
THE RESULTANT

1. Newton’s identities

The monic polynomial p with roots r1, . . . , rn expands as

p(T ) =

n∏
i=1

(T − ri) =
∑
j∈Z

(−1)jσjT
n−j ∈ C(σ1, . . . , σn)[T ]

whose coefficients are (up to sign) the elementary symmetric functions of the roots
r1, . . . , rn,

σj = σj(r1, . . . , rn) =

{∑
1≤i1<···<ij≤n

∏j
k=1 rik for j ≥ 0

0 for j < 0.

In less dense notation,

σ1 = r1 + · · ·+ rn,

σ2 = r1r2 + r1r3 · · ·+ rn−1rn (the sum of all distinct pairwise products),

σ3 = the sum of all distinct triple products,

...

σn = r1 · · · rn (the only distinct n-fold product).

Note that σ0 = 1 and σj = 0 for j > n. The product form of p shows that the σj
are invariant under all permutations of r1, . . . , rn.

The power sums of r1, . . . , rn are

sj = sj(r1, . . . , rn) =

{∑n
i=1 r

j
i for j ≥ 0

0 for j < 0

including s0 = n. That is,

s1 = r1 + · · ·+ rn (= σ1),

s2 = r21 + r22 + · · ·+ r2n,

...

sn = rn1 + · · ·+ rnn,

and the sj for j > n do not vanish. Like the elementary symmetric functions σj ,
the power sums sj are invariant under all permutations of r1, . . . , rn. We want to
relate the sj to the σj .

Start from the general polynomial,

p(T ) =

n∏
i=1

(T − ri) =
∑
j∈Z

(−1)jσjT
n−j .
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Certainly

p′(T ) =
∑
j∈Z

(−1)jσj(n− j)Tn−j−1.

But also, the logarithmic derivative and geometric series formulas,

p′(T )

p(T )
=

n∑
i=1

1

T − ri
and

1

T − r
=

∞∑
k=0

rk

T k+1
,

give

p′(T ) = p(T ) · p
′(T )

p(T )
= p(T )

n∑
i=1

∞∑
k=0

rki
T k+1

= p(T )
∑
k∈Z

sk
T k+1

=
∑
k,l∈Z

(−1)lσlskT
n−k−l−1

=
∑
j∈Z

[∑
l∈Z

(−1)lσlsj−l

]
Tn−j−1 (letting j = k + l).

Equate the coefficients of the two expressions for p′ to get the formula

j−1∑
l=0

(−1)lσlsj−l + (−1)jσjn = (−1)jσj(n− j).

Newton’s identities follow,

j−1∑
l=0

(−1)lσlsj−l + (−1)jσjj = 0 for all j.

Explicitly, Newton’s identities are

s1 − σ1 = 0

s2 − s1σ1 + 2σ2 = 0

s3 − s2σ1 + s1σ2 − 3σ3 = 0

s4 − s3σ1 + s2σ2 − s1σ3 + 4σ4 = 0

and so on.

These show (exercise) that for any j ∈ {1, . . . , n}, the power sums s1 through sj
are polynomials (with constant terms zero) in the elementary symmetric functions
σ1 through σj , and—since we are in characteristic zero—that the elementary sym-
metric functions σ1 through σj are polynomials (with constant terms zero) in the
power sums s1 through sj . Consequently,

Proposition 1.1. Consider a polynomial

p(T ) = Tn + a1T
n−1 + · · ·+ an.

Its first j coefficients a1, . . . , aj are zero exactly when the first j power sums of its
roots vanish.

Exercises:

• Express sj in terms of σ1, . . . , σj for j = 1, 2, 3, and conversely.
• Write some of Newton’s identities when j > n; what is the pattern?



THE RESULTANT 3

• True or false: the second coefficient a2 of the polynomial p(T ) = Tn +
a1T

n−1 + · · · + an is zero exactly when the second power sum of its roots
vanishes.
• Show that for any j ∈ {1, . . . , n}, the power sums s1, . . . , sj are polynomials

(with constant term zero) in the elementary symmetric functions σ1, . . . , σj ,
and conversely. (The converse fails in nonzero characteristic; for example,
consider p(T ) = T 2 + 1 in characteristic 2.)
• Establish the formula for the Vandermonde determinant ,∣∣∣∣∣∣∣∣∣

1 r1 r21 · · · rn−11

1 r2 r22 · · · rn−12
...

...
...

...
1 rn r2n · · · rn−1n

∣∣∣∣∣∣∣∣∣ =
∏
i<j

(rj − ri).

(Replace the last column by (p(r1), . . . , p(rn)), p(T ) =
∏n−1

i=1 (T−ri).) Left-
multiply the Vandermonde matrix by its transpose and take determinants
to obtain ∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn−1
s1 s2 · · · sn
...

...
...

sn−1 sn · · · s2n−2

∣∣∣∣∣∣∣∣∣ = ∆(r1, . . . , rn),

where
∆(r1, . . . , rn) =

∏
i<j

(ri − rj)2

is the discriminant of p. This expresses the discriminant in terms of the
elementary symmetric functions σ1, . . . , σn since Newton’s identities give
expressions for the power sums sj in terms of the σj . A formula for the
discriminant that doesn’t require Newton’s identities will be developed in
the next section.
• Show that the n-by-n Jacobian matrix of the elementary symmetric func-

tions has the same determinant as the Vandermonde matrix,

det[Djσi(r1, . . . , rn)] =
∏
i<j

(rj − ri).

Show also that Djσi = σi−1(r1, . . . , rj , . . . , rn), where the overbar means
the variable is omitted.

2. Resultants

Given polynomials p(T ) and q(T ), we can determine whether they have a root
in common without actually finding their roots.

Let m and n be nonnegative integers, let a0, . . . , am, b0, . . . , bn be symbols
(possibly elements of the base field C) with a0 6= 0 and b0 6= 0, and let k =
C(a0, . . . , am, b0, . . . , bn). The polynomials

p(T ) =

m∑
i=0

aiT
m−i and q(T ) =

n∑
i=0

biT
n−i

in k[T ] are utterly general when the ai’s and the bi’s form an algebraically inde-
pendent set, or conversely they can be explicit polynomials when all the coefficients
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are in C. The polynomials p and q share a nonconstant factor in k[T ] if and only
if there exist nonzero polynomials in k[T ]

P (T ) =

n−1∑
i=0

ciT
n−1−i, deg(P ) < n and Q(T ) =

m−1∑
i=0

diT
m−1−i, deg(Q) < m

such that

pP = qQ.

Such P and Q exist if and only if the system

vM = 0

of m+n linear equations over k in m+n unknowns has a nonzero solution v, where

v = [c0, c1, . . . , cn−1,−d0,−d1, . . . ,−dm−1] ∈ km+n,

and M is the Sylvester matrix ,

M =



a0 a1 · · · · · · am
. . .

. . .
. . .

a0 a1 · · · · · · am
b0 b1 · · · bn

b0 b1 · · · bn
. . .

. . .
. . .

b0 b1 · · · bn


∈ k(m+n)×(m+n),

with n staggered rows of ai’s, m staggered rows of bj ’s, all other entries 0. Such a
nonzero solution exists in turn if and only if detM = 0. This determinant is called
the resultant of p and q, and it is written R(p, q),

R(p, q) = det(M) ∈ k = C[a0, . . . , am, b0, . . . , bn].

The condition that p(T ) and q(T ) share a factor in k[T ] is equivalent to their
sharing a root in the splitting field over k of pq. Thus the result is

Theorem 2.1. The polynomials p(T ) and q(T ) in k[T ] share a nonconstant factor
in k[T ], or equivalently, share a root in the splitting field over k of their product, if
and only if R(p, q) = 0.

Again, this is handy since R(p, q) is a calculable expression in the coefficients
of p and q that makes no reference to the roots. When the coefficients of p and q are
algebraically independent, R(p, q) is a master formula that applies to all polynomials
of degrees m and n. At the other extreme, when the coefficients are specific values
in C, the resultant R(p, q) is a complex number that is zero or nonzero depending
on whether the particular polynomials p and q share a factor.

Taking the resultant of p and q to check whether they share a root can also be
viewed as eliminating the variable T from the pair of equations p(T ) = 0, q(T ) = 0,
leaving one equation R(p, q) = 0 in the remaining variables a0, . . . , am, b0, . . . , bn.

In principle, evaluating R(p, q) = detM can be carried out via row and column
operations. In practice, evaluating a large determinant by hand is an error-prone
process. The next theorem will supply as a corollary a more efficient method to
compute R(p, q). In any case, since any worthwhile computer symbolic algebra
package is equipped with a resultant function, nontrivial resultants can often be
found by machine.
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In their splitting field over k, the polynomials p and q factor as

p(T ) = a0

m∏
i=1

(T − ri), q(T ) = b0

n∏
j=1

(T − sj).

To express the resultant R(p, q) explicitly in terms of the roots of p and q, introduce
the quantity

R̃(p, q) = an0 b
m
0

m∏
i=1

n∏
j=1

(ri − sj).

This polynomial vanishes if and only if p and q share a root, so it divides R(p, q).

Note that R̃(p, q) is homogeneous of degree mn in the ri and sj . On the other
hand, each coefficient ai = a0(−1)iσi(r1, . . . , rm) of p has homogeneous degree i in
r1, . . . , rm, and similarly for each bj and s1, . . . , sn. Thus in the Sylvester matrix
the (i, j)th entry has degree{

j − i in the ri if 1 ≤ i ≤ n, i ≤ j ≤ i+m,

j − i+ n in the sj if n+ 1 ≤ i ≤ n+m, i− n ≤ j ≤ i.

It quickly follows that any nonzero term in the determinant R(p, q) has degree mn

in the ri and the sj , and so R̃(p, q) and R(p, q) agree up to multiplicative constant.
Matching coefficients of (s1 · · · sn)m shows that the constant is 1. This proves

Theorem 2.2. The resultant of the polynomials

p =

m∑
i=0

aiT
m−i = a0

m∏
i=1

(T − ri) and q =

n∑
j=0

bjT
n−j = b0

n∏
j=1

(T − sj)

is given by the formulas

R(p, q) = an0 b
m
0

m∏
i=1

n∏
j=1

(ri − sj) = an0

m∏
i=1

q(ri) = (−1)mnbm0

n∏
j=1

p(sj).

A special case of this theorem gives the efficient formula for the discriminant
promised earlier. See exercise 4.

Computing resultants can now be carried out via a Euclidean algorithm pro-
cedure: repeatedly do polynomial division with remainder and apply formula (4)
in

Corollary 2.3. The following formulas hold:

(1) R(q, p) = (−1)mnR(p, q).
(2) R(pp̃, q) = R(p, q)R(p̃, q) and R(p, qq̃) = R(p, q)R(p, q̃).
(3) R(a0, q) = an0 and R(a0T + a1, q) = an0 q(−a1/a0).
(4) If q = Qp+ q̃ with deg(q̃) < deg(p) then

R(p, q) = a
deg(q)−deg(q̃)
0 R(p, q̃).

Exercise 5 asks for the proofs.
Exercises:

• Show that p and q share a nonconstant factor in k[T ] if and only if there
exist nonzero polynomials P of degree less than n and Q of degree less
than m in k[T ] such that pP = qQ.

• Write out the matrix M for various small values of m and n, and compute
the corresponding resultants.
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• Fill in the details of the proof of Theorem 2.2.
• (a) Use Theorem 2.2 to show that if p is monic, so that consequently p′ =∑n

i=1

∏
j 6=i(T − rj), then

R(p, p′) = (−1)n(n−1)/2∆(p).

This formula gives the relation between the resultant and the discriminant.
(b) Use part (a) to recompute the discriminants of p = T 2 + bT + c and

of p = T 3 + bT + c.
• (a) Prove the formulas in Corollary 2.3.

(b) Let p = Tn + bT + c. Compute ∆(p) = (−1)n(n−1)/2R(p, p′) by using
the corollary. (Do a polynomial division and apply the second formula in
Corollary 2.3. The answer is

(−1)(n−1)(n−2)/2(n− 1)n−1bn + (−1)n(n−1)/2nncn−1.

Note that since n is a general symbol here, evaluating R(p, p′) as a deter-
minant is much more awkward than this method.


