THE CYCLOTOMIC ZETA FUNCTION

This writeup begins by showing that cyclotomic polynomials are irreducible.
Then the “e, f, g” description of rational prime decomposition in a cyclotomic num-
ber field is stated, without proof. The cyclotomic zeta function is introduced, and
the rational prime decomposition shows that the Nth cyclotomic zeta function is
the product of all Dirichlet L-functions modulo N. The cyclotomic zeta function,
as initially defined by a sum or a product, is an analytic function of a complex vari-
able s in a right half plane. An easy estimate shows that the sum inherits a pole
at s = 1 from the basic Euler—Riemann zeta function, with no nontrivial Dirichlet
L-function canceling it. This pole is the crux of the proof of Dirichlet’s theorem on
primes in an arithmetic progression.
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1. CycLoroMmIiC GALOIS THEORY
Let N be a positive integer. The Nth cyclotomic field is
K =Ky =Q(y), where(y =e?™/N,

This field is a Galois extension of Q because every embedding of K in C must
take (v to some primitive Nth root of unity, i.e., to (§ for some m coprime to N,
making the embedding an automorphism of K. We view the Galois group of Ky
as a subgroup of (Z/NZ)*, by identifying each automorphism of Ky, taking (x
to (3 for some m, with m+ NZ. What isn’t immediately obvious is that the Galois
group is all of (Z/NZ)*.

The Nth cyclotomic polynomial is

ox(x)= [ (x-c

0<m<N
ged(m,N)=1
the monic polynomial in Kx[X] whose roots are the primitive Nth roots of unity.
Because each automorphism of K permutes the roots of @y (X), this polynomial
is invariant under the Galois group, so it lies in Q[X], and further its coefficients
are algebraic integers, so it lies in Z[X]. To show that the Galois group of Ky
is all of (Z/NZ)* it suffices to show that ®5(X) is irreducible in Z[X], because
its degree ¢(N) (Euler totient function) is [(Z/NZ)*|. We show the irreducibility
next.
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Let f(X) € Z[X] be the monic irreducible polynomial of (5. We have ®,(X) =
f(X)g(X) for some ¢g(X) € Z[X], and we want to show that f(X) = ®,(X). Every
complex root of ®,,(X) takes the form (3 where ged(m, N) = 1, and this root can
be obtained from (n by repeatedly raising to various primes p { N. Thus it suffices
to show that:

For any root p of f and for any prime p{ N, also p” is a root of f.

So, let p be a root of f and let p t N be prime. We show that f(p?) = 0 by
showing that g(pP) # 0. For, if instead g(p”) = 0 then p is a root of g(XP?), and so
f(X) divides g(XP) in Z[X]. Letting an overbar denote reduction modulo p, f(X)
divides g(X)? in the UFD (Z/pZ)[X], and so f(X) and g(X) share a nontrivial
factor h(X) in (Z/pZ)[X]. Thus h(X)? divides ®x(X) modulo p. But this is
impossible. Indeed, ®y(X) divides XV — 1, which is coprime to its derivative
NX~~=1 modulo p because p{ N. Hence XV — 1 has no repeated factors modulo p,
and consequently neither does @y (X).

2. DIRICHLET CHARACTERS AND e, f, g

Let N be a positive integer. A Dirichlet character modulo N is defined initially
as a homomorphism
Xx:(Z/NZ)* — C*.
Any such character determines a least positive divisor M of N such that the char-
acter factors as

X =Xoom : (Z/NZ)* ™% (Z/MZ)* X% C*.

The integer M is the conductor of x, and the character x, is primitive. Note that
if n € Z is not coprime to N but is coprime to M then y,(n + MZ) is defined and
nonzero. Perhaps confusingly at first, we also use the symbol x to denote x, lifted
to a multiplicative function on the integers,

Xo(n+ MZ) if ged(n, M) =1,

:Z — C, =
X x(n) {o it ged(n, M) > 1.

Thus (the lifted) x(n) need not equal (the original) x(n 4+ NZ), and in particular
x(n) need not equal 0 even when ged(n, N) > 1. Especially, if N > 1 then the
trivial character 1 modulo N has conductor M = 1, and the trivial character 1,
modulo 1 is identically 1 on (Z/1Z)* = {0}, and this character lifts to the constant
function 1(n) =1 for all n € Z, even though the original character 1 modulo N is
undefined on cosets n + NZ where ged(n, N) > 1.
Fix a rational prime p.
e Let p? || N and N, = N/p? and e = ¢(p?).
e Let f denote the order of p+ N,Z in (Z/N,Z)*.
o Let g = ¢(Np)/f.
Thus altogether efg = ¢(N). Note that N, = N and e = 1 for all primes p other
than the finitely many prime divisors of N. Conversely, e > 1 for p | N, excepting
the case N = 2 mod 4 and p = 2. Just below we will see good reason to exclude
the case N = 2 mod 4, after which e > 1 precisely when p | N.
Let ¢; = €?™/f. The multiplicative subgroup (p+N,Z) of (Z/N,Z)* has f char-
acters, taking p to C)’S for k=0,..., f—1. Each such character lifts to ¢(N,)/f =g
Dirichlet characters modulo N,. Any Dirichlet character modulo N that is not
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defined modulo N,, takes p to 0. That is, for k =0, ..., f — 1 there exist g Dirichlet
characters modulo N that take p to ¢ J’?, and any Dirichlet character modulo N that

doesn’t take p to any (f takes p to 0.

3. CycLOTOMIC ARITHMETIC

Again let N be a positive integer, now stipulating that N # 2 mod 4, and
consider the cyclotomic number field

K=Q(n), (v=emN
The case N = 2 mod 4 is excluded because here ged(2, N/2) = 1 and so —(y/» has
order 2- N/2 = N, which is to say that the field Q((nx) = Q({n/2) is redundant.
For example, —(3 has order 6 but lies in Q(¢3). Another way to see the redundancy

[(N/2)/2] _ ~N/4+1/2 .
CN/Q =Cn)2

is to reason geometrically (again with N = 2 mod 4) that is

just more than halfway around the circle, so that its negative must be (, and then

to confirm this analytically by computing —C](V]\/ZJQ)M = I(VNJFQ)/Z S JJ\\;/QH =
N/2 -N/2+1
N SN =(n-

We state some results without proof. For any rational prime p, let e and f and g
be as above. Then p factors in Ok as

POr = (p1---pg)°, [Ok/p; : Z/pZ) = | for each i.
Some particular cases are as follows.
e The primes p such that p =1 mod N decompose completely in Ok,
pOr =p1---ppvy and  Og/p; = Z/pZ for each i,

with (e, f,g9) = (1,1,(N)). Here the cyclotomic polynomial ®x(X) has
#(N) distinct roots 71, ...,T4ny in Z/pZ, and the prime divisors of pOx
are
pi:<T1‘,p>C0K, izl,...,qf)(N).
e The primes p that are primitive roots modulo IV undergo pure residue field
growth from Q to K,

pOg =p and [Og/p:Z/pZ] = ¢(N),

with (e, f,9) = (1, ¢(N),1).

e The primes p that divide N are the primes that ramify, here using the fact
that the case N = 2 mod 4 is excluded. The extreme case of ramification
is

pOx = p® ™) and (O /p: Z/pZ) =1 if N = p? for some d > 1.
with (e, f, g) = (¢(IN),1,1). Here the prime divisor of pOk is
p=(1-(pu)Ok.
4. CycLoToMIC GALOIS THEORY AND CYCLOTOMIC ARITHMETIC
As shown above, the Galois group of K = Q({y) is
G={({n+— (Y :m+NZe (Z/NZ)*}.

Recall the decomposition N = N,, - p? where p? | N. We freely make the identifi-
cations
G = (Z/NZ)* = (Z/N,Z)* x (Z/p"Z)*.



4 THE CYCLOTOMIC ZETA FUNCTION

Fix a rational prime p. The inertia and decomposition subgroups of p in G are
I, ={1} x (2/p°Z)*, D, = {p+ N,Z) x (Z/p°Z)*.

Thus I, C D, and |I,| = e and |D,| = ef.

The inertia field K, and the decomposition field Kp , of p are the intermediate
fields of K/Q corresponding to the inertia and decomposition subgroups of G. Thus
QcC KD,P C KLP C K.

e The decomposition field is so named because p decomposes there as

pOp = P1,D - " Pgy,D

with the p; p ideals. For each ¢ there is no residue field growth, meaning
that [Op/pi,p : Z/pZ] = 1, and visibly there is no ramification. The degree
[Kp,p : Q] = g matches the number of factors of p. Because g is the index
[G : D), it is called the decomposition indezx of p in K.

o The inertia field is so named because each p; p remains inert in Oy, which
is to say that p; pOy takes the form p; ; rather than decomposing further.
Here there is residue field growth, specifically

O1/pi,r : Op/pip] =f fori=1,...,g,

and again there is no ramification. The degree Ky, : Kp | = f matches
the uniform residue field extension degree shown in the display, and f is
called the inertial degree of p in K.

e Finally, each p; ; ramifies totally in O,

pi, ;O =p; fori=1,...,¢.
Here there is no further decomposition and with no further residue field
growth, [Ok/p; : Or/pi1] = 1 for each i. The degree [K : Kj,] = e
matches the ramification exponent in the display, and e is called the rami-
fication degree of p in K.

To summarize, as we climb from Q through Kp, and K;, to K, the prime p
decomposes, then the residue fields grow, then each factor of p ramifies.

5. THE DEDEKIND ZETA FUNCTION AND ITS EULER PRODUCT

The ring of integers of K is

Ok = Z[¢N].
Define the norm of a nonzero ideal a of Ok to be
Na = |Ok/al.

Thus we tacitly assert without proof that the quotient is finite. We further as-
sert without proof that the norm is strongly multiplicative. The relation [Ok /p :
Z/pZ) = f with f as above says that

Np =p/  where p | p and f is the inertial degree of p in K.
Definition 5.1. The Nth cyclotomic Dedekind zeta function is
(k(s) = Na=*=JJ(1=Np~™)~", Re(s)>1.
a p

The sum is taken over the nonzero ideals of Ok, and the product is taken over the
mazimal ideals.
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We show that (x(s) cannot converge for all positive real s but is analytic
on Re(s) > 1. Indeed, Np = pf gives p < Np < p®(N) from which (1—p~¢(N)s)~1
(1-Np=*)~1 < (1 —p=*)7! for s > 0, and then, because at most ¢(N) ideals p
divide a rational prime p,

(1=p ™) <JIA=Np=™)"' < (1—p~*)~*™), s>0.

plp
Because [],(1 — p o)== Znyn*‘ﬁ(ms diverges at s = 1/¢( ), so does
I, 1L, (1 - Np~*)~! = (k(s). Similarly, because [I,(1—p~ )=o) = ((5)?(V)
converges absolutely and uniformly on compacta in Re( ) > 1 so does (i (s); here

we are using the fact that |[Na=%| = Na~Re(s),

Next we obtain another expression for (x(s). For any p, compute that

-1
[[a-Np=) ' = —p )y o =[O -p)? =T]0 —xw)p~*)"",
plp k=0 X

where the product is taken over all characters x modulo N, each character under-
stood to be the underlying primitive character extended to a multiplicative function
on Z. As discussed above, x(p) = CJ’? for g characters y modulo N, independently
of k, these characters being defined modulo N,, while the characters y modulo N
that are not defined modulo N, take p to 0 and thus contribute a trivial factor of 1
to the last product in the previous display. Overall, then, we have

s)=[[110—xwp) " =TTTTC — x>,

which is to say that the Nth cyclotomic Dedekind zeta function factors as the
product of all Dirichlet L-functions modulo IV,

= HL(Xa S)

The boxed expression for (x(s) in the previous display arises naturally in the
proof of Dirichlet’s theorem on primes in an arithmetic progression. We have seen
that the function L(1,s) = ((s), which is initially defined only for Re(s) > 1,
extends to a meromorphic function on {Re(s) > 0} whose only singularity is a
simple pole at s = 1, and that L(x,s) for x # 1 extends to an analytic function
on {Re(s) > 0}. Thus the cyclotomic zeta function (x(s) extends meromorphically
to {Re(s) > 0} with its only possible pole at s = 1. There really is such a pole,
because otherwise the defining sum expression for (i (s) would converge for all s >
0, but we have shown above that this is impossible. The pole of (x(s) at s =1 is
the crux of Dirichlet’s theorem.




