n \in \mathbf{Z}^{+}$let S_{n} be a sample for P_{n}. It follows from (7.14) that $\left\{\mu\left(a P_{n}\right)\right\} \rightarrow 0$. By the area theorem for monotonic functions (theorem 7.6), we have

$$
\left\{\sum\left(\left[t^{r}\right], P_{n}, S_{n}\right)\right\} \rightarrow A_{1}^{c}\left[t^{r}\right] \text { and }\left\{\sum\left(\left[t^{r}\right], a P_{n}, a S_{n}\right)\right\} \rightarrow A_{a}^{c a}\left[t^{r}\right] .
$$

Thus

$$
\begin{aligned}
A_{a}^{c a}\left[t^{r}\right] & =\lim \left\{\sum\left(\left[t^{r}\right], a P_{n}, a S_{n}\right)\right\} \\
& =\lim \left\{a^{r+1} \sum\left(\left[t^{r}\right], P_{n}, S_{n}\right)\right\}=a^{r+1} \lim \left\{\sum\left(\left[t^{r}\right], P_{n}, S_{n}\right)\right\} \\
& =a^{r+1} A_{1}^{c}\left[t^{r}\right] . \|
\end{aligned}
$$

7.15 Theorem (Calculation of $A_{a}^{b}\left[t^{r}\right]$.) Let $a, b \in \mathbf{R}^{+}$with $a<b$, and let $r \in \mathbf{Q}$. Then

$$
A_{a}^{b}\left[t^{r}\right]= \begin{cases}\frac{b^{r+1}-a^{r+1}}{r+1} & \text { if } r \neq-1 \\ \ln (b)-\ln (a) & \text { if } r=-1\end{cases}
$$

Proof: The result for the case $r=-1$ was proved in theorem 5.76. The case $r \neq-1$ is done in the following exercise.
7.16 Exercise. Use the two previous lemmas to prove theorem 7.15 for the case $r \neq-1$.

Remark: In the proof of lemma 7.7, we did not use the assumption $r \neq-1$ until line (7.9). For $r=-1$ equation (7.9) becomes

$$
\sum\left(\left[t^{-1}\right], P_{n}, S_{n}\right)=n\left(a^{\frac{1}{n}}-1\right) .
$$

Since in this case $\left\{\sum\left(\left[t^{-1}\right], P_{n}, S_{n}\right)\right\} \rightarrow A_{1}^{a}\left[\frac{1}{t}\right]=\ln (a)$, we conclude that

$$
\begin{equation*}
\lim \left\{n\left(a^{\frac{1}{n}}-1\right)\right\}=\ln (a) \text { for all } a>1 \tag{7.17}
\end{equation*}
$$

This formula give us method of calculating logarithms by taking square roots. We know $2^{n}\left(a^{\frac{1}{2^{n}}}-1\right)$ will be near to $\ln (a)$ when n is large, and $a^{\frac{1}{2^{n}}}$ can be calculated by taking n successive square roots. On my calculator, I pressed the following sequence of keys

$$
2 \underbrace{\sqrt{ } \sqrt{ } \cdots \sqrt{ }}_{15 \text { times }}-1=\underbrace{\times 2 \times 2 \cdots \times 2}_{15 \text { times }}=
$$

and got the result 0.693154611 . My calculator also says that $\ln (2)=0.69314718$. It appears that if I know how to calculate square roots, then I can calculate logarithms fairly easily.
7.18 Exercise. Let r be a non-negative rational number, and let $b \in \mathbf{R}^{+}$. Show that

$$
A_{0}^{b}\left[t^{r}\right]=\frac{b^{r+1}}{r+1}
$$

Where in your proof do you use the fact that $r \geq 0$?

