
THE CYCLOTOMIC ZETA FUNCTION

This writeup begins by showing that cyclotomic polynomials are irreducible.
Then the “e, f, g” description of rational prime decomposition in a cyclotomic num-
ber field is stated, without proof. The cyclotomic zeta function is introduced, and
the rational prime decomposition shows that the Nth cyclotomic zeta function is
the product of all Dirichlet L-functions modulo N . The cyclotomic zeta function,
as initially defined by a sum or a product, is an analytic function of a complex vari-
able s in a right half plane. An easy estimate shows that the sum inherits a pole
at s = 1 from the basic Euler–Riemann zeta function, with no nontrivial Dirichlet
L-function canceling it. This pole is the crux of the proof of Dirichlet’s theorem on
primes in an arithmetic progression.
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1. Cyclotomic Galois Theory

Let N be a positive integer. The Nth cyclotomic field is

K = KN = Q(ζN ), where ζN = e2πi/N .

This field is a Galois extension of Q because every embedding of K in C must
take ζN to some primitive Nth root of unity, i.e., to ζmN for some m coprime to N ,
making the embedding an automorphism of K. We view the Galois group of KN

as a subgroup of (Z/NZ)×, by identifying each automorphism of KN , taking ζN
to ζmN for some m, with m+NZ. What isn’t immediately obvious is that the Galois
group is all of (Z/NZ)×.

The Nth cyclotomic polynomial is

ΦN (X) =
∏

0≤m<N
gcd(m,N)=1

(X − ζmN ),

the monic polynomial in KN [X] whose roots are the primitive Nth roots of unity.
Because each automorphism of K permutes the roots of ΦN (X), this polynomial
is invariant under the Galois group, so it lies in Q[X], and further its coefficients
are algebraic integers, so it lies in Z[X]. To show that the Galois group of KN

is all of (Z/NZ)× it suffices to show that ΦN (X) is irreducible in Z[X], because
its degree φ(N) (Euler totient function) is |(Z/NZ)×|. We show the irreducibility
next.
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2 THE CYCLOTOMIC ZETA FUNCTION

Let f(X) ∈ Z[X] be the monic irreducible polynomial of ζN . We have Φn(X) =
f(X)g(X) for some g(X) ∈ Z[X], and we want to show that f(X) = Φn(X). Every
complex root of Φn(X) takes the form ζmN where gcd(m,N) = 1, and this root can
be obtained from ζN by repeatedly raising to various primes p - N . Thus it suffices
to show that:

For any root ρ of f and for any prime p - N , also ρp is a root of f.

So, let ρ be a root of f and let p - N be prime. We show that f(ρp) = 0 by
showing that g(ρp) 6= 0. For, if instead g(ρp) = 0 then ρ is a root of g(Xp), and so
f(X) divides g(Xp) in Z[X]. Letting an overbar denote reduction modulo p, f(X)
divides g(X)p in the UFD (Z/pZ)[X], and so f(X) and g(X) share a nontrivial
factor h(X) in (Z/pZ)[X]. Thus h(X)2 divides ΦN (X) modulo p. But this is
impossible. Indeed, ΦN (X) divides XN − 1, which is coprime to its derivative
NXN−1 modulo p because p - N . Hence XN −1 has no repeated factors modulo p,
and consequently neither does ΦN (X).

2. Dirichlet Characters and e, f, g

Let N be a positive integer. A Dirichlet character modulo N is defined initially
as a homomorphism

χ : (Z/NZ)× −→ C×.
Any such character determines a least positive divisor M of N such that the char-
acter factors as

χ = χo ◦ πM : (Z/NZ)×
πM−→ (Z/MZ)×

χo−→ C×.
The integer M is the conductor of χ, and the character χo is primitive. Note that
if n ∈ Z is not coprime to N but is coprime to M then χo(n+MZ) is defined and
nonzero. Perhaps confusingly at first, we also use the symbol χ to denote χo lifted
to a multiplicative function on the integers,

χ : Z −→ C, χ(n) =

{
χo(n+MZ) if gcd(n,M) = 1,

0 if gcd(n,M) > 1.

Thus (the lifted) χ(n) need not equal (the original) χ(n + NZ), and in particular
χ(n) need not equal 0 even when gcd(n,N) > 1. Especially, if N > 1 then the
trivial character 1 modulo N has conductor M = 1, and the trivial character 1o
modulo 1 is identically 1 on (Z/1Z)× = {0}, and this character lifts to the constant
function 1(n) = 1 for all n ∈ Z, even though the original character 1 modulo N is
undefined on cosets n+NZ where gcd(n,N) > 1.

Fix a rational prime p.

• Let pd ‖ N and Np = N/pd and e = φ(pd).
• Let f denote the order of p+NpZ in (Z/NpZ)×.
• Let g = φ(Np)/f .

Thus altogether efg = φ(N). Note that Np = N and e = 1 for all primes p other
than the finitely many prime divisors of N . Conversely, e > 1 for p | N , excepting
the case N = 2 mod 4 and p = 2. Just below we will see good reason to exclude
the case N = 2 mod 4, after which e > 1 precisely when p | N .

Let ζf = e2πi/f . The multiplicative subgroup 〈p+NpZ〉 of (Z/NpZ)× has f char-
acters, taking p to ζkf for k = 0, . . . , f −1. Each such character lifts to φ(Np)/f = g
Dirichlet characters modulo Np. Any Dirichlet character modulo N that is not
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defined modulo Np takes p to 0. That is, for k = 0, . . . , f − 1 there exist g Dirichlet
characters modulo N that take p to ζkf , and any Dirichlet character modulo N that

doesn’t take p to any ζkf takes p to 0.

3. Cyclotomic Arithmetic

Again let N be a positive integer, now stipulating that N 6= 2 mod 4, and
consider the cyclotomic number field

K = Q(ζN ), ζN = e2πi/N .

The case N = 2 mod 4 is excluded because here gcd(2, N/2) = 1 and so −ζN/2 has
order 2 · N/2 = N , which is to say that the field Q(ζN ) = Q(ζN/2) is redundant.
For example, −ζ3 has order 6 but lies in Q(ζ3). Another way to see the redundancy

is to reason geometrically (again with N = 2 mod 4) that ζ
d(N/2)/2e
N/2 = ζ

N/4+1/2
N/2 is

just more than halfway around the circle, so that its negative must be ζN , and then

to confirm this analytically by computing −ζ(N+2)/4
N/2 = −ζ(N+2)/2

N = −ζN/2+1
N =

ζ
N/2
N ζ

N/2+1
N = ζN .

We state some results without proof. For any rational prime p, let e and f and g
be as above. Then p factors in OK as

pOK = (p1 · · · pg)e, [OK/pi : Z/pZ] = f for each i.

Some particular cases are as follows.

• The primes p such that p = 1 mod N decompose completely in OK ,

pOK = p1 · · · pφ(N) and OK/pi ≈ Z/pZ for each i,

with (e, f, g) = (1, 1, φ(N)). Here the cyclotomic polynomial ΦN (X) has
φ(N) distinct roots r1, . . . , rφ(N) in Z/pZ, and the prime divisors of pOK
are

pi = 〈ri, p〉 ⊂ OK , i = 1, . . . , φ(N).

• The primes p that are primitive roots modulo N undergo pure residue field
growth from Q to K,

pOK = p and [OK/p : Z/pZ] = φ(N),

with (e, f, g) = (1, φ(N), 1).
• The primes p that divide N are the primes that ramify, here using the fact

that the case N = 2 mod 4 is excluded. The extreme case of ramification
is

pOK = pφ(N) and [OK/p : Z/pZ] = 1 if N = pd for some d ≥ 1.

with (e, f, g) = (φ(N), 1, 1). Here the prime divisor of pOK is

p = (1− ζpd)OK .

4. Cyclotomic Galois Theory and Cyclotomic Arithmetic

As shown above, the Galois group of K = Q(ζN ) is

G = {ζN 7−→ ζmN : m+NZ ∈ (Z/NZ)×}.
Recall the decomposition N = Np · pd where pd ‖ N . We freely make the identifi-
cations

G = (Z/NZ)× = (Z/NpZ)× × (Z/pdZ)×.
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Fix a rational prime p. The inertia and decomposition subgroups of p in G are

Ip = {1} × (Z/pdZ)×, Dp = 〈p+NpZ〉 × (Z/pdZ)×.

Thus Ip ⊂ Dp and |Ip| = e and |Dp| = ef .
The inertia field KI,p and the decomposition field KD,p of p are the intermediate

fields of K/Q corresponding to the inertia and decomposition subgroups of G. Thus
Q ⊂ KD,p ⊂ KI,p ⊂ K.

• The decomposition field is so named because p decomposes there as

pOD = p1,D · · ·pg,D
with the pi,D ideals. For each i there is no residue field growth, meaning
that [OD/pi,D : Z/pZ] = 1, and visibly there is no ramification. The degree
[KD,p : Q] = g matches the number of factors of p. Because g is the index
[G : Dp], it is called the decomposition index of p in K.
• The inertia field is so named because each pi,D remains inert in OI , which

is to say that pi,DOI takes the form pi,I rather than decomposing further.
Here there is residue field growth, specifically

[OI/pi,I : OD/pi,D] = f for i = 1, . . . , g,

and again there is no ramification. The degree [KI,p : KD,p] = f matches
the uniform residue field extension degree shown in the display, and f is
called the inertial degree of p in K.
• Finally, each pi,I ramifies totally in OK ,

pi,IOK = pei for i = 1, . . . , g.

Here there is no further decomposition and with no further residue field
growth, [OK/pi : OI/pi,I ] = 1 for each i. The degree [K : KI,p] = e
matches the ramification exponent in the display, and e is called the rami-
fication degree of p in K.

To summarize, as we climb from Q through KD,p and KI,p to K, the prime p
decomposes, then the residue fields grow, then each factor of p ramifies.

5. The Dedekind Zeta Function and its Euler Product

The ring of integers of K is

OK = Z[ζN ].

Define the norm of a nonzero ideal a of OK to be

Na = |OK/a|.
Thus we tacitly assert without proof that the quotient is finite. We further as-
sert without proof that the norm is strongly multiplicative. The relation [OK/p :
Z/pZ] = f with f as above says that

Np = pf where p | p and f is the inertial degree of p in K.

Definition 5.1. The Nth cyclotomic Dedekind zeta function is

ζK(s) =
∑
a

Na−s =
∏
p

(1−Np−s)−1, Re(s) > 1.

The sum is taken over the nonzero ideals of OK , and the product is taken over the
maximal ideals.
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We show that ζK(s) cannot converge for all positive real s but is analytic
on Re(s) > 1. Indeed, Np = pf gives p ≤ Np ≤ pφ(N), from which (1−p−φ(N)s)−1 ≤
(1 − Np−s)−1 ≤ (1 − p−s)−1 for s > 0, and then, because at most φ(N) ideals p
divide a rational prime p,

(1− p−φ(N)s)−1 ≤
∏
p|p

(1−Np−s)−1 ≤ (1− p−s)−φ(N), s > 0.

Because
∏
p(1 − p−φ(N)s)−1 =

∑
n≥1 n

−φ(N)s diverges at s = 1/φ(N), so does∏
p

∏
p|p(1 − Np−s)−1 = ζK(s). Similarly, because

∏
p(1 − p−s)−φ(N) = ζ(s)φ(N)

converges absolutely and uniformly on compacta in Re(s) > 1, so does ζK(s); here
we are using the fact that |Na−s| = Na−Re(s).

Next we obtain another expression for ζK(s). For any p, compute that∏
p|p

(1−Np−s)−1 = (1− p−fs)−g =

f−1∏
k=0

(1− ζkf p−s)−g =
∏
χ

(1− χ(p)p−s)−1,

where the product is taken over all characters χ modulo N , each character under-
stood to be the underlying primitive character extended to a multiplicative function
on Z. As discussed above, χ(p) = ζkf for g characters χ modulo N , independently
of k, these characters being defined modulo Np, while the characters χ modulo N
that are not defined modulo Np take p to 0 and thus contribute a trivial factor of 1
to the last product in the previous display. Overall, then, we have

ζK(s) =
∏
p

∏
χ

(1− χ(p)p−s)−1 =
∏
χ

∏
p

(1− χ(p)p−s)−1,

which is to say that the Nth cyclotomic Dedekind zeta function factors as the
product of all Dirichlet L-functions modulo N ,

ζK(s) =
∏
χ

L(χ, s).

The boxed expression for ζK(s) in the previous display arises naturally in the
proof of Dirichlet’s theorem on primes in an arithmetic progression. We have seen
that the function L(1, s) = ζ(s), which is initially defined only for Re(s) > 1,
extends to a meromorphic function on {Re(s) > 0} whose only singularity is a
simple pole at s = 1, and that L(χ, s) for χ 6= 1 extends to an analytic function
on {Re(s) > 0}. Thus the cyclotomic zeta function ζK(s) extends meromorphically
to {Re(s) > 0} with its only possible pole at s = 1. There really is such a pole,
because otherwise the defining sum expression for ζK(s) would converge for all s >
0, but we have shown above that this is impossible. The pole of ζK(s) at s = 1 is
the crux of Dirichlet’s theorem.


