THE CYCLOTOMIC ZETA FUNCTION

This writeup begins by showing that cyclotomic polynomials are irreducible. Then the " e, f, g " description of rational prime decomposition in a cyclotomic number field is stated, without proof. The cyclotomic zeta function is introduced, and the rational prime decomposition shows that the N th cyclotomic zeta function is the product of all Dirichlet L-functions modulo N. The cyclotomic zeta function, as initially defined by a sum or a product, is an analytic function of a complex variable s in a right half plane. An easy estimate shows that the sum inherits a pole at $s=1$ from the basic Euler-Riemann zeta function, with no nontrivial Dirichlet L-function canceling it. This pole is the crux of the proof of Dirichlet's theorem on primes in an arithmetic progression.

Contents

1. Cyclotomic Galois Theory 1
2. Dirichlet Characters and e, f, g 2
3. Cyclotomic Arithmetic 3
4. Cyclotomic Galois Theory and Cyclotomic Arithmetic 3
5. The Dedekind Zeta Function and its Euler Product 4

1. Cyclotomic Galois Theory

Let N be a positive integer. The N th cyclotomic field is

$$
K=K_{N}=\mathbb{Q}\left(\zeta_{N}\right), \quad \text { where } \zeta_{N}=e^{2 \pi i / N}
$$

This field is a Galois extension of \mathbb{Q} because every embedding of K in \mathbb{C} must take ζ_{N} to some primitive N th root of unity, i.e., to ζ_{N}^{m} for some m coprime to N, making the embedding an automorphism of K. We view the Galois group of K_{N} as a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, by identifying each automorphism of K_{N}, taking ζ_{N} to ζ_{N}^{m} for some m, with $m+N \mathbb{Z}$. What isn't immediately obvious is that the Galois group is all of $(\mathbb{Z} / N \mathbb{Z})^{\times}$.

The N th cyclotomic polynomial is

$$
\Phi_{N}(X)=\prod_{\substack{0 \leq m<N \\ \operatorname{gcd}(m, N)=1}}\left(X-\zeta_{N}^{m}\right)
$$

the monic polynomial in $K_{N}[X]$ whose roots are the primitive N th roots of unity. Because each automorphism of K permutes the roots of $\Phi_{N}(X)$, this polynomial is invariant under the Galois group, so it lies in $\mathbb{Q}[X]$, and further its coefficients are algebraic integers, so it lies in $\mathbb{Z}[X]$. To show that the Galois group of K_{N} is all of $(\mathbb{Z} / N \mathbb{Z})^{\times}$it suffices to show that $\Phi_{N}(X)$ is irreducible in $\mathbb{Z}[X]$, because its degree $\phi(N)$ (Euler totient function) is $\left|(\mathbb{Z} / N \mathbb{Z})^{\times}\right|$. We show the irreducibility next.

Let $f(X) \in \mathbb{Z}[X]$ be the monic irreducible polynomial of ζ_{N}. We have $\Phi_{n}(X)=$ $f(X) g(X)$ for some $g(X) \in \mathbb{Z}[X]$, and we want to show that $f(X)=\Phi_{n}(X)$. Every complex root of $\Phi_{n}(X)$ takes the form ζ_{N}^{m} where $\operatorname{gcd}(m, N)=1$, and this root can be obtained from ζ_{N} by repeatedly raising to various primes $p \nmid N$. Thus it suffices to show that:

For any root ρ of f and for any prime $p \nmid N$, also ρ^{p} is a root of f.
So, let ρ be a root of f and let $p \nmid N$ be prime. We show that $f\left(\rho^{p}\right)=0$ by showing that $g\left(\rho^{p}\right) \neq 0$. For, if instead $g\left(\rho^{p}\right)=0$ then ρ is a root of $g\left(X^{p}\right)$, and so $f(X)$ divides $g\left(X^{p}\right)$ in $\mathbb{Z}[X]$. Letting an overbar denote reduction modulo $p, \bar{f}(X)$ divides $\bar{g}(X)^{p}$ in the UFD $(\mathbb{Z} / p \mathbb{Z})[X]$, and so $\bar{f}(X)$ and $\bar{g}(X)$ share a nontrivial factor $h(X)$ in $(\mathbb{Z} / p \mathbb{Z})[X]$. Thus $h(X)^{2}$ divides $\Phi_{N}(X)$ modulo p. But this is impossible. Indeed, $\Phi_{N}(X)$ divides $X^{N}-1$, which is coprime to its derivative $N X^{N-1}$ modulo p because $p \nmid N$. Hence $X^{N}-1$ has no repeated factors modulo p, and consequently neither does $\Phi_{N}(X)$.

2. Dirichlet Characters and e, f, g

Let N be a positive integer. A Dirichlet character modulo N is defined initially as a homomorphism

$$
\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times}
$$

Any such character determines a least positive divisor M of N such that the character factors as

$$
\chi=\chi_{o} \circ \pi_{M}:(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\pi_{M}}(\mathbb{Z} / M \mathbb{Z})^{\times} \xrightarrow{\chi_{o}} \mathbb{C}^{\times} .
$$

The integer M is the conductor of χ, and the character χ_{o} is primitive. Note that if $n \in \mathbb{Z}$ is not coprime to N but is coprime to M then $\chi_{o}(n+M \mathbb{Z})$ is defined and nonzero. Perhaps confusingly at first, we also use the symbol χ to denote χ_{o} lifted to a multiplicative function on the integers,

$$
\chi: \mathbb{Z} \longrightarrow \mathbb{C}, \quad \chi(n)= \begin{cases}\chi_{o}(n+M \mathbb{Z}) & \text { if } \operatorname{gcd}(n, M)=1 \\ 0 & \text { if } \operatorname{gcd}(n, M)>1\end{cases}
$$

Thus (the lifted) $\chi(n)$ need not equal (the original) $\chi(n+N \mathbb{Z}$), and in particular $\chi(n)$ need not equal 0 even when $\operatorname{gcd}(n, N)>1$. Especially, if $N>1$ then the trivial character 1 modulo N has conductor $M=1$, and the trivial character $\mathbf{1}_{o}$ modulo 1 is identically 1 on $(\mathbb{Z} / 1 \mathbb{Z})^{\times}=\{\overline{0}\}$, and this character lifts to the constant function $\mathbf{1}(n)=1$ for all $n \in \mathbb{Z}$, even though the original character 1 modulo N is undefined on cosets $n+N \mathbb{Z}$ where $\operatorname{gcd}(n, N)>1$.

Fix a rational prime p.

- Let $p^{d} \| N$ and $N_{p}=N / p^{d}$ and $e=\phi\left(p^{d}\right)$.
- Let f denote the order of $p+N_{p} \mathbb{Z}$ in $\left(\mathbb{Z} / N_{p} \mathbb{Z}\right)^{\times}$.
- Let $g=\phi\left(N_{p}\right) / f$.

Thus altogether ef $g=\phi(N)$. Note that $N_{p}=N$ and $e=1$ for all primes p other than the finitely many prime divisors of N. Conversely, $e>1$ for $p \mid N$, excepting the case $N=2 \bmod 4$ and $p=2$. Just below we will see good reason to exclude the case $N=2 \bmod 4$, after which $e>1$ precisely when $p \mid N$.

Let $\zeta_{f}=e^{2 \pi i / f}$. The multiplicative subgroup $\left\langle p+N_{p} \mathbb{Z}\right\rangle$ of $\left(\mathbb{Z} / N_{p} \mathbb{Z}\right)^{\times}$has f characters, taking p to ζ_{f}^{k} for $k=0, \ldots, f-1$. Each such character lifts to $\phi\left(N_{p}\right) / f=g$ Dirichlet characters modulo N_{p}. Any Dirichlet character modulo N that is not
defined modulo N_{p} takes p to 0 . That is, for $k=0, \ldots, f-1$ there exist g Dirichlet characters modulo N that take p to ζ_{f}^{k}, and any Dirichlet character modulo N that doesn't take p to any ζ_{f}^{k} takes p to 0 .

3. Cyclotomic Arithmetic

Again let N be a positive integer, now stipulating that $N \neq 2 \bmod 4$, and consider the cyclotomic number field

$$
K=\mathbb{Q}\left(\zeta_{N}\right), \quad \zeta_{N}=e^{2 \pi i / N}
$$

The case $N=2 \bmod 4$ is excluded because here $\operatorname{gcd}(2, N / 2)=1$ and so $-\zeta_{N / 2}$ has order $2 \cdot N / 2=N$, which is to say that the field $\mathbb{Q}\left(\zeta_{N}\right)=\mathbb{Q}\left(\zeta_{N / 2}\right)$ is redundant. For example, $-\zeta_{3}$ has order 6 but lies in $\mathbb{Q}\left(\zeta_{3}\right)$. Another way to see the redundancy is to reason geometrically (again with $N=2 \bmod 4$) that $\zeta_{N / 2}^{\lceil(N / 2) / 2\rceil}=\zeta_{N / 2}^{N / 4+1 / 2}$ is just more than halfway around the circle, so that its negative must be ζ_{N}, and then to confirm this analytically by computing $-\zeta_{N / 2}^{(N+2) / 4}=-\zeta_{N}^{(N+2) / 2}=-\zeta_{N}^{N / 2+1}=$ $\zeta_{N}^{N / 2} \zeta_{N}^{N / 2+1}=\zeta_{N}$.

We state some results without proof. For any rational prime p, let e and f and g be as above. Then p factors in \mathcal{O}_{K} as

$$
p \mathcal{O}_{K}=\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{g}\right)^{e}, \quad\left[\mathcal{O}_{K} / \mathfrak{p}_{i}: \mathbb{Z} / p \mathbb{Z}\right]=f \text { for each } i
$$

Some particular cases are as follows.

- The primes p such that $p=1 \bmod N$ decompose completely in \mathcal{O}_{K},

$$
p \mathcal{O}_{K}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{\phi(N)} \quad \text { and } \quad \mathcal{O}_{K} / \mathfrak{p}_{i} \approx \mathbb{Z} / p \mathbb{Z} \text { for each } i
$$

with $(e, f, g)=(1,1, \phi(N))$. Here the cyclotomic polynomial $\Phi_{N}(X)$ has $\phi(N)$ distinct roots $\bar{r}_{1}, \ldots, \bar{r}_{\phi(N)}$ in $\mathbb{Z} / p \mathbb{Z}$, and the prime divisors of $p \mathcal{O}_{K}$ are

$$
\mathfrak{p}_{i}=\left\langle r_{i}, p\right\rangle \subset \mathcal{O}_{K}, \quad i=1, \ldots, \phi(N)
$$

- The primes p that are primitive roots modulo N undergo pure residue field growth from \mathbb{Q} to K,

$$
p \mathcal{O}_{K}=\mathfrak{p} \quad \text { and } \quad\left[\mathcal{O}_{K} / \mathfrak{p}: \mathbb{Z} / p \mathbb{Z}\right]=\phi(N)
$$

with $(e, f, g)=(1, \phi(N), 1)$.

- The primes p that divide N are the primes that ramify, here using the fact that the case $N=2 \bmod 4$ is excluded. The extreme case of ramification is

$$
p \mathcal{O}_{K}=\mathfrak{p}^{\phi(N)} \text { and }\left[\mathcal{O}_{K} / \mathfrak{p}: \mathbb{Z} / p \mathbb{Z}\right]=1 \quad \text { if } N=p^{d} \text { for some } d \geq 1
$$

with $(e, f, g)=(\phi(N), 1,1)$. Here the prime divisor of $p \mathcal{O}_{K}$ is

$$
\mathfrak{p}=\left(1-\zeta_{p^{d}}\right) \mathcal{O}_{K}
$$

4. Cyclotomic Galois Theory and Cyclotomic Arithmetic

As shown above, the Galois group of $K=\mathbb{Q}\left(\zeta_{N}\right)$ is

$$
G=\left\{\zeta_{N} \longmapsto \zeta_{N}^{m}: m+N \mathbb{Z} \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\}
$$

Recall the decomposition $N=N_{p} \cdot p^{d}$ where $p^{d} \| N$. We freely make the identifications

$$
G=(\mathbb{Z} / N \mathbb{Z})^{\times}=\left(\mathbb{Z} / N_{p} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / p^{d} \mathbb{Z}\right)^{\times}
$$

Fix a rational prime p. The inertia and decomposition subgroups of p in G are

$$
I_{p}=\{1\} \times\left(\mathbb{Z} / p^{d} \mathbb{Z}\right)^{\times}, \quad D_{p}=\left\langle p+N_{p} \mathbb{Z}\right\rangle \times\left(\mathbb{Z} / p^{d} \mathbb{Z}\right)^{\times}
$$

Thus $I_{p} \subset D_{p}$ and $\left|I_{p}\right|=e$ and $\left|D_{p}\right|=e f$.
The inertia field $K_{I, p}$ and the decomposition field $K_{D, p}$ of p are the intermediate fields of K / \mathbb{Q} corresponding to the inertia and decomposition subgroups of G. Thus $\mathbb{Q} \subset K_{D, p} \subset K_{I, p} \subset K$.

- The decomposition field is so named because p decomposes there as

$$
p \mathcal{O}_{D}=\mathbf{p}_{1, D} \cdots \mathbf{p}_{g, D}
$$

with the $\mathbf{p}_{i, D}$ ideals. For each i there is no residue field growth, meaning that $\left[\mathcal{O}_{D} / \mathbf{p}_{i, D}: \mathbb{Z} / p \mathbb{Z}\right]=1$, and visibly there is no ramification. The degree $\left[K_{D, p}: \mathbb{Q}\right]=g$ matches the number of factors of p. Because g is the index [$G: D_{p}$], it is called the decomposition index of p in K.

- The inertia field is so named because each $\mathbf{p}_{i, D}$ remains inert in \mathcal{O}_{I}, which is to say that $\mathbf{p}_{i, D} \mathcal{O}_{I}$ takes the form $\mathbf{p}_{i, I}$ rather than decomposing further. Here there is residue field growth, specifically

$$
\left[\mathcal{O}_{I} / \mathbf{p}_{i, I}: \mathcal{O}_{D} / \mathbf{p}_{i, D}\right]=f \quad \text { for } i=1, \ldots, g
$$

and again there is no ramification. The degree $\left[K_{I, p}: K_{D, p}\right]=f$ matches the uniform residue field extension degree shown in the display, and f is called the inertial degree of p in K.

- Finally, each $\mathbf{p}_{i, I}$ ramifies totally in \mathcal{O}_{K},

$$
\mathbf{p}_{i, I} \mathcal{O}_{K}=\mathfrak{p}_{i}^{e} \quad \text { for } i=1, \ldots, g
$$

Here there is no further decomposition and with no further residue field growth, $\left[\mathcal{O}_{K} / \mathfrak{p}_{i}: \mathcal{O}_{I} / \mathbf{p}_{i, I}\right]=1$ for each i. The degree $\left[K: K_{I, p}\right]=e$ matches the ramification exponent in the display, and e is called the ramification degree of p in K.
To summarize, as we climb from \mathbb{Q} through $K_{D, p}$ and $K_{I, p}$ to K, the prime p decomposes, then the residue fields grow, then each factor of p ramifies.

5. The Dedekind Zeta Function and its Euler Product

The ring of integers of K is

$$
\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{N}\right]
$$

Define the norm of a nonzero ideal \mathfrak{a} of \mathcal{O}_{K} to be

$$
\mathrm{Na}=\left|\mathcal{O}_{K} / \mathfrak{a}\right|
$$

Thus we tacitly assert without proof that the quotient is finite. We further assert without proof that the norm is strongly multiplicative. The relation $\left[\mathcal{O}_{K} / \mathfrak{p}\right.$: $\mathbb{Z} / p \mathbb{Z}]=f$ with f as above says that

$$
\mathrm{N} \mathfrak{p}=p^{f} \quad \text { where } \mathfrak{p} \mid p \text { and } f \text { is the inertial degree of } p \text { in } K
$$

Definition 5.1. The Nth cyclotomic Dedekind zeta function is

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \mathrm{Na}^{-s}=\prod_{\mathfrak{p}}\left(1-\mathrm{Np}^{-s}\right)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

The sum is taken over the nonzero ideals of \mathcal{O}_{K}, and the product is taken over the maximal ideals.

We show that $\zeta_{K}(s)$ cannot converge for all positive real s but is analytic on $\operatorname{Re}(s)>1$. Indeed, $\mathrm{Np}=p^{f}$ gives $p \leq \mathrm{Np} \leq p^{\phi(N)}$, from which $\left(1-p^{-\phi(N) s}\right)^{-1} \leq$ $\left(1-\mathrm{Np}^{-s}\right)^{-1} \leq\left(1-p^{-s}\right)^{-1}$ for $s>0$, and then, because at most $\phi(N)$ ideals \mathfrak{p} divide a rational prime p,

$$
\left(1-p^{-\phi(N) s}\right)^{-1} \leq \prod_{\mathfrak{p} \mid p}\left(1-\mathrm{Np}^{-s}\right)^{-1} \leq\left(1-p^{-s}\right)^{-\phi(N)}, \quad s>0
$$

Because $\prod_{p}\left(1-p^{-\phi(N) s}\right)^{-1}=\sum_{n \geq 1} n^{-\phi(N) s}$ diverges at $s=1 / \phi(N)$, so does $\prod_{p} \prod_{\mathfrak{p} \mid p}\left(1-\mathrm{Np}^{-s}\right)^{-1}=\zeta_{K}(s)$. Similarly, because $\prod_{p}\left(1-p^{-s}\right)^{-\phi(N)}=\zeta(s)^{\phi(N)}$ converges absolutely and uniformly on compacta in $\operatorname{Re}(s)>1$, so does $\zeta_{K}(s)$; here we are using the fact that $\left|\mathrm{Na}^{-s}\right|=\mathrm{Na}{ }^{-\operatorname{Re}(s)}$.

Next we obtain another expression for $\zeta_{K}(s)$. For any p, compute that

$$
\prod_{\mathfrak{p} \mid p}\left(1-\mathrm{Np}^{-s}\right)^{-1}=\left(1-p^{-f s}\right)^{-g}=\prod_{k=0}^{f-1}\left(1-\zeta_{f}^{k} p^{-s}\right)^{-g}=\prod_{\chi}\left(1-\chi(p) p^{-s}\right)^{-1}
$$

where the product is taken over all characters χ modulo N, each character understood to be the underlying primitive character extended to a multiplicative function on \mathbb{Z}. As discussed above, $\chi(p)=\zeta_{f}^{k}$ for g characters χ modulo N, independently of k, these characters being defined modulo N_{p}, while the characters χ modulo N that are not defined modulo N_{p} take p to 0 and thus contribute a trivial factor of 1 to the last product in the previous display. Overall, then, we have

$$
\zeta_{K}(s)=\prod_{p} \prod_{\chi}\left(1-\chi(p) p^{-s}\right)^{-1}=\prod_{\chi} \prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}
$$

which is to say that the N th cyclotomic Dedekind zeta function factors as the product of all Dirichlet L-functions modulo N,

$$
\zeta_{K}(s)=\prod_{\chi} L(\chi, s)
$$

The boxed expression for $\zeta_{K}(s)$ in the previous display arises naturally in the proof of Dirichlet's theorem on primes in an arithmetic progression. We have seen that the function $L(1, s)=\zeta(s)$, which is initially defined only for $\operatorname{Re}(s)>1$, extends to a meromorphic function on $\{\operatorname{Re}(s)>0\}$ whose only singularity is a simple pole at $s=1$, and that $L(\chi, s)$ for $\chi \neq 1$ extends to an analytic function on $\{\operatorname{Re}(s)>0\}$. Thus the cyclotomic zeta function $\zeta_{K}(s)$ extends meromorphically to $\{\operatorname{Re}(s)>0\}$ with its only possible pole at $s=1$. There really is such a pole, because otherwise the defining sum expression for $\zeta_{K}(s)$ would converge for all $s>$ 0 , but we have shown above that this is impossible. The pole of $\zeta_{K}(s)$ at $s=1$ is the crux of Dirichlet's theorem.

