
THE L-FUNCTION OF AN ELLIPTIC CURVE

Let E be an elliptic curve over Q with conductor N . Fix a prime p and define
an integer sequence having an initial value that (as we will soon see) is well-chosen,
and then subsequent values that are normalized counts of the elliptic curve reduced
modulo powers of p,

t1(E) = 2,

tpe(E) = pe + 1− |Ẽ(Fpe)|, e ≥ 1.

The form of the Weierstrass equation of E shows that we expect |Ẽ(Fpe)| = pe + 1
on average, so tpe(E) measures the deviation of the true count from its naively
expected value.

1. The Recurrence Satisfied by the Solution-Counts

Theorem 1.1. Let 1E be the trivial character modulo N , i.e.,

1E(p) =

{
1 if p - N,
0 if p | N.

Then the normalized solution-counts satisfy the recurrence

tpe(E) = tp(E)tpe−1(E)− 1E(p)ptpe−2(E), e ≥ 2.

Easy part of proof. We discuss the case p - N .
Modern mathematical machinery (the Tate module of an elliptic curve, the as-

sociated `-adic Galois representation) shows that for a 2-by-2 matrix A with char-
acteristic polynomial

X2 − tp(E)X + p,

the normalized solution-counts satisfy the condition

tpe(E) = tr(Ae), e ≥ 1.

Also, we have chosen t1(E) = 2 to extend the displayed formula to e = 0.
Let α and β be the eigenvalues of A. Thus for e ≥ 2,

tr(Ae) = αe + βe

= (α+ β)(αe−1 + βe−1)− αβ(αe−2 + βe−2)

= tr(A)tr(Ae−1)− p tr(Ae−2).

The desired recurrence follows. �

2. The Counting Zeta Function as an Euler Factor

Definition 2.1. The counting zeta function of E at p is

Zp(E,X) = exp

∑
e≥1

tpe(E)
e

Xe

 .
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By the recurrence of the previous section, the counting zeta function is an elab-
orate encoding of only one piece of information: tp(E). However, it is very useful
encoding.

Proposition 2.2. The counting zeta function of E at p takes the form

Zp(E,X) = (1− tp(E)X + 1E(p)pX2)−1.

Proof. This is a matter of taking the logarithmic derivative. Compute (abbreviating
t∗(E) to t∗) that

(logZp(E,X))′ =
1
X

∑
e≥1

tpeXe call=
1
X
· S.

Split off the initial term and then use the recurrence to study the sum,

S = tpX +
∑
e≥2

tpeXe

= tpX + tpX
∑
e≥2

tpe−1Xe−1 − 1E(p)pX2
∑
e≥2

tpe−2Xe−2

= tpX + tpX · S − 1E(p)pX2(S + 2).

Regroup to get

S(1− tpX + 1E(p)pX2) = X(tp − 1E(p)2pX),

so that (logZp(E,X))′ = (1/X)S is now

(logZp(E,X))′ = − −tp + 1E(p)2pX
1− tpX + 1E(p)pX2

= (− log(1− tpX + 1E(p)pX2))′

= (log((1− tpX + 1E(p)pX2)−1))′.

Thus the two logarithms themselves agree up to an additive constant; set X = 0 to
see that the constant is 0. So the counting zeta function Zp(E,X) and the Euler
factor (1− tpX + 1E(p)pX2)−1 agree, and the proof is complete. �

3. The L-Function

Definition 3.1. The L-function of the elliptic curve E is

L(E, s) =
∏
p

Zp(E, p−s) =
∏
p

(1− tp(E)p−s + 1E(p)p1−2s)−1.

The definition is purely formal, but one can show that in some right half plane
of complex s-values, L(E, s) converges absolutely and converges uniformly on com-
pacta. The L-function encodes the values {tp(E) : p prime}.

Proposition 3.2. The L-function of E expands as

L(E, s) =
∑
n≥1

ann
−s
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where

a1 = 1,

ap = tp(E),

ape = apape−1 − 1E(p)pape−2 , e ≥ 2,

amn = aman, gcd(m,n) = 1.

Conversely, given an integer sequence {an} satisfying the displayed conditions, the
corresponding Dirichlet Series has an Euler factorization,∑

n≥1

ann
−s =

∏
p

(1− tp(E)p−s + 1E(p)p1−2s)−1.

Proof. Fix a prime p. Multiply the prime-power recurrence in the proposition
statement by p−es and sum over e ≥ 2 to show, after a little algebra, that the
prime-power recurrence is equivalent to

(1)
∞∑
e=0

apep−es · (1− app−s + χ(p)p1−2s) = a1 + (1− a1)app−s.

If also a1 = 1 then this becomes

(2)
∞∑
e=0

apep−es · (1− app−s + χ(p)p1−2s) = 1.

Conversely, suppose (2) holds. Let s→ +∞ to show that a1 = 1, and so does (1),
implying the prime-power recurrence. So the condition a1 = 1 and the prime-power
recurrence are equivalent to

(3)
∞∑
e=0

apep−es = (1− app−s + χ(p)p1−2s)−1 for p prime.

Before continuing, note that the Fundamental Theorem of Arithmetic (positive
integers factor uniquely into prime powers) implies that for a function g of prime
powers (exercise),

(4)
∏
p

∞∑
e=0

g(pe) =
∞∑
n=1

∏
pe‖n

g(pe).

The notation pe‖n means that pe is the highest power of p that divides n, and we
are assuming that g is small enough to justify formal rearrangements.

Now, if (3) holds along with the multiplicativity condition of the proposition
then compute

L(s, f) =
∞∑
n=1

ann
−s =

∞∑
n=1

 ∏
pe‖n

ape

n−s by multiplicativity

=
∞∑
n=1

∏
pe‖n

apep−es =
∏
p

∞∑
e=0

apep−es by (4)

=
∏
p

(1− app−s + χ(p)p1−2s)−1 by (3),

giving the Euler product expansion.
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Conversely, given the Euler product expansion, compute (using the geometric
series formula and (4))

L(s, f) =
∏
p

(1− app−s + χ(p)p1−k−2s)−1

=
∏
p

∞∑
r=0

bp,rp
−rs for some {bp,r}

=
∞∑
n=1

∏
pr‖n

bp,rp
−rs =

∞∑
n=1

 ∏
pr‖n

bp,r

n−s.

So an =
∏
pr‖n bp,r, giving the multiplicativity condition of the proposition and

showing in particular that bp,r = apr . This in turn implies (3), implying a1(E) = 1
and the prime-power recurrence of the proposition. �

4. Eigenforms and Modularity

For any complex number τ in the upper half plane (i.e., Im(τ) > 0), define a
related number q = e2πiτ . A function of the form

f(τ) =
∑
n≥1

anq
n

where the coefficients an satisfy the conditions

a1 = 1,

ape = apape−1 − 1E(p)pape−2 , e ≥ 2,

amn = aman, gcd(m,n) = 1

is sometimes (but not always!) a weight-2 Hecke eigenform, a very special kind
of modular form. The function is entirely determined by the values {ap : p prime}.

We have shown that every elliptic curve E over Q gives rise to a function f that
might be a weight-2 Hecke eigenform: If the L-function of the elliptic curve is

L(E, s) =
∑
n≥1

ann
−s (determined entirely by the {tp(E) : p prime})

then the function is constructed using the same coefficients,

f(τ) =
∑
n≥1

anq
n (also determined entirely by the tp(E)).

We naturally wonder whether f is in fact an eigenform.
One of the most famous theorems of 20th century mathematics asserts that the

answer is yes,
All rational elliptic curves arise from modular forms.

Taniyama first suggested in the 1950’s that a statement along these lines might be
true, and a precise conjecture was formulated by Shimura. A 1967 paper of Weil
provided strong theoretical evidence for the conjecture. The theorem was proved
for a large class of elliptic curves in the 1990’s by Wiles with a key ingredient
supplied by joint work with Taylor, completing the proof of Fermat’s Last Theorem
after some 350 years. The Modularity Theorem was proved completely by Breuil,
Conrad, Diamond, and Taylor around 2000.


