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Abstract

We present empirical evidence that long-term evolution-
ary dynamics fall into three distinct classes, depend-
ing on whether adaptive evolutionary activity is absent
(class 1), bounded (class 2), or unbounded (class 3).
These classes are de�ned using three statistics: diver-
sity, new evolutionary activity (Bedau & Packard 1992),
and mean cumulative evolutionary activity (Bedau et

al. 1997). The three classes partition all the long-
term evolutionary dynamics observed in Holland's Echo
model (Holland 1992), in a random-selection adaptively-
neutral \shadow" of Echo, and in the biosphere as re-

ected in the Phanerozoic fossil record. This classi�-
cation provides quantitative evidence that Echo lacks
the unbounded growth in adaptive evolutionary activity
observed in the fossil record.

Why Classify Evolutionary Dynamics?

We present and illustrate a classi�cation of long-term

evolutionary dynamics. Classi�cations of complex dy-

namical behavior are reasonably familiar, with Wol-

fram's classi�cation of cellular automata rules being one

well-known example (Wolfram 1984), but there are few

attempts to classify the dynamics speci�cally of adap-

tive evolution. Nevertheless, such a classi�cation is at

least implicitly presupposed by the debates in biology

about such issues as the evolution of clay crystallites

(Cairns-Smith 1982; 1985), the evolution of \memes"

(Dawkins 1976), and the increasing complexity of life on

Earth (Gould 1989; McShea 1996; Gould 1996). Like-

wise for claims in arti�cial life about systems exhibiting

\open-ended evolution" or \perpetual novelty" or oper-

ating \far from equilibrium" (Lindgren 1992; Ray 1992;

Holland 1992; 1995; Bedau et al. 1997). Indeed, the

de�ning focus of the �eld of arti�cial life|simulating

and synthesizing systems that behave essentially like liv-

ing systems|implies such a classi�cation. How can we

tell whether arti�cial systems behave relevantly like real

living systems without using at least an implicit classi�-

cation of system behavior?

The classi�cation question arises sharply only when

we have many concrete instances to classify, so our inat-

tention to the classi�cation question was understandable

when we had a sample size of only one|the biosphere.

But the advent of arti�cial life changes this. Scores of ar-

ti�cial evolving systems are now generating many thou-

sands of instances of long-term evolutionary dynamics.

So we now have ample empirical data to tackle the clas-

si�cation question rigorously.

On the basis of studying data from a variety of arti-

�cial life models and from the biosphere, we have con-

cluded that long-term evolutionary dynamics fall into

three di�erent classes. Our procedure here is to de�ne

statistics characterizing evolutionary dynamics and then

use them to de�ne three classes of long-term evolutionary

trends. We then illustrate these classes of evolutionary

dynamics in three systems: Holland's Echo model (Hol-

land 1992; 1995), a random-selection model that shadows

Echo's dynamics, and the Phanerozoic biosphere as re-


ected in the fossil record. We choose these systems

to illustrate the kinds of dynamics because (i) Echo,

among arti�cial life models, is an especially promising

candidate for exhibiting complex adaptive evolutionary

dynamics, (ii) Echo's random-selection shadow provides

an adaptively-neutral null case which highlights adap-

tations in Echo, and (iii) the Phanerozoic fossil record

presents our best evidence about long-term dynamics in

natural evolving systems. We are in the process of classi-

fying many other arti�cial and natural evolving systems.

Evolutionary Activity Statistics

Our classi�cation of evolutionary dynamics is based on

statistics for quantifying adaptive evolutionary phenom-

ena. These statistics have already been applied to vari-

ous evolving systems in various ways for various purposes

(Bedau & Packard 1992; Bedau 1995; Bedau et al. 1997;

Bedau & Brown 1997). This section describes these

statistics with maximal generality and then explains how

they are applied here.

Our evolutionary activity statistics are computed from

data obtained by observing an evolving system. In our

view an evolving system consists of a population of com-

ponents, all of which participate in a cycle of birth, life

and death, with each component largely determined by

inherited traits. (We use this \component" terminology



to maintain enough generality to cover a wide variety

of entities, ranging from individuals alleles to taxonomic

families.) Birth, however, creates the possibility of in-

novations being introduced into the population. If the

innovation is adaptive, it persists in the population with

a bene�cial e�ect on the survival potential of the compo-

nents that have it. It persists not only in the component

which �rst receives the innovation, but in all subsequent

components that inherit the innovation, i.e., in an en-

tire lineage. If the innovation is not adaptive, it either

disappears or persists passively.

Our idea of evolutionary activity is to identify innova-

tions that make a di�erence. Generally we consider an

innovation to \make a di�erence" if it persists and con-

tinues to be used. Counters are attached to components

for bookkeeping purposes, to update each component's

current activity as the component persists and is used.

If the components are passed along during reproduction,

the corresponding counters are inherited with the com-

ponents, maintaining an increasing count for an entire

lineage. Two large issues immediately arise:

1. What should be counted as a component, and what

counts as the addition or subtraction of a compo-

nent from the system? In most evolving systems

components may be identi�ed on a variety of lev-

els. Previous work has studied components on the

level of individual alleles (Bedau & Packard 1992;

Bedau 1995) as well as genotypes (Bedau et al. 1997;

Bedau & Brown 1997) and taxonomic families (Bedau

et al. 1997).

Here we study entire genotypes and taxonomic fam-

ilies. The addition or subtraction of a given compo-

nent consists of the origination or extinction of a given

genotype or taxonomic family. It's natural to choose

genotypes and taxonomic families as components be-

cause adaptive evolution can be expected to a�ect the

dynamics of those entities.

2. What should be a new component's initial contribu-

tion to the evolutionary activity of the system and

how should it change over time? To measure activity

contributions we attach a counter to each component

of the system, ai(t), where i labels the component and

t labels time. These activity counters are purely ob-

servational devices. A component's activity increases

over time as follows, ai(t) =
P

k�t�i(k), where �i(k)

is the activity increment for component i at time k.

Various activity incrementation functions �i(t) can be

used, depending on the nature of the components and

the purposes at hand.

Since genotypes and taxonomic families are compo-

nents in the present context, it's natural to measure

a component's contribution to the system's evolution-

ary activity simply by its age. Everything else being

equal, the more adaptive an innovative genotype or

taxonomic family continues to be, the longer it will

persist in the system. So we choose an activity in-

crementation function that increases a component's

activity counter by one unit for each time step that it

exists:

�i(t) =

�
1 if component i exists at t

0 otherwise
: (1)

Though there are ways to re�ne this simple counting

method (Bedau & Packard 1992; Bedau 1995; Bedau

et al. 1997), this version facilitates direct comparison

with many other systems.

In some contexts activity statistics indicate a system's

adaptive evolutionary dynamics only after the activity

increment �i(t) is normalized with respect to a \neu-

tral" model devoid of adaptive dynamics (Bedau 1995;

Bedau et al. 1997; Bedau & Brown 1997). Here we

address this issue in two di�erent ways. With respect

to taxonomic families in the Phanerozoic biosphere,

we consider this normalization to be accomplished de

facto by the fossil record itself. In our view, the mere

fact that a family appears in the fossil record is good

evidence that its persistence re
ects its adaptive sig-

ni�cance. Signi�cantly maladaptive taxonomic fami-

lies would likely go extinct before leaving a trace in

the fossil record. But measuring evolutionary activ-

ity in Echo data is another matter, because we know

maladaptive genotypes contribute to Echo's activity

data. So, to screen o� the activity of maladaptive

Echo genotypes, we measure evolutionary activity in

a \neutral shadow" of Echo. Then, by comparing the

Echo and neutral shadow data we can tell how much

(if any) of Echo's evolutionary activity is due to the

genotypes' adaptive value. The details of this neutral

screening are explained in subsequent sections.

Now, we can de�ne various statistics based on the com-

ponents in a system and their activity counters. Per-

haps the simplest statistic|because it ignores activity

information|is the system's diversity, D(t), which is

simply the number of components present at time t,

D(t) = #fi : ai(t) > 0g ; (2)

where #f�g denotes set cardinality.
The values of the activity counters of each component

in the system over all time can be collected in the com-

ponent activity distribution, C(t; a), as follows:

C(t; a) =
X
i

�(a� ai(t)) ; (3)

where �(a�ai(t)) is the Dirac delta function, equal to one
if a = ai(t) and zero otherwise. Thus, C(t; a) indicates

the number of components with activity a at time t.

(Normalizing the component activity distribution by the



diversity,
C(t;a)
D(t) , gives the fraction of components in the

population with activity a at time t.)

A measure of the continual adaptive success of the

components in the system at a given time is provided

by the total cumulative evolutionary activity, Acum(t),

which simply sums the evolutionary activity of all the

components at a given time:

Acum(t) =
X
i

ai(t) (4)

!

Z 1

0

aC(t; a) da : (5)

(In practice, we compute activity statistics using the

sum; the integral indicated is obtained in the limit when

activity takes on a continuum of values.) As the integral

shows, you can think about Acum(t) as the mass in the

component activity distribution weighted by its level of

activity. So, the cumulative activity per component, or

mean cumulative evolutionary activity, �Acum(t), is sim-

ply the cumulative evolutionary activity Acum(t) divided

by the diversity D(t):

�Acum(t) =
Acum(t)

D(t)
: (6)

We sometimes refer to mean cumulative evolutionary ac-

tivity simply as \mean activity."

Adaptive innovations correspond to new components


owing into the system and proving their adaptive value

through their persistent activity. Let a0 and a1 de�ne a

strip through the component activity distribution func-

tion, C(t; a), such that activity values a in the range

a0 � a � a1 are among the lowest activity values that

can be interpreted as evidence that a component has

positive adaptive signi�cance. Then, one re
ection of

the rate of the evolution of adaptive innovations is the

new evolutionary activity, Anew(t), which sums the evo-

lutionary activity per component with values between a0

and a1:

Anew(t) =
1

D(t)

X
i;a0�ai(t)�a1

ai(t) (7)

!
1

D(t)

Z a1

a0

C(t; a) da : (8)

We sometimes refer to new evolutionary activity per

component just as \new activity."

Since we view any appearance in the fossil record as

evidence of a taxonomic family's positive adaptive sig-

ni�cance (recall above), we measure new activity in the

fossil record in a strip right along the bottom of the com-

ponent activity distribution. To screen o� the low activ-

ity values which might re
ect maladaptive genotypes in

Echo, we use a \neutral shadow" of Echo to determine

that activity level, a0, at which we can begin to have

con�dence that a component's activity re
ects its posi-

tive adaptive value, and we let a0 and a1 de�ne a small

window surrounding a
0.

There is more than one way to quantify diversity

and evolutionary activity. For example, another use-

ful measure of diversity is the Shannon entropy of the

distribution of sizes of components in the system. In

addition, the choice of what to count as a system's

components a�ects a system's diversity as measured by

D(t). Likewise, the activity statistics are a�ected by

choices about, among other things, what the system's

components are, how to de�ne the component activ-

ity incrementation function, �i(t), where to set a0 and

a1, how to de�ne a \neutral" model, etc. Further-

more, there are other kinds of activity statistics besides

those de�ned here (Bedau & Packard 1992; Bedau 1995;

Bedau & Brown 1997). Our speci�c choices of diversity

and evolutionary activity statistics here is motivated by

the desire to directly compare the adaptive evolutionary

dynamics in Echo and in the Phanerozoic biosphere.

Classes of Evolutionary Dynamics

On the basis of observing evolutionary dynamics from a

variety of arti�cial and natural evolving systems, we have

concluded that there are three fundamentally di�erent

kinds of long-term evolutionary dynamics:

Class 1. No adaptive evolutionary activity: diversityD

is bounded, new activity Anew is zero, and mean ac-

tivity �Acum is zero.

Class 2. Bounded adaptive evolutionary activity: di-

versity D is bounded, new activity Anew is positive,

and mean activity �Acum is bounded.

Class 3. Unbounded adaptive evolutionary activity: di-

versity D is unbounded, new activity Anew is positive,

and mean activity �Acum is bounded. Evolutionary ac-

tivity is growing because D is unbounded, �Acum is

bounded, and total cumulative evolutionary activity,

Acum, is their product.
1

(The Appendix precisely de�nes what we mean by a

statistic being positive or bounded.) The three classes

of evolutionary dynamics apply equally well to arti�cial

and natural evolving systems. Although we sometimes

lack su�cient evidence for an unambiguous classi�ca-

tion, and although the available evidence sometimes is

misleading, we have found that the evolutionary dynam-

ics of any evolving system in which our statistics can be

de�ned will eventually be seen to fall into one of these

three classes.

The classi�cation of a system's evolutionary dynam-

ics depends on certain decisions made when de�ning the

1Unbounded �Acum and bounded (or unbounded) D would
also yield unbounded Acum, but we have never observed such
dynamics.



statistics. In particular, diversity and activity statistics

can be implemented only after the components of a sys-

tem are identi�ed and the activity incrementation func-

tion, �i(t), is de�ned. Thus, a system could exhibit dif-

ferent classes of evolutionary dynamics at di�erent levels

of analysis (say, the genetic and the phenotypic levels).

The three classes of evolutionary dynamics are not

logically exhaustive. Other classes of long-term evo-

lutionary dynamics can be de�ned, such as a system

showing bounded diversity, zero new activity, and un-

bounded mean activity, or a system showing bounded

diversity, positive new activity, and unbounded mean ac-

tivity. And, in fact, some evolving systems do appear to

exhibit these two kinds of dynamics. However, when a

system has evolved long enough to reveal its long-term

evolutionary dynamics, and when its evolutionary ac-

tivity data is appropriately normalized with a neutral

model, we have always found its behavior to fall into

one of the classes 1-3. (If further study were to reveal

the need for additional classes of evolutionary dynamics,

they should be de�nable with our statistics.)

In the �rst instance, our classi�cation applies to the

evolutionary dynamics in a given run of a given system.

But if di�erent runs of the same system at the same spot

in parameter space all exhibit the same class of evo-

lutionary dynamics, then the classi�cation is a generic

property of that system at that place in parameter space.

Further, if the same class of evolutionary dynamics is

exhibited by a system across a large area of parameter

space, then the classi�cation is even more generic. When

adjacent regions in parameter space have di�erent kinds

of generic evolutionary dynamics, an important question

is to identify and explain the line demarking these dy-

namics. Finally, a class of evolutionary dynamics might

be shared as a generic feature across a large area of pa-

rameter space by a wide class of evolving systems, includ-

ing both those found naturally and those constructed

arti�cially.

The Echo Model

John Holland created Echo in the attempt to produce

a model that would illustrate the creation of complex

structures by natural selection (Holland 1995). Echo's

central explicit focus is to allow natural selection to

shape the strategies by which a population of agents en-

gage in various kinds of interactions. Detailed informa-

tion about the Echo model is available elsewhere (Hol-

land 1992; Jones & Forrest 1993; Holland 1994; Forrest &

Jones 1994; Holland 1995; Hraber, Jones, & Forrest 1997;

SFI 1998).

An Echo world consists of a toroidal lattice of sites,

each site having a resource fountain and a population

of agents. (The Echo runs we describe here consist of

worlds with only one site.) Di�erent letters of the al-

phabet represent di�erent types of resources available in

the world. A �xed amount of resources is distributed to

each site at each time step, and unconsumed resources

accumulate at a site up to a �xed ceiling.

An Echo agent consists of a \chromosome" that is

composed of eleven sub-strings of the world's resources

(letters of the alphabet) together with a reservoir stor-

ing excess resources. The sub-strings of the chromosome

constitute an agent's external tags and internal condi-

tions together with an uptake mask which speci�es what

resources the agent can take up from the environment.

An agent's tags are external in the sense that other

agents have access to them, while an agent's conditions

are inaccessible to other agents. The tags and conditions

are used to determine the outcome of the three types of

interactions that Echo agents can engage in|combat,

trade, and mating. Whether two agents interact and,

if so, what type of interaction they have is determined

by comparing the agents' tags and conditions. A string

match of the appropriate tag and condition causes the

interaction to take place. External tags and internal con-

ditions allow complex (e.g. non-transitive) relationships

to exist between the agents, and it is central to Echo's

endogenous �tness function (a �tness function that is

an emergent property of the environment and the other

agents (Packard 1989)).

The combat interaction gives a good illustration of

how tags and conditions are used. Two individuals en-

gage in combat provided there is a pre�x match between

their combat conditions and the other individuals' of-

fense tag. Each individual's payo� of the combat inter-

action is determined by a calculation based on the letters

in the two individuals' o�ense and defense tags, and the

winner of the combat is chosen probabilistically, based

on the two individuals' relative payo�s. The losing agent

gets a chance to 
ee, and otherwise is killed and loses it

resources to the winner.

Trading and mating interactions use tags and con-

ditions in a related way. Trading takes place if there

is a pre�x match between the trading condition of the

�rst agent and the o�ense tag of the other agent. A

trading interaction between two agents results in each

agent transferring the excess of its trading resource (the

amount of resources in the agent's reservoir over and

above what the it needs for reproduction) to the other

agent. The mating interaction takes place if a bilateral

match is found between the mating tags and conditions

of two agents chosen to interact. The result of a success-

ful mating interaction is more analogous to the types of

genetic exchange seen in bacteria as opposed to sexual

reproduction. The two participating agents exchange

genetic material via crossover (at a random point in the

chromosome) and replace their \parents" in the popula-

tion.

Agents that have acquired enough resources in their

reservoir to copy their chromosome reproduce asexually.



Asexual reproduction is subject to a probability, �, of

a point mutation as well as probabilities of mutation

by crossover and by insertion-deletion within the parent

chromosome. As a part of asexual reproduction, par-

ents give a �xed percentage of the resources remaining

in their reservoir to their o�spring. In addition to gather-

ing resources from the environment, agents lose resources

through a metabolic tax � , as well as by asexual repro-

duction, and they gain and loose resources by �ghting

and trading. The interaction probability, �, determines

the probability that nearby agents will engage in the in-

teractions that a�ect their resource levels. It is mutation

together with the selection pressure due to competition

for resources that drives the evolution of Echo's popula-

tion.

One time step in the Echo model consists of the fol-

lowing cycle of events: A proportion of the agents are se-

lected to undergo interactions and the interactions take

place. Resources at a site are distributed to those agents

that can accept them. Agents are taxed probabilistically.

Some agents are randomly killed and their resources re-

turned to the environment. Agents that have not col-

lected resources migrate to a randomly chosen neighbor-

ing site (in multi-site worlds). Finally, agents that have

acquired su�cient resources reproduce asexually.

Echo's Neutral Shadow

In order to discern which features of Echo's genotype

statistics can be attributable to the genotypes' adap-

tive signi�cance, we created a \neutral shadow" of Echo.

The crucial property of Echo's neutral shadow is that

its evolutionary dynamics are like Echo's except that a

genotype's presence or concentration or longevity in the

shadow population cannot be due to its adaptive signif-

icance.

Echo's neutral shadow consists of a population of nom-

inal \creatures" with nominal \genotypes." A shadow

\creature" has no spatial location and it cannot ingest

resources or interact with other \creatures." All it ever

does is come into existence, perhaps reproduce (perhaps

many times), and go out of existence; its only properties

are its genotype and the times of its birth, reproductions

(if any), and death.

Each Echo run has its own corresponding neutral

shadow run. Changes in the Echo run sometimes

cause corresponding changes in its neutral shadow, but

changes in the neutral shadow never a�ect the run (hence

the \shadow" terminology). The timing and number of

birth and death events in the neutral shadow are directly

copied from those in the normal Echo run, as is the neu-

tral shadow's mutation rate.

When some creature is born in the normal Echo run,

it is time for a birth event in the shadow model, so a

shadow parent chosen at random (with equal probabil-

ity) from the shadow population reproduces. The new

shadow child inherits its parent's genotype unless a mu-

tation gives the child a new, unique genotype. When

some creature dies in the normal Echo run, it is time

for a death event in the shadow model and a \creature"

is chosen at random (with equal probability) from the

shadow population and killed. Thus, all selection in the

neutral shadow is random.

The evolutionary dynamics in a neutral shadow is a

neutral di�usion process in genotype space. Genotypes

arise and go extinct, and their concentrations change

over time, but the genotype dynamics are at best weakly

linked to adaptation through the birth and death rates

determined by adaptation in the normal Echo model.

The birth, reproduction and death statistics that drive

a neutral model \shadow" those of the Echo model, and

those in the Echo model are (typically) a�ected by adap-

tation. Still, properties like the relative longevity and

concentration of a genotype in the neutral shadow can-

not be due to the genotype's adaptive signi�cance. All

selection in the shadow model is random so no geno-

type has any adaptive signi�cance. At the same time,

by precisely mimicing the births, deaths, and mutation

rate in a normal Echo run, the neutral shadow's behavior

helps us to determine which aspects of the behavior of

the normal Echo run can be attributed to the adaptive

signi�cance of genotypes and which might re
ect noth-

ing more than the system's underlying architecture or

chance.

Figure 1 illustrates the di�erence between Echo and

its neutral shadow. The Figure shows a \side view"

of component activity distributions (from the Echo run

and neutral shadow shown in Figure 4). These distri-

butions have been collapsed (summed) along the tem-

poral dimension and then divided by the total number

of counts in both distributions. There is no guarantee

that an Echo run and it's neutral shadow will have the

same number of genotypes. In fact, often the neutral

shadow has more genotypes, since natural selection does

not preferentially preserve those that are well adapted.

By dividing the distributions by the total number of ac-

tivity counts in both distributions, the value of each dis-

tribution at a given activity value a re
ects the fraction

of activity counts in each distribution that have activity

a.

Note that, on average, the activity counters in the

neutral shadow's collapsed activity distribution are lower

than those in Echo's collapsed activity distribution; i.e.,

the distribution is squashed to the left. This is just how

one would expect the neutral shadow's random selection

to a�ect a component activity distribution. By construc-

tion, individuals in Echo and its neutral shadow have the

same birth, reproduction, and death rates, and their mu-

tation rates are the same (indeed, all model parameters

are identical). But while the selective force in the neutral

shadow is entirely random, natural selection can pref-
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Figure 1: Log-log plot of the component activity dis-

tributions for the Echo run shown and neutral shadow

shown in Figure 4, where these distributions have been

collapsed (summed) along the temporal dimension. As

one would expect, the neutral shadow's genotypes show

relatively lower activity. The point at which the distribu-

tions are equal is the activity value at which an activity

count has the same probability of having occurred in the

Echo and neutral shadow distributions. Since these dis-

tributions are equal at activity a
0 = 2:1 � 105, we set

a0 and a1 (used to calculate new activity, Anew) slightly

above and below this value, speci�cally, a0 = 1:7� 105

and a1 = 2:5� 105.

erentially cull poorly adapted genotypes and preserve

well adapted genotypes in Echo. This squashes the low-

activity end of Echo's collapsed distribution and in
ates

its high-activity end. The di�erence between the two

collapsed distributions quanti�es how much natural se-

lection a�ects the activity counts in Echo's component

activity distribution.

The point at which the two distributions have the

same value (i.e., cross) reveals the activity value, a0, at

which an activity count is equally likely to have been

chosen from either distribution. Thus, to calculate new

activity, Anew, we set a0 and a1 slightly above and below

a
0. (Recall our discussion of evolutionary activity statis-

tics above.) Speci�cally, if we let amax be the highest

activity value at which either collapsed distribution is

positive and if we let a0 be the lowest value at which the

two collapsed distributions cross, then we set a0 and a1

to be a0 � (0:05� (amax � a
0)).
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Figure 2: Diversity, new activity, and mean cumulative

activity in the fossil data of Benton and Sepkoski. The

labels at the top of each graph show the boundaries

between the standard geological periods, thus: Cam-

brian, Ordovician, Silurian, Devonian, Carboniferous,

Permian, Triassic, Jurassic, Cretaceous, Tertiary.

The Fossil Data

We used two fossil data sets, each of which indicates the

geological stages or epochs with the �rst and last ap-

pearance of taxonomic families. Benton's data (Benton

1993) covers all families in all kingdoms found in the fos-

sil record, for a total of 7111 families. Sepkoski's data

(Sepkoski 1992) indicates the fossil record for 3358 ma-

rine animal families. The duration of di�erent stages and

epochs varies widely, ranging over three orders of mag-

nitude. In order to assign a uniform time scale to the

fossil data, we used Harland's time scale (Harland et al.

1990) to convert stages and epochs into time indications

expressed in units of millions of years before the present.

We are most interested in classifying long-term trends

among fossil species, but we study fossil families because

much more complete data is available at this level of

analysis (Valentine 1985; Sepkoski & Hulver 1985). Al-

though fossil family data is certainly no precise predictor

of fossil species data, there is evidence that species-level

trends in the fossil record are re
ected at the family level

(see (Valentine 1985) and the references cited therein).

Sepkoski and Hulver ((Sepkoski & Hulver 1985), p. 14)

summarize the situation thus: `Although families do not

display all of the detail of the fossil record, they should be

su�ciently sensitive to show major evolutionary trends

and patterns with characteristic time scales of �ves to

tens of millions of years.' The trends we use to classify

evolutionary dynamics occur in the fossil data on time

scales at least that long.
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Figure 3: Typical diversity, new activity, and mean cu-
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when mutation rate � = 10�2, interaction probabil-

ity � = 0:05, and metabolic tax � = 0:01. Note that

Anew = 0 for both Echo and the neutral shadow and that
�Acum is not signi�cantly higher in Echo than in the neu-

tral shadow. (Here, a0 = 6:4� 103 and a1 = 6:8� 103.)
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Figure 4: Typical diversity, new activity, and mean cu-

mulative activity data from a Echo and a neutral shadow

when mutation rate � = 10�2, interaction probabil-

ity � = 0:85, and metabolic tax � = 0:15. Note that

Anew and �Acum are signi�cantly higher in Echo than

in the neutral shadow. (Here, a0 = 1:7 � 105 and

a1 = 2:5� 105.)

Results

We computed diversity, new activity, and mean cumula-

tive activity in the Benton and Sepkoski fossil data sets

(see Figure 2). We also computed these statistics from

data produced by the Echo model and its neutral shadow

at a variety of places in Echo's parameter space (see Fig-

ures 3 and 4). Comparing the data from Echo and its

neutral shadow allows us to normalize Echo's evolution-

ary activity statistics.

The paucity of earlier fossil data lead us to restrict our

attention to the Phanerozoic fossils, which start with the

Cambrian explosion. The major extinction events, such

as the mammoth one which ends the Permian period,

and the famous K/T extinction which ended the age of

the dinosaurs, are visible in the data. The overall trends

in the fossil statistics are pretty unambiguous: D is un-

bounded, Anew is positive, and �Acum is bounded. Thus

the evolutionary dynamics of the Phanerozoic biosphere

is in class 3.

We examined the evolutionary dynamics of Echo and

its neutral shadow while varying three crucial parame-

ters across their entire viable range. The per-locus mu-

tation rate, �, ranged over 0 � � � 1; the interaction

probability, �, ranged over 0 � � � 1; and the metabolic

tax (metabolic tax), � , ranged over 0 � � � 0:45.

All other Echo parameters were held constant across all

runs. (The CD available with this volume contains the

Echo source code we used, including the parameter �les,

as well as evolutionary activity analysis software.)

To normalize the Echo data by a \neutral" model, we

compare activity data from Echo and its neutral shadow.

Not all of the activity generated by Echo re
ects adap-

tive innovations. In fact, the neutral shadow's activity

shows how much \raw" activity accumulates in a non-

adaptive analogue of Echo. So, we normalize Echo's ac-

tivity data by subtracting the neutral shadow's new or

cumulative activity from that of Echo. If the result is

negligible or negative, then Echo's normalized activity is

nil. Since that level of raw activity has been observed

in the neutral shadow, it is not evidence of the adap-

tive value of Echo's components. On the other hand, if

Echo's level of raw activity is signi�cantly higher than

its neutral shadow, then we have good evidence that this

residue|the normalized new or cumulative activity|

indicates signi�cant new and cumulative adaptive suc-

cess of the system's components.

After making sure that we were observing long-term

trends and properly normalizing the activity data, we

found that Echo's evolutionary dynamics fell into either

class 1 or class 2. Since long-term diversity dynamics

were always bounded, class 3 dynamics never material-

ized.

If the mutation rate was very low (at or near zero),

Echo and its neutral shadow show virtually identical

evolutionary dynamics. Except for 
eeting exceptions



caused by a mutation, only one genotype exists at a time,

so the inde�nite trend is D(t) = 1 and Anew(t) = 0. This

causes the \raw" mean activity to increase with a slope

of unity in both Echo and its neutral shadow, so the

normalized mean activity is zero. Thus, the evolution-

ary dynamics of Echo when � � 0 falls into class 1.

When the mutation rate is very high (at or near

zero), the evolutionary dynamics of Echo and its neutral

shadow are again virtually identical. A child's genotype

is virtually guaranteed to di�er from that of its parent,

so virtually every genotype has only one instance and

D(t) remains very high. Furthermore, those genotypes

that by chance have some adaptive signi�cance have no

chance to leave an imprint on the population, which

means that the collapsed component activity distribu-

tions of Echo and the neutral shadow are virtually iden-

tical. Thus, a0 is set so high that Anew(t) � 0 in both

Echo and the neutral shadow. In addition, the two mod-

els have such similar \raw" mean activity dynamics that

after normalization the consistent trend is �Acum(t) � 0.

Thus, the evolutionary dynamics of Echo when � � 1

falls into class 1.

If the mutation is between these extremes, then the

long-term evolutionary dynamics depend on other sys-

tem parameters. Here we focus on two other parameters:

interaction probability, �, and metabolic tax, � . Previous

work has shown that these parameters are key determi-

nants of evolutionary activity in Echo (Smith 1998). For

example, when both � and � are very low, then even at

moderate mutation rates Echo exhibits behavior remi-

niscent of what happens when the mutation rate is very

high. For example, Figure 3 shows typical long-term

statistical trends in Echo and its neutral model with

� = 0:05 and � = 0:01. The long-term trend is clearly

that diversity is bounded and new activity is zero. Fur-

thermore, since \raw" mean activity is about the same

in Echo and the neutral shadow, normalized mean activ-

ity is approximately zero. This illustrates how, at very

low interaction probability and metabolic tax, Echo has

class 1 evolutionary dynamics regardless of the mutation

rate.

On the other hand, at intermediate mutation rates,

evolutionary activity in Echo increases signi�cantly

within a certain range of interaction probabilities and

metabolic taxes, speci�cally, when 0:5 � � � 1:0 and

0:15 � � � 0:4 (Smith 1998). Some qualitative fea-

tures of the evolutionary dynamics vary with the muta-

tion rate, as one would expect, but those features of the

statistics that determine long-term evolutionary dynam-

ics remain the same. Figure 4 shows typical dynamics of

the statistics from an Echo run and its neutral shadow

within this region of parameter space. First, diversity is

bounded (and signi�cantly higher in the neutral shadow,

as one would expect). Second, both new and mean activ-

ity are positive. Moreover, both are signi�cantly higher

in Echo than in the neutral shadow, so Echo's normal-

ized new and mean activity are positive. Thus, Echo's

long-term evolutionary dynamics fall into class 2.

Finally, it is worth noting that, when normalized, the

neutral shadows themselves have no new or cumulative

evolutionary activity. Since data from a neutral shadow

and its neutral shadow would look alike, subtracting one

from the other would yield nothing. Thus, its normal-

ized new and cumulative activity will be zero. In addi-

tion, since the qualitative shape of a neutral shadow's

diversity dynamic follows that of the Echo run which it

shadows, and since all observed Echo runs show bounded

diversity dynamics, so do all of Echo's neutral shadows.

For this reason, the long-term evolutionary dynamics of

all observed neutral shadows of Echo falls into class 1.

Table 1 summarizes the three classes of evolutionary

dynamics and the examples of each we have observed.

Discussion

Our classi�cation of long-term evolutionary dynamics in

Echo, the neutral shadow, and the biosphere suggests

three main conclusions:

Conclusion 1: New evolutionary activity measures the


ow of adaptive innovations into an evolving system and

mean cumulative evolutionary activity measures the con-

tinual adaptive success of such innovations. The pri-

mary evidence for this is the comparison between Echo

and its neutral shadow and the e�ect of varying key

Echo parameters (mutation rate, probability of interac-

tion, metabolic tax) governing the process of adaptation.

Further evidence supporting this conclusion comes from

comparisons between other arti�cial evolving models and

their neutral shadows (Bedau 1995; Bedau et al. 1997;

Bedau & Brown 1997).

Conclusion 2: Comparison of the long-term evolution-

ary dynamics observed in Echo, its neutral shadow, and

the Phanerozoic biosphere reveals these to be partitioned

into three distinct classes: no adaptive evolutionary ac-

tivity (class 1), bounded adaptive evolutionary activity

(class 2), and unbounded adaptive evolutionary activity

(class 3). All neutral shadow dynamics and some Echo

dynamics fall into class 1, the rest of Echo dynamics fall

into class 2, and only the biosphere dynamics fall into

class 3.

Conclusion 3: If we accept conclusions 1 and 2, then

Echo and the biosphere exhibit qualitatively di�erent

kinds of evolutionary dynamics. In particular, Echo

lacks the unbounded growth in adaptive activity ob-

served in the fossil record.

Classes 1-3 provide a classi�cation of the evolution-

ary dynamics in arti�cial models and natural evolving

systems. These classes have internal quantitative struc-

ture and they can be further subdivided, but we think

that these three classes mark the most fundamental dis-

tinction among adaptive evolutionary dynamics. To be



Evolutionary Statistical Signature

Class Activity D Anew
�Acum Examples

1 none bounded zero zero Echo��0
Echo��1
Echo��0; ��0
all neutral shadows of Echo

2 bounded bounded positive bounded Echo10�4���10�1; 0:5���1:0; 0:15���0:4

3 unbounded unbounded positive bounded Phanerozoic biosphere

Table 1: Classes of evolutionary dynamics and their statistical signatures observed in Echo, Echo's neutral shadow,

and data from the fossil record. The Echo parameters varied in these examples are mutation rate, �, interaction

probability, �, and metabolic tax, � .

sure, detecting these classes requires surmounting some

practical problems. A system must be observed long

enough for long-term trends to reveal themselves, and

seeing a system's speci�cally adaptive evolutionary ac-

tivity might require normalization with a suitable \neu-

tral" model. Nevertheless, the payo� of surmounting

these obstacles is the ability to classify an evolving sys-

tem by reference to an elusive and controversial (Gould

& Lewontin 1979) but central property: the extent to

which adaptations are being created by the process of

evolution.

A weakness with the statistics we use to de�ne classes

1-3 is the \emergence" problem: The statistics can be

applied only after settling what a system's components

are and what counts as their activity, so the statistics

would not directly re
ect the evolutionary innovation of

genuinely novel kinds of system components. The emer-

gence problem does not arise when classifying the fossil

data, because post hoc analysis has identi�ed the rel-

evant system components. Furthermore, with existing

arti�cial life models, our understanding the system usu-

ally allows us to identify the relevant components con�-

dently. Anyway, it's unclear how serious the emergence

problem will prove in practice. On the one hand, as

discussed earlier, evolutionary activity statistics are al-

ways de�ned at a given level of analysis, and we should

not expect to see the evolutionary activity at all levels

with statistics de�ned at one level. On the other hand,

we would often expect to see signi�cant adaptive inno-

vations echoed in activity statistics across many levels.

For example, activity statistics de�ned at the level of in-

dividual cell types in the biosphere would show marked

activity at the origination of multicellular life. So, ac-

tivity statistics de�ned at one level will often indirectly

indicate the emergence of higher levels of adaptive ac-

tivity. The fact that we do not see this sort of signature

in the Echo data indicates that higher levels of adaptive

innovation are probably not occurring.

There are special problems and pitfalls inherent in us-

ing the fossil record to study long-term trends (Raup

1988). In particular, the \pull of the present" is a well-

known sampling bias due to the fact that there are sim-

ply more recent fossils to study than older fossils. Future

work will investigate the extent to which our classi�ca-

tion of the evolutionary dynamics evident in the fossil

record can be supported more rigorously.

Although we focus here only on Echo, its neutral

shadow, and the Phanerozoic biosphere, our methodol-

ogy and conclusions have quite broad import. Some nat-

ural evolving systems probably have class 2 dynamics.

For example, space and time constraints might bound

the adaptive activity of bacterial evolution in a chemo-

stat. Other natural evolving systems probably show

class 3 dynamics. Class 3 dynamics might even be de-

tectable in systems like the global economy or internet

tra�c. We also suspect that no existing arti�cial evolv-

ing system has class 3 dynamics. In our opinion, creat-

ing such a system is among the very highest priorities

of the �eld of arti�cial life. From one perspective, this

is a negative result: Echo, and perhaps all other exist-

ing arti�cial evolutionary systems, apparently lack some

important characteristic of the biosphere|whatever is

responsible for its unbounded growth of adaptive activ-

ity. But at the same time this conclusion calls attention

to the important constructive and creative challenge of

devising an arti�cial model that succeeds where all oth-

ers have failed. Here, again, classes 1-3 show their value,

for they provide a feasible, objective, quantitative test

of success.
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Appendix: De�nitions

In this paper our operational de�nitions of what it is

for a function f(t) to be unbounded or positive are as

follows: The function f(t) is unbounded i�

lim
t!1

�
sup(f(t))

t

�
> 0 ; (9)

where sup(�) is the supremum function. The function

f(t) is positive i�

lim
t!1

 R t
0
f(t)dt

t

!
> 0 : (10)
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