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The quadratic polynomial

Start from

X2+ aX +b=0.

Let X =Y —a/2 to complete the square:
Y2 =rc

Find Y by taking a square root, and then X.



The cubic polynomial

Start from

X34+ aX24+bX +c=0.

Let X =Y —a/3 to complete the cube:

Y34 pY 4g=0.

Let Y =7+ W:
Z3 4+ W34 (BZW +p)(Z+ W) +q=0.

Specialize W = —p/(3Z) so that 3ZW = —p:

3 P3
7> — = 0,
5773 T4
or
3\2 3 p3
A 72>~ _ =0.
(Z°)“+q ~7

Find Z3 by solving a quadratic, then Z by tak-
ing a cube root, then W, then Y, then X.



The quartic polynomial

Complete the fourth power and then slightly
adjust the resulting quartic polynomial with
no X3 term:

X*+2aX%°4a’°X° = (a2 +b)X%2+cX +d,
or

(X° 4 aX)? = (a®°+b)X?+cX +d.

Granting this relation, consider the auxiliary re-
lation

(X2 +aX +Y)2 = (eX + f)2

Because of the relation satisfied by X, the left
side expands to

(a? 4+ b+2Y)X? + (c+2aY)X + (d + Y?),
and the right side to
e’ X2 + 2efX + f°.

(Continued on next slide.)



The quartic polynomial (continued)

So we need

a2 + b+ 2Y = 62,
c+ 2aY = 2ef,
d+Y?=f?
or
(c+2aY)? =4(a®>+ b+ 2Y)(d+ Y?).

Solve this cubic polynomial to find Y, then find
e and f, then we have

X?+aX 4+Y =+(eX + f),

which we can solve for X.



But what on earth is going on?!

This is bad mathematics.

What is the shape of these ideas?

Their scope?

Should we seek ever more Byzantine calcula-
tions with basic algebra and extracting roots in
order to solve polynomials of higher and higher
degree?



Galois: No.

Beyond degree four, such calculations can not
succeed for the general polynomial of degree n.

Galois associated a finite group to each polyno-
mial, and he showed that the polynomial’s solv-
ability is equivalent to a group-theoretic condi-
tion. Then general polynomial of degree n has
group Sp, and S, does not satisfy the group-
theoretic solvability criterion for n > 5.

Galois essentially had to create group theory
to do this, and the scope of his ideas is very
broad.



After Galois: People reduced high-degree poly-
nomials to specific forms and then solved those
specific forms with various transcendental func-
tions (i.e., functions that transcend the mere
algebra of radicals).

Brioschi reduced the general quintic polyno-
mial to the form

bw(T) = T° — 10wT> + 45wT — w?.

In terms of Galois theory, this polynomial is no
simpler than the general quintic polynomial,
but in terms of parameter-count it is much
simpler: its coefficients depend only on the
single symbol w.



Klein observed that a one-parameter environ-
ment with the same group theory as the quintic
polynomial arises naturally from geometry.

First, it is easy to reduce the general poly-
nomial group from S, to A,, SO in particular,
the relevant group for the quintic can be taken
as As.

Second, the icosahedron has five orthogonal
triples of golden rectangles sitting inside it—
or, alternatively, five tetrahedra—and its rota-
tion group is the group of their even permuta-
tions.



(Huh?)



Here is an orthogonal triple of rectangles, each
iIn the golden ratio.

X1

/

The quadratic condition defining the golden
ratio shows that the rectangle corner v has
distance 1 from the other four corners empha-
sized in the picture.



That is, the rectangle corners form the vertices
of an icosahedron.

Indeed, this argument shows that the icosahe-
dron exists.



In the configuration just shown, the rectangle
edges “fill" only six of the icosahedron’s thirty
edges, i.e., one-fifth of them. So in fact there
are five such configurations in the icosahedron.




With a bit of thought, one can convince one-
self that the rotation group of the icosahedron
consists of all even permutations of the five
golden configurations.

Rotate about the center vertex: (1,2,3,4,5).
Rotate about the 1-edge: (2,3) (4,5).

Rotate about the (1,2,4)-triangle: (1,2,4).



The group Ag has order 5!/2 = 60.

Each icosahedral face is left in place by three
rotations, each icosahedral edge is left in place
by two rotations, and each icosahedral vertex
is left in place by five rotations.

So the icosahedron has

60/3 = 20 faces (hence its name),
60/2 = 30 edges, and
60/5 = 12 vertices.

These numbers become coherent in light of
group theory.



Returning to Klein's program: We said. ..

First, it is easy to reduce the general poly-
nomial group from S, to A,, SO in particular,
the relevant group for the quintic can be taken
as As.

Second, the icosahedron has five orthogonal
triples of golden rectangles sitting inside it—
or, alternatively, five tetrahedra—and its rota-
tion group is the group of their even permuta-
tions.

... And now:

Third, projecting the icosahedron radially to
the sphere and then projecting it stereograph-
ically to the extended plane lets all of this ge-
ometry and group theory be expressed and an-
alyzed further in terms of complex analysis.

(Continued on next slide.)



(This figure was created by Josh Levenberg,
a Reed College student who was studying the
Klein material at the time. He used a ray-
tracing program.)



Klein found a rational function f; (of the com-
plex variable Z) that is invariant under the
icosahedral rotation group. Specifically,

£ — (=220 4228215 — 494710 _ 228275 —1)3
L= 172825(Z10 + 1125 — 1)5 '

This function is Klein's icosahedral invariant.

It takes the value oo at the icosahedral vertices,
the value O at the icosahedral face-centers, and
the value 1 at the icosahedral mid-edge points.

It has degree 60, as it must.



Before continuing, here is a little more geom-
etry. As already shown in Josh'’s figure, before
projecting the icosahedron to the plane, we
repositioned it to have vertices at the north
and south poles.

Here is the rotated icosahedron.




Two tetrahedra, one counter to the other, sit
naturally in the rotated icosahedron.




In fact, rather than five golden configurations,
we can embed five tetrahedra in the icosahe-
dron.

A very similar picture would show the coun-
tertetrahedron and its four translates embed-
ded instead.



Klein singled out the tetrahedron with vertex
(1,1,1) (up to scaling). Its rotation group is
a subgroup of the icosahedral rotation group,
naturally isomorphic to A4. The four objects
being permuted here can be viewed the tetra-
hedron vertices, or the tetrahedron faces, or
the four diagonals of the cube whose vertices
form the tetrahedron and countertetrahedron.

Klein computed a complex analytic function
that is invariant under the group of tetrahedral
rotations,

P Z4 4 2iv/322 4+ 1Y
T \z4-2iv/322+1)°

This is Klein’s tetrahedral invariant. Its degree
IS 12, as it must be.



Klein used the transcendental function fl_l (a
1-to-60 multiple-valued function) to solve the
Brioschi quintic, as follows.

Given the Brioschi quintic
buw(T) = T? — 10wT>3 + 45w°T — w?

with the parameter w determining its coeffi-
cients.

e [ he icosahedral inverse gives 60 values z

in f;(w).

e Then fr(z) for these 60 z-values gives 5
t-values.

e [ he Brioschi quintic’s roots are certain ra-
tional functions of the t-values.



For the sextic (degree 6) polynomial, an ana-
logue of the icosahedron exists in two-dimensional
complex projective space, and its rotation group
IS A6-

The general sextic reduces to a two-parameter
form, which can be solved by geometric meth-
ods analogous to Klein's icosahedron techniques
for the quintic. Fricke did so early in the 20th
century.



Returning to Klein, he expressed his transcen-
dental function f;l in two ways:

e uUSing hypergeometric series,
e using elliptic modular functions.

Another way to construct transcendental func-
tions is by iteration, a process ideally suited for
computers.

Doyle and McMullen showed how to solve the
quintic by iteration in a late-1980’'s paper.



Newton’s method for nth roots

Solve the equation

p(T)=0
where

o(T) =T" — 1.

Newton: Define

_+  p(T)
f(T)=T (D)

_(n—-1)T"+1

o nTn—1 '

Iterate f. That is, take an initial guess tg, and
then let

t1 = f(to), to= f(t1), etc.

For “every” initial guess, the iteration will con-
verge to some nth root of 1.



A family of related problems

Solve the equation

pw(T) =0
where

pw(T) =T" — w.

Newton: Define

T pw(T)
Fo(l) =T Py (T)

_ (n-1)T" 4w

- nTn—1 .

For that matter, treat the parameter w as an-
other formal symbaol,

(n—1D)T"4+W
nTn—1 '

Py (T) =

(Continued on next slide.)



The sets

{nth roots of w}
and

{nth roots of 1}

are the same shape. Dividing the first point-
wise by any of its elements gives the second.



To express this in formal symbols, introduce Z
where Z™ = W, and define

T
¢Z(T) — E)
so that
¢, (T) = ZT.
(So,

e W is a formal symbol for the problem-parameter,

e 7 is a formal symbol for a root,

e T is a formal symbol for the iteration-variable.)



Then a direct calculation shows that

Fyy (T) = (¢, o f 0 o) (T).

That is, the general W-parameterized itera-
tion equals a Z-parameterized conjugate of one
model iteration.

And so, since f is generally convergent, so is
Fyy.

Whatever else it may accomplish, iteration
subsumes adjoining radicals.



Here is a schematic of the configuration.

t




Each vertical section is the iteration environ-
ment for one value of the parameter w. The
vertical sections all look the same, and the gen-
eral iteration consists of conjugating to one
particular vertical section, iterating there, and
then conjugating back. In symbols,

Fi(T) = (¢ 0 fTogz)(T), j>1.

But this is all invisible to us computationally!
We don’'t know z. We just iterate Fy, happily.



Still, study the situation a bit further.

Since qb}lfqbz depends only on W = Z", neces-
sarily for k =0,1,...,n—1 (letting ¢ = e27/n),

b7 fb7= 05, bz

Thatis, for k=0,1,...,n—1,

p(k) " fo(k) = f,

where
p(k) = dery - b7
i.e.,
1 T
p(k)(T) = C"“—Z 2T = C—k

That is, p is a representation from Z/nZ to the
automorphism group of 1T-space.

Each p(k) is an automorphism of T-space that
commutes with the iteration model f.



These ideas are quite general.

Suppose that we have symbols Wq,..., W, and
Z1,...,%m, Where we think of the W's as known
parameters for a family of polynomials, and as
the Z’'s as the corresponding unknown roots.
Let Z be shorthand for (Zq,...,Zmy) and simi-
larly for W. Assume that C(Z) is Galois over
C(W) with Galois group I.



Suppose also that we have

e A model iteration

f e C(T).

e A conjugating transformation

¢z(T) € C(2)(T).

e A representation (injective homomorphism)

p: T — Aut(PLQ).

(Continued on next slide.)



Our model iteration f, our conjugating trans-
formation ¢z, and our representation p are as-
sumed to satisfy the following conditions:

® ¢ (z) = ¢z op(y) for all v,

o p(v)"1fp(y) = f for all 4,

e f is generally convergent.

Then the conjugate

F(T) = (¢, fb2)(T)

lies in C(W)(T) (i.e., we can compute it), and
It is generally convergent.



McMullen showed that the converse holds too.

If Fyyy(T) is generally convergent, then it takes
the form

Fiy = ¢, foz

for f, ¢z, and p= ¢,z 0¢,_1 as above.

This is exciting because it is predictive. It tells
us what generally convergent algorithms can
exist. And then to search for them, we take a
representation p and try to find f and ¢ that
commute with p suitably.



Klein's Theorem: Representations

p: I — Aut(PlO)

can exist only for

= C),, cyclic group,

[ = D, dihedral group,

[ = A, tetrahedral group,

[ =S54 octahedral group,

[ = Ag icosahedral group — bingo!



Doyle and McMullen used Klein's icosahedral
calculations to find a model iteration f and a
conjugating transformation ¢ for p : Ag —
7.

Recall that W is the Brioschi parameter, de-
scribing the Brioschi quintic

by (T) = T° — 10WTS3 + 45W2T — W72,
and Z is related to W by the condition

f1(Z) =Ww.

Doyle and McMullen expressed the composi-
tion
F(T) = (¢  foz)(T)

as an element of C(W)(T), and thereby solved
the Brioschi quintic by iteration.



The model for the Brioschi quintic iteration:

Tl 4+ 6670 — 11T

T) = — .
f11(T) 11710 4 6675 — 1




Solution of the Brioschi quintic

Define parameterized polynomials

hem(T) = 91125W°
+ (~13365077 + 615607 — 193536)W°
+ (—66825T* + 14256073 + 13305672
— 614407 + 102400)W*
+ (5940T° + 4752T° + 633607
— 140800T3)W3
+ (—14857° 4 3168T" — 105607T°)W?
+ (—66T10 + 4407 W + T12

and

ke (T) = 100W (W — 1)
[(1215T — 648)W*
+ (—540T73 — 21672 — 1152T + 640)W3
+ (378T° — 504T* + 960T3)W?2
+ (3677 — 168TOYW — T9].



To solve any specific Brioschi quintic
bw(T) = T° — 10wT>3 + 45w°T — w?, w e C,

proceed as follows.

o Let w=1-—- 1728w and specialize h and k&
to hgz(T) and kg (T), polynomials in C[T].

e Iterate the rational function

hg(T)
/

R (T)

an even number of times on a random ini-

tial guess ¢t until the iteration converges to
some value t1. Set to = F5;(t1).

F:(T) =T —12 e C(T)

o Set

_ kp(t2)
hg(t2)

ko (t1)
p1 =

= and o
hg(t1)



T hen

9 —1v15 +9—|—i\/15
S1 = ,
1 90 H1 90 159
and
94 i:v15 +9—i\/15
SHn —
2 90 M“1 90 19

are a pair of Brioschi roots.

Finding the other three roots now reduces to
solving a cubic equation, a process that can be
carried out by further iteration, or by radicals.



Some References

e Klein's icosahedron book (early 1880’'s, now
in Dover reprint)

e Dickson, Modern Algebraic Theories (1926)

e Doyle—McMullen, Solving the Quintic by It-
eration (1988 or 1989)

e JS, Geometry of the Quintic (1995)

(And Doyle's student, Scott Crass, was contin-
uing to work on iterative methods for solving
polynomials when I lost touch with the subject
some ten years ago.)



