
THE UNIT GROUP OF A REAL QUADRATIC FIELD

While the unit group of an imaginary quadratic field is very simple, the unit
group of a real quadratic field has nontrivial structure. Its study involves some
geometry and analysis, but also it relates to Pell’s equation and continued frac-
tions, topics from elementary number theory. These ideas quickly lead to an ideal
class number formula for real quadratic fields, similar to its imaginary quadratic
counterpart.
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1. Review

Let F = Q(
√
n) be a real quadratic field. Thus n > 1 is not a square, and we

take n squarefree. Recall various facts about F .

• The nontrivial automorphism of F is the conjugation function,

: F −→ F, a+ b
√
n = a− b

√
n.

• The trace function of F is the abelian group homomorphism

tr : F −→ Q, tr(x) = x+ x.

Specifically,

tr(a+ b
√
n) = (a+ b

√
n) + (a− b

√
n) = 2a.

The norm function of F is the abelian group homomorphism

N : F× −→ Q×, N(x) = xx.

Specifically,

N(a+ b
√
n) = (a+ b

√
n)(a+ b

√
n) = a2 − b2n.

Sometimes we also define N(0) = 0.
1
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• The unit group O×
F of F× consists precisely of the elements of OF such

that N(x) = ±1.
• The discriminant of F is

DF =

{

n if n = 1 (mod 4),

4n if n = 2, 3 (mod 4),

and the integer ring of F is

OF = Z

[

DF +
√
DF

2

]

.

• An ideal of OF is a subset a ⊂ OF that forms an abelian group and is
closed under multiplication by OF . The norm of a nonzero ideal a of OF ,
denoted N(a), is characterized by the conditions

aa = N(a)OF , N(a) ∈ Z+.

We quickly show that for any positive integer m, only finitely many ideals a
of OF have norm m. Indeed, for any such ideal,

mOF = aa ⊂ a ⊂ OF ,

giving a surjection OF /mOF −→ OF /a. Thus |OF /a| | |OF /mOF | = m2,
and so it suffices to show that for any positive integer ℓ only finitely many
ideals a exist such that |OF /a| = ℓ. (In fact |OF /a| = m, but we do not

show this here.) Let [ g1g2 ] be a basis of OF , and let
[

h1

h2

]

be a basis of a.
Thus

[

h1

h2

]

=

[

a b
c d

] [

g1
g2

]

, a, b, c, d ∈ Z.

Because the basis of OF can be left multiplied by any GL2(Z) matrix and
remain a basis, and similarly for the basis of a, in fact a is described by the
double coset

GL2(Z)

[

a b
c d

]

GL2(Z).

Finding a canonical representative of this double coset is precisely the pro-
cess in the proof of the structure theorem for finitely generated abelian
groups. Thus the index-ℓ ideal is described by a unique matrix

[

d1 0
0 d2

]

, 1 ≤ d1 | d2, d1d2 = ℓ.

There are only finitely many such matrices, hence only finitely many such
ideals.

• In consequence of the previous bullet, we have:
Let {xj}j∈Z+ be a sequence in OF all of whose elements satisfy

|N(xj)| ≤ α for some constant α. Then for some pair of distinct

positive integers j and j′,

xj′ = uxj , u ∈ O×
F .

The proof is that there are only finitely many ideals 〈xj〉, because N(〈xj〉) =
|N(xj)|.
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2. Geometric Results

Lemma 2.1. Let Λ be a lattice in R2, and let E be a measurable subset of R2

such that µ(E) > µ(R2/Λ). Then there exist distinct points x, x′ ∈ E such that

x′ − x ∈ Λ.

Here the set E is not assumed to be compact or connected, only measurable.
The lemma is a sort of measure theory pigeonhole principle.

Proof. Let (e, f) be a Z-basis of Λ, so that corresponding fundamental parallelogram
of R2/Λ is

Π = {ξe+ ηf : ξ, η ∈ [0, 1]}.
Thus

area(Π) < µ(E) =
∑

λ∈Λ

µ(E ∩ (λ+Π)).

But measure is translation invariant, so rather than summing the measures of E in
the translations of the parallelogram, we may sum the measures of the translations
of E in the parallelogram itself,

area(Π) <
∑

λ∈Λ

µ((λ+ E) ∩Π).

Thus the intersection (λ+E)∩(λ′+E)∩Π is nonempty for some distinct λ, λ′ ∈ Λ.
(The reader may enjoy drawing a picture of this argument.) In particular,

λ+ x = λ′ + x′ for some x, x′ ∈ E.

This gives x′ − x = λ− λ′ ∈ Λ− {0} as desired. �

Proposition 2.2. Let Λ be a lattice in R2, and let E be a compact measurable

subset of R2 that is symmetric about 0 and convex and such that µ(E) ≥ 4µ(R2/Λ).
Then E contains a nonzero point of Λ.

Taking Λ = Z2, the reader may enjoy gaining a feel by picture that any set E
meeting the conditions of the proposition really must contain a nonzero lattice point.
For example, a thin ellipse that is tilted to avoid lattice points near the origin must
be long enough to contain some lattice point far away in its long direction.

Proof. The lemma says that for any ε > 0, the set

E′ = 1+ε
2 E.

contains distinct points x and x′ such that x′ − x ∈ Λ. But also, using symme-
try about 0, the nonzero difference x′ − x = (2x′ + 2(−x))/2 is a convex linear
combination of points of (1 + ε)E, and hence a point of (1 + ε)E. That is, letting
Λ′ = Λ− {0},

Λ′ ∩ (1 + ε)E 6= ∅.
Note that Λ′ ∩ (1 + ε)E is compact—finite, for that matter—because it is the
intersection of a discrete set and a compact set. Thus the nested intersection over
all ε remains nonempty,

⋂

ε>0

(Λ′ ∩ (1 + ε)E) 6= ∅.

(The finite intersection property of compact sets rephrases the definition of com-
pactness. If

⋂

α Kα = ∅ then
⋃

α Kc
α = Ko gives an open cover of Ko, hence

Kc
α = Ko for some α by the nestedness, hence Kα = ∅, contradiction.) But the
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nonempty intersection is, using the compactness of E again at the last step of the
next display,

⋂

ε>0

(Λ′ ∩ (1 + ε)E) = Λ′ ∩
⋂

ε>0

(1 + ε)E = Λ′ ∩ E = Λ′ ∩ E.

This completes the argument. �

The lemma and the proposition are special cases of results due to Minkowski
about the geometry of numbers .

3. The Canonical Embedding

Definition 3.1. The canonical embedding of F is the ring homomorphism

ι : F −→ R2, x 7−→ (x, x).

Recall that our real quadratic field is F = Q(
√
n), and that its discriminant is

DF =

{

n if n = 1 (mod 4),

4n if n = 2, 3 (mod 4).

The abelian group structure of the integer ring of F is a direct sum,

OF =
DF +

√
DF

2
Z⊕ Z.

The images of the basis elements under the fundamental embedding are

ι(1) = (1, 1),

ι

(

DF +
√
DF

2

)

=

(

DF +
√
DF

2
,
DF −

√
DF

2

)

.

Thus ι(OF ) is a lattice in R2 whose fundamental parallelogram has area

| det
[

1 1
DF+

√
DF

2
DF−

√
DF

2

]

| =
√

DF .

That is, µ(R2/ι(OF )) =
√
DF . Consequently, Proposition 2.2 says that any com-

pact box B that is symmetric about the origin and has area 4
√
DF contains a

nonzero point of ι(OF ). We will quote this fact below.

4. Finiteness of the Ideal Class Number

Before continuing, we quickly sketch a proof that the real quadratic field F has
only finitely many ideal classes.

For any real c ≥ 0, let

Sc = {(x, y) ∈ R2 : |x|+ |y| ≤ c}.
This set is symmetric about 0 and convex, and

µ(Sc) = 2c2.

As just shown, µ(R2/ι(OF )) =
√
DF , and more generally, for an ideal ao of OF ,

µ(R2/ι(ao)) =
√

DF N(ao).

By Proposition 2.2 and then by the arithmetic-geometric mean inequality:

If µ(Sc) = 4µ(R2/ι(ao)) then Sc contains ι(α) for some nonzero
element α of ao, and |N(α)| ≤ c2/4.
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The condition µ(Sc) = 4µ(R2/ι(ao)) is 2c
2 = 4

√DK N(ao), and so the bound is

|N(α)| ≤ 1

2

√

DK N(ao).

Now consider an ideal class C. Take any ideal ao in the inverse class C−1, and then
any α ∈ a as just above. Then (α) = aoa for some ideal a in C, and

N(a) =
|N(α)|
N(ao)

≤ 1

2

√

DK .

Because only finitely many ideals a satisfy this condition, only finitely many ideal
classes exist.

5. The Logarithmic Embedding

Definition 5.1. The logarithmic embedding of O×
F is the group homomorphism

ℓ : O×
F −→ R2, u 7−→ (log |u|, log |u|).

Thus the logarithmic embedding takes the form

ℓ = h ◦ ι
∣

∣

O×

F

where h is the continuous group homomorphism

h : (R×)2 −→ R2, (x, y) 7−→ (log |x|, log |y|).

Note that ι
∣

∣

O×

F

is also a homomorphism of multiplicative groups. Because uu =

N(u) for u ∈ O×
F , the image ι(O×

F ) lies in the “hyperbola”

H = {(x, y) ∈ (R×)2 : xy = ±1}.

Also note that the calculation

xy = ±1 =⇒ log |x|+ log |y| = log |xy| = log 1 = 0

shows that h restricts to a continuous homomorphism from the hyperbola H to the
line of slope −1,

L = {(z, w) ∈ R2 : z + w = 0}.

That is,

ι(O×
F ) ⊂ H, ℓ(O×

F ) ⊂ L.

Also, direct inspection shows that ker(ℓ) = {±1}, and thus (the next display has a
multiplicative group on the left and an additive group on the right)

O×
F ∩ R>0 ≈ ℓ(O×

F ),

and thus

O×
F = {±1} ⊕ (O×

F ∩ R>0) ≈ (Z/2Z)⊕ ℓ(O×
F ).



6 THE UNIT GROUP OF A REAL QUADRATIC FIELD

6. Unit Group Structure

We show that ℓ(O×
F ) is infinite cyclic. First we show that it is discrete.

Lemma 6.1. For any nonnegative number r ∈ R≥0, ℓ
−1([−r, r]2) ⊂ O×

F is finite.

Setting r = 0 in the lemma shows that ker(ℓ) is finite. Because ker(ℓ) = {±1}
in the real quadratic field case, we obtain nothing new here, but for number fields
other than real quadratic fields, with the lemma modified accordingly, the result is
of interest.

Proof. Let r ≥ 0 and suppose that some element u ∈ O×
F satisfies

ℓ(u) ∩ [−r, r]2.

That is, (log |u|, log |u|) ∈ [−r, r]2, so that

|u|, |u| ∈ [e−r, er].

Consequently

|tr(u)| = |u+ u| ≤ 2er and |N(u)| = |uu| ≤ e2r.

But the characteristic relation of u over Z is

u2 − tr(u)u+N(u) = 0, tr(u),N(u) ∈ Z.

Thus there are only finitely many possibilities for the characteristic polynomial,
and hence there are only finitely many possibilities for u. �

Recall that O×
F ≈ (Z/2Z) ⊕ ℓ(O×

F ). The lemma shows that ℓ(O×
F ) is a discrete

subgroup of L. Because L ≈ R, the question now is whether ℓ(O×
F ) = {0} or

ℓ(O×
F ) ≈ Z.

Theorem 6.2. ℓ(O×
F ) ≈ Z.

Proof. For any positive real number λ, the compact box

B = [−λ, λ]× [−
√

DF /λ,
√

DF /λ]

is symmetric about the origin, and its area is 4
√
DF . As explained in section 3, the

geometry of numbers shows that there exists a nonzero integer x1 ∈ OF such that
ι(x1) ∈ B. The fact that ι(x1) = (x1, x1) lies in B says that

|N(x1)| ≤
√

DF .

Also, the condition |N(x1)| ≥ 1 holds because x1 ∈ OF , so ι(x1) lies outside the
four hyperbolic segments xy = ±1. These segments meet the top and bottom of
the box at |x| = λ/

√
DF , so

λ/
√

DF ≤ |x1| ≤ λ.

Repeat the process with a second positive real number λ′ >
√
DF λ to get x2 ∈ OF

with |N(x2)| ≤
√
DF and

λ < λ′/
√

DF ≤ |x2| ≤ λ′.

The previous two displays combine to give |x1| < |x2|. Figure 6 shows the upper
right quarters of the two boxes used in this argument, with |x1| < |x2| by the
geometry of the configuration.
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λ

√
DF /λ

λ′

√
DF /λ

′

(|x1|, |x1|)

(|x2|, |x2|)

Figure 1. Hyperbola and boxes

Continue in this fashion to get a sequence {xj} in OF such that

|N(xj)| ≤
√

DF for all j and |x1| < |x2| < |x3| < · · · .
The bounded norms and the increasing absolute values are compatible because in
our real quadratic field setting, norm is not squared absolute value. As explained
at the end of the review section above, the first condition in the previous display
implies that xj′ = uxj for some distinct indices j, j′ and some unit u ∈ O×

F . The
second condition in the previous display gives |u| 6= 1, and therefore log |u| 6= 0.
This shows that ℓ(O×

F ) 6= {0}, and consequently ℓ(O×
F ) ≈ Z as desired. �

7. The Fundamental Unit

Definition 7.1. The unique element u1 ∈ O×
F such that

O×
F = {±1} × 〈u1〉 = {±1} × {ui

1 : i ∈ Z}, u1 > 1.

is the fundamental unit of F .

If the fundamental unit is

u1 = a+ b
√
n, a, b ∈ Q

then because N(u1) = ±1, altogether

u1, u
−1
1 ,−u1,−u−1

1 = ±a± b
√
n.

Because the fundamental unit is the largest of the four elements in the previous
display, in fact

u1 = a+ b
√
n, a, b ∈ Q+,

and u1 is the smallest such element a+ b
√
n of OF . The units u > 1 are overall

uk = uk
1 = (a+ b

√
n)k, k = 1, 2, 3, . . . .

Introduce the constant

c =

{

2 if n = 1 (mod 4)

1 if n = 2, 3 (mod 4).
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This constant gives a uniform description of the integer ring of F ,

OF =
{

1
c (a+ b

√
n) : a, b ∈ Z, a = b (mod c)

}

.

The fundamental unit takes the form

u1 = 1
c (a1 + b1

√
n), a1, b1 ∈ Z+, a1 = b1 (mod c), a21 − nb21 = ±c2.

Its positive powers are

uk
1 = 1

ck
(ak + bk

√
n) = 1

ck
(a1 + b1

√
n)k.

Because bk+1 = akb1 + bka1, the sequence {bk} is strictly increasing. Thus, an
algorithm to find the fundamental unit for n = 1 (mod 4) is:

Test b1 = 1, 2, 3, . . . until either of nb21 ± c2 is a perfect square.

Let a1 be the positive integer such that a21 − nb21 = ±c2. Then

u1 = 1
c (a1 + b1

√
n).

Some fundamental units are shown in figure 2.

n u1

2 1 +
√
2

3 2 +
√
3

5 1
2 (1 +

√
5)

6 5 + 2
√
6

7 8 + 3
√
7

10 3 +
√
10

11 10 + 3
√
11

13 1
2 (3 +

√
13)

14 15 + 4
√
14

15 4 +
√
15

17 4 +
√
17

19 170 + 39
√
19

21 1
2 (5 +

√
21)

Figure 2. Some fundamental units

8. Continued Fractions and the Fundamental Unit

A more efficient method for finding the fundamental unit uses continued frac-

tions . The exposition to follow is drawn from The Higher Arithmetic by Dav-
enport.
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8.1. The continued fraction of a rational number. Let c/d be a nonzero
rational number, with d > 0. The Euclidean algorithm gives

c

d
= q0 +

r0
d
, q0 ∈ Z, 0 < r0 < d,

d

r0
= q1 +

r1
r0

, q1 > 0, 0 < r1 < r0,

r0
r1

= q2 +
r2
r1

, q2 > 0, 0 < r2 < r1,

...
rm−2

rm−1
= qm, qm > 1.

Letting α0 = c/d, this rewrites as

α0 = q0 +
1

α1
, q0 ∈ Z, α1 > 1,

α1 = q1 +
1

α2
, q1 > 0, α2 > 1,

α2 = q2 +
1

α3
, q2 > 0, α3 > 1,

...

αm = qm, qm > 1.

Specifically, qn = ⌊αn⌋ and αn+1 = 1/(αn − qn) for each n = 0, . . . ,m − 1, and
then αm is an integer at least 2, and the last quotient is qm = αm. Either way the
algorithm is written,

c

d
= q0 +

1

q1 +
1

q2+
1

···+ 1
qm

.

Working productively with the notation of the previous display is hopeless. A
standard remedy is to write instead

c

d
= q0 +

1

q1+

1

q2+
· · · 1

qm
.

Note that also, using the fact that the last quotient qm is at least 2,

c

d
= q0 +

1

q1+

1

q2+
· · · 1

(qm − 1)+

1

1
.

The expression in the previous three displays is the continued fraction expression
of c/d.

For any n = 0, 1, . . . ,m− 1 we have

(1)
c

d
= q0 +

1

q1+

1

q2+
· · · 1

qn+

1

αn+1
.

Here the last denominator isn’t an integer unless n = m− 1, when αn+1 = qm and
we have the entire continued fraction expression of c/d.

The convergents of the continued fraction are the successive approximations
of c/d that omit the reciprocal noninteger at the end of the previous display,

hn

kn
= q0 +

1

q1+

1

q2+
· · · 1

qn
, n = 0, . . . ,m.



10 THE UNIT GROUP OF A REAL QUADRATIC FIELD

The first few convergents are

h0

k0
= q0 =

q0
1
,

h1

k1
= q0 +

1

q1
=

q0q1 + 1

q1
,

h2

k2
= q0 +

1

q1+

1

q2
= q0 +

q2
q1q2 + 1

=
q0q1q2 + q0 + q2

q1q2 + 1
,

h3

k3
= q0 +

1

q1+

1

q2+

1

q3
= q0 +

q2q3 + 1

q1q2q3 + q1 + q3

=
q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1

q1q2q3 + q1 + q3
.

We use angle brackets to denote the numerator hn of the nth convergent,

〈q0, q1, . . . , qn〉 = hn.

Thus, for example, the penultimate display gives

〈q0〉 = q0,

〈q0, q1〉 = q0q1 + 1,

〈q0, q1, q2〉 = q0q1q2 + q0 + q2,

〈q0, q1, q2, q3〉 = q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1.

The denominator requires no symbol of its own because, as the small examples have
shown, it is simply 〈q1, . . . , qn〉. The inductive step of showing this in general is

hn

kn
= q0 +

〈q2, . . . , qn〉
〈q1, . . . , qn〉

=
q0〈q1, . . . , qn〉+ 〈q2, . . . , qn〉

〈q1, . . . , qn〉
.

This also shows the recurrence

〈q0, q1, q2, . . . , qn〉 = q0〈q1, . . . , qn〉+ 〈q2, . . . , qn〉.
Euler gave the explicit formula

〈q0, . . . , qn〉 = q0 · · · qn +
∑

i

q0 · · · qn
qiqi+1

+
∑

i,j

q0 · · · qn
qiqi+1qjqj+1

+ · · · .

That is,

• multiply all the q’s together,
• then multiply them together omitting consecutive pairs,
• then multiply them together omitting pairs of consecutive pairs,
• and so on.

Euler’s formula demands extending the numerator-symbol to include the case

〈 〉 = 1.

A consequence of Euler’s formula is symmetry,

〈q0, q1, . . . , qn〉 = 〈qn, . . . , q1, q0〉,
making the recurrence given above also

〈q0, q1, q2, . . . , qn〉 = 〈q0, . . . , qn−1〉qn + 〈q0, . . . , qn−2〉,
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and similarly starting at q1, so that we have
[

hn

kn

]

=

[

hn−1

kn−1

]

qn +

[

hn−2

kn−2

]

, n ≥ 1,

remembering that we interpret h−1 = 〈 〉 as 1, and interpreting k−1 as 0. Thus the
convergents are easy to compute in succession from the quotients. Also,

∣

∣

∣

∣

h0 h−1

k0 k−1

∣

∣

∣

∣

=

∣

∣

∣

∣

〈q0〉 〈 〉
〈 〉 0

∣

∣

∣

∣

=

∣

∣

∣

∣

q0 1
1 0

∣

∣

∣

∣

= −1,

and
[

hn hn−1

kn kn−1

]

=

[

hn−1 hn−2

kn−1 kn−2

] [

qn 1
1 0

]

, n ≥ 1,

so that by induction,
∣

∣

∣

∣

hn hn−1

kn kn−1

∣

∣

∣

∣

= (−1)n+1, n ≥ 0.

In particular, gcd(hn, kn) = 1 for all n ≥ 0, showing that the nth convergent is in
lowest terms. Because

hn

kn
− hn−1

kn−1
=

(−1)n+1

knkn−1
, n ≥ 1,

it follows that the sequence {hn/kn}n≥1 is Leibniz. For n = 0, 1, . . . ,m− 1, equa-
tion (1) on page 9 gives

c

d
=

〈q0, q1, . . . , qn, αn+1〉
〈q1, . . . , qn, αn+1〉

=
hnαn+1 + hn−1

knαn+1 + kn−1
,

and so adding fractions gives
∣

∣

∣

∣

c

d
− hn

kn

∣

∣

∣

∣

=

∣

∣

∣

∣

hn−1kn − hnkn−1

(knαn+1 + kn−1)kn

∣

∣

∣

∣

=
1

(knαn+1 + kn−1)kn
,

and because αn+1 ≥ qn+1, so that knαn+1 + kn−1 ≥ knqn+1 + kn−1 = kn+1, this
gives

∣

∣

∣

∣

c

d
− hn

kn

∣

∣

∣

∣

≤ 1

knkn+1
<

1

k2n
.

8.2. The continued fraction of an irrational number. Let α = α0 be an
irrational number. Similarly to before, we have

α0 = q0 + 1/α1, q0 ∈ Z, α1 > 1,

α1 = q1 + 1/α2, q1 > 0, α2 > 1,

α2 = q2 + 1/α3, q2 > 0, α3 > 1,

...

αm = qm + 1/αm+1, qm > 0, αm+1 > 1,

with qn = ⌊αn⌋ and αn+1 = 1/(αn−qn) for each n ≥ 0, but now the process doesn’t
terminate. Still, again as before,

α =
〈q0, . . . , qn, αn+1〉
〈q1, . . . , qn, αn+1〉

, n ≥ 0,

and we have the recurrence

〈q0, . . . , qn, αn+1〉 = 〈q0, . . . , qn〉αn+1 + 〈q0, . . . , qn−1〉 = hnαn+1 + hn−1.
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Similarly

〈q1, . . . , qn, αn+1〉 = knαn+1 + kn−1,

and so

(2) α =
hnαn+1 + hn−1

knαn+1 + kn−1
.

Precisely as before, it follows that the sequence {hn/kn}n≥1 is Leibniz, and
∣

∣

∣

∣

α− hn

kn

∣

∣

∣

∣

<
1

knkn+1
<

1

k2n
.

Thus

α = lim
n

hn

kn
= q0 +

1

q1+

1

q2+
· · · 1

qn+
. . . .

When the continued fraction context is clear, we write more concisely

α = q0, q1, q2, . . . , qm, . . . .

8.3. The quadratic irrational case.

Definition 8.1. A quadratic irrational number is a real number of the form

α = a+ b
√
n, a, b ∈ Q, n ∈ Z≥2 squarefree.

The conjugate of such a number is

α′ = a− b
√
n.

A quadratic irrational number is normalized if α > 1 and −1 < α′ < 0.

If α is quadratic irrational and normalized, then so is β = −1/α′, as the reader
can check. This idea will be used twice in proving the next proposition. Repeating
the construction to define γ = −1/β′ gives α again. The condition β = α, i.e.,
αα′ = −1, is a2 − b2n = −1, making α a unit in the quadratic field Q(

√
n).

Proposition 8.2. Let α be an irrational number. Then α is quadratic and nor-

malized if and only if its continued fraction is periodic.

For example, the golden ratio ϕ, defined by the conditions ϕ − 1 = 1/ϕ and
ϕ > 1, is quadratic and normalized, and ϕϕ′ = −1, and the continued fraction of ϕ
is 1.

Proof. ( =⇒ ) Let α be quadratic and normalized. Thus α > 1 and −1 < α′ < 0.
For some P,D,Q ∈ Z with D a positive nonsquare and Q nonzero,

α =
P +

√
D

Q
.

Because 2
√
D/Q = α − α′ > 1 − 0 = 1 we have Q > 0, and because 2P/Q =

α + α′ > 1 − 1 = 0 we have P > 0, and because (P −
√
D)/Q = α′ < 0 we have

P <
√
D, and because (P +

√
D)/Q = α > 1 we have Q < P +

√
D. Further,

because α and α′ are the roots of a quadratic equation with integer coefficients,

ax2 + bx+ c = 0, a, b, c ∈ Z, a > 0,

it follows that Q = 2a and therefore

P 2 −D = (P +
√
D)(P −

√
D) = αα′Q2 = (c/a)Q2 = 2cQ = 0 (mod Q).
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For a given D there are only finitely many P and Q satisfying the conditions
0 < P <

√
D and 0 < Q < P +

√
D and P 2 = D (mod Q) that we have just

derived, and so there exist only finitely many normalized values α = (P +
√
D)/Q.

Let α0 = α, so that from α0 = q0 + 1/α1 we get

α1 =
1

α0 − q0
and thus α′

1 =
1

α′
0 − q0

.

Because α0 − q0 = α0 − ⌊α0⌋ lies between 0 and 1 it follows that α1 > 1. Because
α′
0 − q0 < −1 it follows that α′

1 < 0 and that α′
1 + 1 = (α′

0 − q0 + 1)/(α′
0 − q0) > 0,

which is to say that α′
1 > −1. That is, α1 is again normalized. By a little algebra,

α1 =
Q(P − q0Q−

√
D)

(P − q0Q)2 −D
,

and because the denominator is a multiple of Q in consequence of the congruence
P 2 = D (mod Q) from above, α1 takes the form (P1 +

√
D)/Q1 with the same D

as in α0. Thus the same applies to α2 and so on. But there are only finitely many
possibilities for P and Q, so eventually the sequence α1, α2, . . . repeats a value, and
from then on it is periodic. What remains to be shown is that the period starts
at α0.

Let the earliest repeat value be αn+k = αn, with n ≥ 0 and k > 0, so that α
is periodic from αn onward. We want to show that n = 0. Let βm = −1/α′

m for
any m ≥ 0, which is normalized because αm is, and note that

αm = qm +
1

αm+1
=⇒ α′

m = qm +
1

α′
m+1

=⇒ βm+1 = qm +
1

βm
.

Thus ⌊αm⌋ = ⌊βm+1⌋, their shared value being qm. Note also that βn+k = βn

because αn+k = αn and βm = −1/α′
m for all m. Assuming that n > 0, we have

qn−1+k = ⌊αn−1+k⌋ = ⌊βn+k⌋ = ⌊βn⌋ = ⌊αn−1⌋ = qn−1,

from which

αn−1+k = qn−1+k +
1

αn+k
= qn−1 +

1

αn
= αn−1,

so the periodicity of α is already in effect at generation n−1. This contradicts that
the periodicity starts at generation n, making the assumption n > 0 untenable.
That is, beyond being eventually periodic, α is immediately periodic.

( ⇐= ) Let α be periodic,

α = q0, . . . , qm, q0, . . . , qm, q0, . . . , qm, . . . = q0, . . . , qm.

Thus α > q0 ≥ 1, giving α > 1. Next, equation (2) and the periodicity of α give
the characteristic relation of α,

α =
hmα+ hm−1

kmα+ km−1
,

and this rewrites as the characteristic polynomial equation of α,

kmα2 + (km−1 − hm)α− hm−1 = 0,

showing that α is quadratic. Now consider the reverse-order periodic continued
fraction,

β = qm, . . . , q0.
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Similarly to α, now β > 1 because qm is a positive integer, and the characteristic
relation of β is almost the same as that of α,

β =
hmβ + km

hm−1β + km−1
.

Consequently, the characteristic relation of −1/β is

−1/β =
km−1(−1/β)− hm−1

−km(−1/β) + hm
,

so that the characteristic equation of −1/β is

km(−1/β)2 + (km−1 − hm)(−1/β)− hm−1 = 0.

That is, α and −1/β satisfy the same quadratic equation, so −1/β is one of α,
α′. Because α > 1 and −1 < −1/β < 0, we see that −1/β = α′ and consequently
−1 < α′ < 0. That is, α is normalized. �

Now consider a positive integer n that is not a perfect square. Let

q0 = ⌊√n⌋, α =
√
n+ q0.

Then α > 1 and α′ = −√
n+ q0 ∈ (−1, 0), showing that α is normalized. Note also

that

α′ = −α+ 2q0.

By “ =⇒ ” of the previous proposition, with the initial quotient for α being 2q0,

α = 2q0, q1, . . . , qm = 2q0, q1, . . . , qm, 2q0,

so that
1

α− 2q0
= q1, . . . , qm, 2q0.

Also, from the proof of “ ⇐= ” of the proposition,

−1/α′ = qm, . . . , q1, 2q0.

But because α′ = −α + 2q0, the left sides of the two previous displays are equal,
hence so are the right sides, and thus

q1, . . . , qm is palindromic.

This shows that
√
n = α− q0 has continued fraction

√
n = q0, q1, q2, . . . , q2, q1, 2q0.

For example,
√
2 = 1, 2,

√
3 = 1, 1, 2,

√
13 = 3, 1, 1, 1, 1, 6,

√
31 = 5, 1, 1, 3, 5, 3, 1, 1, 10.
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8.4. The fundamental unit again. Let the real quadratic number field Q(
√
n)

have discriminant D. Set

q0 =

⌊

D +
√
D

2

⌋

, α0 =
D +

√
D

2
+ q0 −D =

−D +
√
D

2
+ q0 .

We show that α0 is normalized. First, note that

α0 =
−D +

√
D

2
+

⌊

D +
√
D

2

⌋

>
−D +

√
D

2
+

D +
√
D

2
− 1 =

√
D − 1,

and so α0 > 1 because D ≥ 5. Second,

α0 =
−D −

√
D

2
+ q0 = −

(

D +
√
D

2
−
⌊

D +
√
D

2

⌋)

,

and so α0 ∈ (−1, 0).
Because α0 is normalized and has floor 2q0 −D,

α0 = 2q0 −D, q1, . . . , qm = 2q0 −D, q1, . . . , qm, 2q0 −D.

Thus, because −D+
√
D

2 = α0 − q0,

−D +
√
D

2
= q0 −D, q1, . . . , qm, 2q0 −D

= q0 −D, q1, . . . , qm2q0 −D, q1, . . . , qm

= q0 −D, q1, . . . , qm, α0.

That is, noting that q0 −D is the initial quotient of −D+
√
D

2 ,

−D +
√
D

2
=

hmα0 + hm−1

kmα0 + km−1
=

hm

(

−D+
√
D

2 + q0

)

+ hm−1

km

(

−D+
√
D

2 + q0

)

+ km−1

,

or

km

(

−D+
√
D

2 + q0

)

−D+
√
D

2 + km−1
−D+

√
D

2 = hm

(

−D+
√
D

2 + q0

)

+ hm−1.

Here we have
(

−D+
√
D

2

)2

= D(1−D)
4 −D · −D+

√
D

2 , so now

D(1−D)
4 km + ((q0 −D)km + km−1)

−D+
√
D

2 = q0hm + hm−1 + hm
−D+

√
D

2 .

Equate the coefficients of 1 and D+
√
D

2 to get
[

hm−1

km−1

]

= −q0

[

hm

km

]

+

[

D(1−D)
4 km

hm +Dkm

]

.

Recall that
∣

∣

∣

∣

hm hm−1

km km−1

∣

∣

∣

∣

= (−1)m+1.

The previous two displays give

h2
m +Dhmkm + D(D−1)

4 k2m =

∣

∣

∣

∣

hm
D(1−D)

4 km
km hm +Dkm

∣

∣

∣

∣

=

∣

∣

∣

∣

hm hm−1

km km−1

∣

∣

∣

∣

= (−1)m+1.
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That is, because

N(h+ kD+
√
D

2 ) =

(

h+
Dk

2
+

√
Dk

2

)(

h+
Dk

2
−

√
Dk

2

)

=

(

h+
Dk

2

)2

− Dk2

4

= h2 +Dhk + D(D−1)
4 k2,

we have

hm + km
D +

√
D

2
is a unit of Q(

√
n).

Here hm and km are the mth convergents of −D+
√
D

2 , not of D+
√
D

2 , but there is
no difference for m ≥ 1.

9. The Real Quadratic Class Number Formula

Let F be a real quadratic number field, F = Q(
√
n) with n 6= 0, 1 squarefree,

having discriminant DF and fundamental unit u. Introduce a constant that incor-
porates these two values,

κ =
2 log(u)√

DF

.

Briefly dropping the assumption that our quadratic field F is real, a more general
definition of κ is as follows. Let r denote the number of embeddings F −→ R, the
real embeddings of F , and let s denote the number of pairs of complex conjugate
embeddings F −→ C, the complex embeddings of F ; thus (r, s) = (2, 0) in the real
quadratic case and (r, s) = (0, 1) in the imaginary quadratic case. Let w denote
the number of roots of unity in F , so that w = 2 except that w = 4 when F = Q(i)
and w = 6 when F = Q(

√
−3). The regulator of F is

reg(F ) =

{

log u if F is real quadratic

1 if F is imaginary quadratic.

Just as the discriminant measures the sparseness of the integer ring OF , the regu-
lator measures the sparseness of the unit group O×

F . Now the definition is

κ =
2r(2π)s reg(F )

w
√

|DF |
.

This gives κ = 2 log u√
DF

as above if F is real quadratic and κ = 2π

w
√

|DF |
if F is

imaginary quadratic, and it extends to fields F beyond the quadratic case with
reg(F ) suitably generalized. With this comment made, we return to the case that
F is real quadratic.

For any ideal class C and any positive integer n, define

An(C) = #{a : a ∈ C, N(a) ≤ n},
and with no reference to any ideal class, define

An = #{a : N(a) ≤ n}.
The next proposition agrees with its counterpart Proposition 14.3 from the imagi-
nary quadratic fields writeup.



THE UNIT GROUP OF A REAL QUADRATIC FIELD 17

Proposition 9.1. With C, n, An(C), An, and κ as above, and with h the ideal

class number of F ,

An(C) = κn+O(n1/2).

and

An = hκn+O(n1/2).

Proof. Because the right side of the first equality is independent of C, the second
equality follows from the first. So we need only to establish the first equality.

Choose any ideal ao ∈ C−1. The ideals a such that

a ∈ C, N(a) ≤ n

are the ideals a such that

aoa = (α), |N(α)| ≤ N(ao)n,

which correspond bijectively to the principal ideals (α) of OF such that

(α) ⊂ ao, |N(α)| ≤ N(ao)n.

Specifically, the correspondence is a 7→ aoa and (α) 7→ (α)/ao.
Because we are in the real quadratic case, the sector

SN(ao)n = {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ u2x, xy ≤ N(ao)n}
(see figure 9, in which SN(ao)n is the shaded region in the left side and the normalized
sector S1 is its darker part) and its reflection in second quadrant form a fundamental
domain for the elements of ι(OF − 0)/ιOF

× having absolute norm at most N(ao)n.
This sector’s area is

µ(SN(ao)n) = N(ao)nµ(S1).

The normalized sector has area

µ(S1) =

∫ arctan(u2)

θ=π/4

∫

√
sec θ csc θ

r=0

r dr dθ =
1

2

∫ arctan(u2)

θ=π/4

sec θ csc θ dθ

=
1

2

∫ arctan(u2)

θ=π/4

sec2 θ dθ

tan θ
=

1

2
log tan(arctan(u2)) = log(u).

Let P be a fundamental parallelogram for ιao centered at (0, 0),

P = [−1/2, 1/2]a1 + [−1/2, 1/2]a2 where {a1, a2} is a basis of ιao,

and consider the set of translates Pa = a+P , where a ∈ ιao, that intersect SN(ao)n.
These translates occur in two types, those that lie entirely in SN(ao)n and those
that stick out of it,

type 1: Pa ⊂ SN(ao)n, type 2: Pa 6⊂ SN(ao)n.

The containments

{type 1 Pa centers} ⊂ ao ∩ SN(ao)n ⊂ {all Pa centers}
and

⋃

type 1 Pa ⊂ SN(ao)n ⊂
⋃

all Pa

give the numerical estimates

#{type 1 Pa}| ≤ #(ao ∩ SN(ao)n) ≤ #{all Pa}
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and, because µ(Pa) =
√
DFN(ao) for all a and µ(SN(ao)n) = µ(S1)N(ao)n,

#{type 1 Pa} ≤ µ(S1)√
DF

n ≤ #{all Pa}.

Because #(ao∩SN(ao)n) =
1
2An(C) and µ(S1) = log(u), the two numerical estimates

combine to give
∣

∣

∣

∣

An(C)−
2 log(u)√

DF

t

∣

∣

∣

∣

≤ 2#{type 2 Pa}.

Thus what needs to be shown is that the number of type 2 parallelograms Pa

is O(n1/2). But the boundary of SN(ao)n consists of two line segments and one

hyperbola segment whose lengths are proportional to n1/2, so the result follows.
For example, a linear change of coordinates reduces the situation to unit squares
centered at integer points, and one can argue that the number of such squares that
intersect a line segment or a conic section segment is at most some constant times
the segment length. �

y = x

y = u2x

xy = 1

x

y

z

w

u

u−1

log

Figure 3. The logarithm map, a sector, and the normalized sector

From here, the real quadratic class number formula is proved by the argument
from the imaginary quadratic fields writeup. Define

an = #{a : N(a) = n}.
By a weak form of the proposition’s result that An = hκn+O(n1/2),

n
∑

k=1

ak = An = O(n), n ∈ Z≥1,

and this estimate shows that the Dedekind zeta function of F ,

ζF (s) =
∑

n≥1

an
ns

,

is analytic on {Re(s) > 1}. More incisively, because the proposition gives

n
∑

k=1

(ak − hκ) = An − hκn = O(n1/2), n ∈ Z≥1,



THE UNIT GROUP OF A REAL QUADRATIC FIELD 19

the difference

ζF (s)− hκζ(s) =
∑

n≥1

an − hκ

ns

is analytic on {Re(s) > 1/2}; this says that ζF (s) and hκζ(s) have canceling poles
at s = 1, and so

ress=1 ζF (s) = hκ.

But also ζF (s) = L(χF , s)ζ(s) for Re(s) > 1 and then for Re(s) > 0, giving

ress=1 ζF (s) = L(χF , 1).

The two expressions for the residue give the real quadratic class number formula,

hκ = L(χF , 1),

or
2h log u√

DF

= L(χF , 1).

In the imaginary quadratic case the boxed formula is

2πh

w
√

|DF |
= L(χF , 1),

the main result of our imaginary quadratic field writeup.

Recall the formula for L(χF , 1) from Proposition 13.3 of the imaginary quadratic
fields writeup,

L(χF , 1) = − 2√
DF

∑

1≤r<DF /2

χF (r) log(sin(πr/DF )) for F real quadratic.

This combines with the formula

h =

√
DF

2 log u
L(χF , 1) = − 1

log u

∑

1≤r<DF /2

χF (r) log(sin(πr/DF ))

and with our previous table of fundamental units to give the table of real quadratic
ideal class numbers in figure 4.

Some more results are shown in figure 5, in which steps reports the number of
steps taken by the continued fraction algorithm to find the fundamental unit.
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n u log u
∑

h

2 1 +
√
2 0.881374 −0.881374 1

3 2 +
√
3 1.31696 −1.31696 1

5 1
2 (1 +

√
5) 0.481212 −0.481212 1

6 5 + 2
√
6 2.29243 −2.29243 1

7 8 + 3
√
7 2.76866 −2.76866 1

10 3 +
√
10 1.81845 −3.63689 2

11 10 + 3
√
11 2.99322 −2.99322 1

13 1
2 (3 +

√
13) 1.19476 −1.19476 1

14 15 + 4
√
14 3.40008 −3.40008 1

15 4 +
√
15 2.06344 −4.12687 2

17 4 +
√
17 2.09471 −2.09471 1

19 170 + 39
√
19 5.82894 −5.82894 1

21 1
2 (5 +

√
21) 1.5668 −1.5668 1

Figure 4. Some real quadratic ideal class numbers

n u steps h

127 4730624 + 419775
√
127 12 1

130 57 + 5
√
130 3 4

410 − 1 210 +
√
410 − 1 2 25

411 − 1 211 +
√
411 − 1 2 28

410 + 1 210 +
√
410 + 1 3 90

411 + 1 211 +
√
411 + 1 3 180

410 + 2 410 + 1 + 210
√
410 + 2 2 66

411 + 2 411 + 1 + 211
√
411 + 2 2 84

Figure 5. More real quadratic ideal class numbers


