THE ZETA FUNCTION OF AN ALGEBRAIC SET

Throughout this writeup, let V be an algebraic set defined over \mathbb{F}_{q} where q is a prime power.

1. Prime Zero-Cycles

Fix an algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q}. Once the algebraic closure is fixed, it is the union of the finite extension fields of \mathbb{F}_{q},

$$
\overline{\mathbb{F}}_{q}=\bigcup_{f \geq 1} \mathbb{F}_{q^{f}}
$$

Also, the algebraic set V is the union of its points having coordinates in the finite extensions,

$$
V=\bigcup_{f \geq 1} V\left(\mathbb{F}_{q^{f}}\right)
$$

For each $f \geq 1$, the Galois group (automorphism group) of $\mathbb{F}_{q^{f}}$ over \mathbb{F}_{q} is cyclic of order f, generated by $x \mapsto x^{q}$.

Definition 1.1. Consider a point $\alpha \in V$. The degree of α is the smallest f such that $\alpha \in V\left(\mathbb{F}_{q^{f}}\right)$. The prime zero-cycle (or prime divisor) of α is the orbit of α under the Galois action,

$$
\mathfrak{P}_{\alpha}=\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \cdots, \alpha^{q^{f-1}}\right\}
$$

The degree of the zero cycle is

$$
\operatorname{deg}\left(\mathfrak{P}_{\alpha}\right)=f
$$

and the norm of the zero cycle is

$$
N\left(\mathfrak{P}_{\alpha}\right)=q^{f} .
$$

2. The Counting Zeta Function

For each $f \geq 1$, let

$$
N_{f}(V)=\left|V\left(\mathbb{F}_{q f}\right)\right|
$$

and let a_{f} be the number of prime zero-cycles having degree f. Then since $V\left(\mathbb{F}_{q^{f}}\right)$ is the disjoint union of all prime zero-cycles of all degrees $d \mid f$,

$$
N_{f}(V)=\sum_{d \mid f} a_{d} d
$$

Definition 2.1. The counting zeta function of V is

$$
Z(V, T)=\exp \left(\sum_{f \geq 1} \frac{N_{f}(V)}{f} T^{f}\right)
$$

Proposition 2.2. The counting zeta function of an algebraic set has an Euler factorization over prime zero cycles,

$$
Z(V, T)=\prod_{\mathfrak{P}}\left(1-T^{f(\mathfrak{P})}\right)^{-1}
$$

Especially,

$$
Z\left(V, q^{-s}\right)=\prod_{\mathfrak{P}}\left(1-N \mathfrak{P}^{-s}\right)^{-1}
$$

Proof. For any $d \geq 1$, recall that a_{d} denotes the number of prime zero cycles of degree d, all of which have norm d. Thus

$$
\prod_{\mathfrak{P}}\left(1-T^{f(\mathfrak{P})}\right)^{-1}=\prod_{d \geq 1}\left(1-T^{d}\right)^{-a_{d}}
$$

Take the logarithmic derivative,

$$
\left(\log \left(\prod_{\mathfrak{P}}\left(1-T^{f(\mathfrak{P})}\right)^{-1}\right)\right)^{\prime}=\sum_{d \geq 1} \frac{-a_{d}\left(1-T^{d}\right)^{-a_{d}-1}\left(-d T^{d-1}\right)}{\left(1-T^{d}\right)^{-a_{d}}}=\sum_{d \geq 1} \frac{a_{d} d T^{d-1}}{1-T^{d}}
$$

Rearrange the right side, recalling that $\sum_{d \mid f} a_{d} d=N_{f}(V)$ at the last step,

$$
\begin{aligned}
\sum_{d \geq 1} \frac{a_{d} d T^{d-1}}{1-T^{d}} & =\sum_{d \geq 1} a_{d} d T^{d-1} \sum_{e \geq 0} T^{d e}=\frac{1}{T} \sum_{d \geq 1} a_{d} d \sum_{e \geq 1} T^{d e} \\
& =\frac{1}{T} \sum_{f \geq 1}\left(\sum_{d \mid f} a_{d} d\right) T^{f}=\sum_{f \geq 1} N_{f}(V) T^{f-1}
\end{aligned}
$$

That is,

$$
\left(\log \left(\prod_{\mathfrak{P}}\left(1-T^{f(\mathfrak{P})}\right)^{-1}\right)\right)^{\prime}=\left(\sum_{f \geq 1} \frac{N_{f}(V)}{f} T^{f}\right)^{\prime}
$$

Hence (after checking a constant)

$$
\log \left(\prod_{\mathfrak{P}}\left(1-T^{f(\mathfrak{P})}\right)^{-1}\right)=\sum_{f \geq 1} \frac{N_{f}(V)}{f} T^{f}=\log (Z(V, T))
$$

and the result follows.

3. A Rationality Criterion

Because the counting zeta function takes the form

$$
Z(V, T)=1+\cdots
$$

it is rational if and only if it takes the form

$$
Z(V, T)=\frac{\prod_{i}\left(1-\alpha_{i} T\right)}{\prod_{j}\left(1-\beta_{j} T\right)}, \quad \text { all } \alpha_{i}, \beta_{j} \in \overline{\mathbb{F}}_{q}
$$

Proposition 3.1. The counting zeta function of an algebraic set takes the form

$$
Z(V, T)=\frac{\prod_{i}\left(1-\alpha_{i} T\right)}{\prod_{j}\left(1-\beta_{j} T\right)}
$$

if and only if the solution-counts take the form

$$
N_{f}(V)=\sum_{j} \beta_{j}^{f}-\sum_{i} \alpha_{i}^{f}
$$

Proof. Compute that the condition

$$
Z(V, T)=\frac{\prod_{i}\left(1-\alpha_{i} T\right)}{\prod_{j}\left(1-\beta_{j} T\right)}
$$

is equivalent to the condition

$$
\begin{aligned}
\log Z(V, T) & =\sum_{j} \log \left(1-\beta_{j} T\right)^{-1}-\sum_{i} \log \left(1-\alpha_{i} T\right)^{-1} \\
& =\sum_{j} \sum_{f \geq 1} \frac{\left(\beta_{j} T\right)^{f}}{f}-\sum_{i} \sum_{f \geq 1} \frac{\left(\alpha_{i} T\right)^{f}}{f} \\
& =\sum_{f \geq 1} \frac{\left(\sum_{j} \beta_{j}^{f}-\sum_{i} \alpha_{i}^{f}\right)}{f} T^{f}
\end{aligned}
$$

which in turn is equivalent to the condition

$$
N_{f}=\sum_{j} \beta_{j}^{f}-\sum_{i} \alpha_{i}^{f}
$$

For an elliptic curve over \mathbb{F}_{p} where p is prime, the solution count is

$$
N_{f}(E)=p^{f}+1-\alpha_{1}^{f}-\alpha_{2}^{f}
$$

where, letting $a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$,

$$
X^{2}-a_{p}(E) X+p=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)
$$

Thus the counting zeta function is

$$
Z_{p}(E)=\frac{1-a_{p}(E) T+p T^{2}}{(1-T)(1-p T)}
$$

The more familiar counting zeta function of E,

$$
\widetilde{Z}_{p}(E)=\left(1-a_{p}(E) T+p T^{2}\right)^{-1}
$$

uses only the normalized solution-count

$$
t_{f}(E)=p^{f}+1-N_{f}(E)=\alpha_{1}^{f}+\alpha_{2}^{f}
$$

rather than all of $N_{f}(E)$.

