## SUMS OF TWO SQUARES VIA $L$-FUNCTIONS

Consider a quadratic number field and its ring of algebraic integers,

$$
\mathbb{F}=\mathbb{Q}(i), \quad D=\mathbb{Z}[i]
$$

Thus $D$ now denotes the ring of Gaussian integers rather than the ring of Eisenstein integers. The two rings are very similar in their structures. Specifically,

- $D$ is a Euclidean ring with norm function

$$
N: D \longrightarrow \mathbb{N}, \quad N z=z \bar{z}, \quad N(a+b i)=a^{2}+b^{2}
$$

(This shows why the algebraic structure of $D$ should help us to study sums of two squares.) Consequently, $D$ is a PID and thus a UFD.

- The unit group of $D$ is cyclic of order 4 ,

$$
D^{*}=\{ \pm 1, \pm i\}=\langle i\rangle=\langle-i\rangle
$$

- Rational primes decompose in $D$ as follows:
$-p \equiv 1(\bmod 4) \Longrightarrow p$ splits: $p=\pi \bar{\pi}, N \pi=p, D / \pi D \cong \mathbb{Z} / p \mathbb{Z}$.
$-p \equiv 3(\bmod 4) \Longrightarrow p$ is inert: $p$ is prime in $D, N p=p^{2}, D / p D \cong$ $(\mathbb{Z} / p \mathbb{Z})^{2}$.
-2 ramifies: $2=-i(1+i)^{2}, N(1+i)=2, D /(1+i) D \cong \mathbb{Z} / 2 \mathbb{Z}$.
The quadratic character modulo 4 is the homomorphism

$$
\chi:(\mathbb{Z} / 4 \mathbb{Z})^{*} \longrightarrow\{ \pm 1\} \subset \mathbb{C}^{*}, \quad\left\{\begin{array}{l}
\chi(1+4 \mathbb{Z})=1 \\
\chi(3+4 \mathbb{Z})=-1
\end{array}\right.
$$

The character extends to the multiplicative function

$$
\chi: \mathbb{Z} \longrightarrow\{0, \pm 1\}, \quad \chi(n)=\left\{\begin{aligned}
1 & \text { if } n \equiv 1 \bmod 4 \\
-1 & \text { if } n \equiv 3 \bmod 4 \\
0 & \text { if } n \equiv 0 \bmod 2
\end{aligned}\right.
$$

The Euler-Riemann zeta function is

$$
\zeta(s)=\sum_{n \in \mathbb{Z}^{+}} n^{-s}=\prod_{p \in \mathcal{P}}\left(1-p^{-s}\right)^{-1}
$$

The sum and the product are formally equal by the Fundamental Theorem of Arithmetic. Both sides converge absolutely for all $s \in \mathbb{C}$ such that $\operatorname{Re}(s)>1$, but we don't need this fact. The quadratic $L$-function associated to $\chi$ is

$$
L(\chi, s)=\sum_{n \in \mathbb{Z}^{+}} \chi(n) n^{-s}=\prod_{p \in \mathcal{P}}\left(1-\chi(p) p^{-s}\right)^{-1}
$$

Equality between the sum and the product is no harder to prove than before because $\chi$ is multiplicative. The zeta function of the number field $\mathbb{F}=\mathbb{Q}(i)$ is

$$
\zeta_{\mathbb{F}}(s)=\sum_{\nu \in(D-\{0\}) / \sim} N \nu^{-s}=\prod_{\pi \in \mathcal{P}_{D} / \sim}\left(1-N \pi^{-s}\right)^{-1}
$$

Here the equivalence relation on $D$ is $x \sim y$ if $y=u x$ for some $u \in D^{*}$, i.e., two elements are similar if they are associate. Again, equality between the sum and the product is proved in the same way.

Let $r(n, 2)$ be the representation number of $n$ as the sum of two squares,

$$
\begin{aligned}
r(n, 2) & =\#\{a+b i \in D: N(a+b i)=n\} \\
& =\#\left\{(a, b) \in \mathbb{Z}^{2}: a^{2}+b^{2}=n\right\}
\end{aligned}
$$

The additive expression for $\zeta_{\mathbb{F}}(s)$ regroups as a generating function for these representation numbers,

$$
\zeta_{\mathbb{F}}(s)=\frac{1}{4} \sum_{n \in \mathbb{Z}^{+}} \sum_{\nu: N \nu=n} n^{-s}=\frac{1}{4} \sum_{n \in \mathbb{Z}^{+}} r(n, 2) n^{-s} .
$$

On the other hand, the arithmetic of $D$ and then the definition of the function $\chi$ show that the multiplicative form of $\zeta_{\mathbb{F}}(s)$ is

$$
\begin{aligned}
\zeta_{\mathbb{F}}(s) & =\left(1-2^{-s}\right)^{-1} \prod_{p \equiv 1(4)}\left(1-p^{-s}\right)^{-2} \prod_{p \equiv 3(4)}\left(1-p^{-2 s}\right)^{-1} \\
& =\zeta(s) \prod_{p \equiv 1(4)}\left(1-p^{-s}\right)^{-1} \prod_{p \equiv 3(4)}\left(1+p^{-s}\right)^{-1} \\
& =\zeta(s) L(\chi, s) .
\end{aligned}
$$

And the additive form of this last product is

$$
\zeta(s) L(\chi, s)=\sum_{n_{1} \in \mathbb{Z}^{+}} n_{1}^{-s} \sum_{n_{2} \in \mathbb{Z}^{+}} \chi\left(n_{2}\right) n_{2}^{-s}=\sum_{n \in \mathbb{Z}^{+}}\left[\sum_{d \mid n} \chi(d)\right] n^{-s}
$$

Equate the coefficients of the two additive forms of $\zeta_{\mathbb{F}}(s)$ to obtain an expression for the representation number,

$$
r(n, 2)=4 \sum_{d \mid n} \chi(d)
$$

