COMPACTNESS OF \mathbb{Z}_{p}

Let p be prime. The product

$$
P=\prod_{m=1}^{\infty}\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)
$$

is compact by the Tychonoff Theorem since each $\mathbb{Z} / p^{m} \mathbb{Z}$ is compact. Its elements are sequences,

$$
P=\left\{\left(x_{m}+p^{m} \mathbb{Z}\right)_{m=1}^{\infty}\right\}
$$

For each positive integer n, the nth projection function,

$$
\pi_{n+1, n}: \mathbb{Z} / p^{n+1} \mathbb{Z} \longrightarrow \mathbb{Z} / p^{n} \mathbb{Z}, \quad x+p^{n+1} \mathbb{Z} \longmapsto x+p^{n} \mathbb{Z}
$$

has graph

$$
G_{n}=\left\{\left(x_{n+1}+p^{n+1} \mathbb{Z}, x_{n}+p^{n} \mathbb{Z}\right): x_{n}=x_{n+1}\left(\bmod p^{n}\right)\right\}
$$

a closed subset of $\mathbb{Z} / p^{n+1} \mathbb{Z} \times \mathbb{Z} / p^{n} \mathbb{Z}$ since the latter is finite and hence carries the discrete topology. The corresponding subset of the product P,

$$
C_{n}=G_{n} \times \prod_{m \neq n, n+1} \mathbb{Z} / p^{m} \mathbb{Z}
$$

is closed as well, because its complement is the open set $G_{n}^{c} \times \prod_{m \neq n, n+1} \mathbb{Z} / p^{m} \mathbb{Z}$.
The p-adic integers form a subspace \mathbb{Z}_{p} of the product P. Its elements are the compatible sequences,

$$
\mathbb{Z}_{p}=\left\{\left(x_{m}+p^{m} \mathbb{Z}\right)_{m=1}^{\infty}: x_{m}=x_{m+1}\left(\bmod p^{m}\right) \text { for } 1 \leq m<\infty\right\}
$$

That is,

$$
\mathbb{Z}_{p}=\bigcap_{n=1}^{\infty} C_{n}
$$

Thus \mathbb{Z}_{p} is closed in the compact product P. Consequently, \mathbb{Z}_{p} is compact.

