THE RESULTANT

1. Newton's identities

The monic polynomial p with roots r_{1}, \ldots, r_{n} expands as

$$
p(T)=\prod_{i=1}^{n}\left(T-r_{i}\right)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j} T^{n-j} \in \mathbb{C}\left(\sigma_{1}, \ldots, \sigma_{n}\right)[T]
$$

whose coefficients are (up to sign) the elementary symmetric functions of the roots r_{1}, \ldots, r_{n},

$$
\sigma_{j}=\sigma_{j}\left(r_{1}, \ldots, r_{n}\right)= \begin{cases}\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} \prod_{k=1}^{j} r_{i_{k}} & \text { for } j \geq 0 \\ 0 & \text { for } j<0\end{cases}
$$

In less dense notation,

$$
\begin{aligned}
\sigma_{1}= & r_{1}+\cdots+r_{n} \\
\sigma_{2}= & r_{1} r_{2}+r_{1} r_{3} \cdots+r_{n-1} r_{n} \quad \text { (the sum of all distinct pairwise products) }, \\
\sigma_{3}= & \text { the sum of all distinct triple products } \\
& \vdots \\
\sigma_{n}= & r_{1} \cdots r_{n} \quad \text { (the only distinct } n \text {-fold product). }
\end{aligned}
$$

Note that $\sigma_{0}=1$ and $\sigma_{j}=0$ for $j>n$. The product form of p shows that the σ_{j} are invariant under all permutations of r_{1}, \ldots, r_{n}.

The power sums of r_{1}, \ldots, r_{n} are

$$
s_{j}=s_{j}\left(r_{1}, \ldots, r_{n}\right)= \begin{cases}\sum_{i=1}^{n} r_{i}^{j} & \text { for } j \geq 0 \\ 0 & \text { for } j<0\end{cases}
$$

including $s_{0}=n$. That is,

$$
\begin{aligned}
& s_{1}=r_{1}+\cdots+r_{n}\left(=\sigma_{1}\right) \\
& s_{2}=r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2} \\
& \quad \vdots \\
& s_{n}= \\
& r_{1}^{n}+\cdots+r_{n}^{n}
\end{aligned}
$$

and the s_{j} for $j>n$ do not vanish. Like the elementary symmetric functions σ_{j}, the power sums s_{j} are invariant under all permutations of r_{1}, \ldots, r_{n}. We want to relate the s_{j} to the σ_{j}.

Start from the general polynomial,

$$
p(T)=\prod_{i=1}^{n}\left(T-r_{i}\right)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j} T^{n-j}
$$

Certainly

$$
p^{\prime}(T)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j}(n-j) T^{n-j-1} .
$$

But also, the logarithmic derivative and geometric series formulas,

$$
\frac{p^{\prime}(T)}{p(T)}=\sum_{i=1}^{n} \frac{1}{T-r_{i}} \quad \text { and } \quad \frac{1}{T-r}=\sum_{k=0}^{\infty} \frac{r^{k}}{T^{k+1}}
$$

give

$$
\begin{aligned}
p^{\prime}(T) & =p(T) \cdot \frac{p^{\prime}(T)}{p(T)}=p(T) \sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{r_{i}^{k}}{T^{k+1}}=p(T) \sum_{k \in \mathbb{Z}} \frac{s_{k}}{T^{k+1}} \\
& =\sum_{k, l \in \mathbb{Z}}(-1)^{l} \sigma_{l} s_{k} T^{n-k-l-1} \\
& \left.=\sum_{j \in \mathbb{Z}}\left[\sum_{l \in \mathbb{Z}}(-1)^{l} \sigma_{l} s_{j-l}\right] T^{n-j-1} \quad \text { (letting } j=k+l\right) .
\end{aligned}
$$

Equate the coefficients of the two expressions for p^{\prime} to get the formula

$$
\sum_{l=0}^{j-1}(-1)^{l} \sigma_{l} s_{j-l}+(-1)^{j} \sigma_{j} n=(-1)^{j} \sigma_{j}(n-j)
$$

Newton's identities follow,

$$
\sum_{l=0}^{j-1}(-1)^{l} \sigma_{l} s_{j-l}+(-1)^{j} \sigma_{j} j=0 \quad \text { for all } j
$$

Explicitly, Newton's identities are

$$
\begin{aligned}
& s_{1}-\sigma_{1}=0 \\
& s_{2}-s_{1} \sigma_{1}+2 \sigma_{2}=0 \\
& s_{3}-s_{2} \sigma_{1}+s_{1} \sigma_{2}-3 \sigma_{3}=0 \\
& s_{4}-s_{3} \sigma_{1}+s_{2} \sigma_{2}-s_{1} \sigma_{3}+4 \sigma_{4}=0
\end{aligned}
$$

and so on.
These show (exercise) that for any $j \in\{1, \ldots, n\}$, the power sums s_{1} through s_{j} are polynomials (with constant terms zero) in the elementary symmetric functions σ_{1} through σ_{j}, and - since we are in characteristic zero-that the elementary symmetric functions σ_{1} through σ_{j} are polynomials (with constant terms zero) in the power sums s_{1} through s_{j}. Consequently,
Proposition 1.1. Consider a polynomial

$$
p(T)=T^{n}+a_{1} T^{n-1}+\cdots+a_{n}
$$

Its first j coefficients a_{1}, \ldots, a_{j} are zero exactly when the first j power sums of its roots vanish.

Exercises:

- Express s_{j} in terms of $\sigma_{1}, \ldots, \sigma_{j}$ for $j=1,2,3$, and conversely.
- Write some of Newton's identities when $j>n$; what is the pattern?
- True or false: the second coefficient a_{2} of the polynomial $p(T)=T^{n}+$ $a_{1} T^{n-1}+\cdots+a_{n}$ is zero exactly when the second power sum of its roots vanishes.
- Show that for any $j \in\{1, \ldots, n\}$, the power sums s_{1}, \ldots, s_{j} are polynomials (with constant term zero) in the elementary symmetric functions $\sigma_{1}, \ldots, \sigma_{j}$, and conversely. (The converse fails in nonzero characteristic; for example, consider $p(T)=T^{2}+1$ in characteristic 2 .)
- Establish the formula for the Vandermonde determinant,

$$
\left|\begin{array}{ccccc}
1 & r_{1} & r_{1}^{2} & \cdots & r_{1}^{n-1} \\
1 & r_{2} & r_{2}^{2} & \cdots & r_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & r_{n} & r_{n}^{2} & \cdots & r_{n}^{n-1}
\end{array}\right|=\prod_{i<j}\left(r_{j}-r_{i}\right)
$$

(Replace the last column by $\left(p\left(r_{1}\right), \ldots, p\left(r_{n}\right)\right), p(T)=\prod_{i=1}^{n-1}\left(T-r_{i}\right)$.) Leftmultiply the Vandermonde matrix by its transpose and take determinants to obtain

$$
\left|\begin{array}{cccc}
s_{0} & s_{1} & \cdots & s_{n-1} \\
s_{1} & s_{2} & \cdots & s_{n} \\
\vdots & \vdots & & \vdots \\
s_{n-1} & s_{n} & \cdots & s_{2 n-2}
\end{array}\right|=\Delta\left(r_{1}, \ldots, r_{n}\right)
$$

where

$$
\Delta\left(r_{1}, \ldots, r_{n}\right)=\prod_{i<j}\left(r_{i}-r_{j}\right)^{2}
$$

is the discriminant of p. This expresses the discriminant in terms of the elementary symmetric functions $\sigma_{1}, \ldots, \sigma_{n}$ since Newton's identities give expressions for the power sums s_{j} in terms of the σ_{j}. A formula for the discriminant that doesn't require Newton's identities will be developed in the next section.

- Show that the n-by- n Jacobian matrix of the elementary symmetric functions has the same determinant as the Vandermonde matrix,

$$
\operatorname{det}\left[D_{j} \sigma_{i}\left(r_{1}, \ldots, r_{n}\right)\right]=\prod_{i<j}\left(r_{j}-r_{i}\right)
$$

Show also that $D_{j} \sigma_{i}=\sigma_{i-1}\left(r_{1}, \ldots, \bar{r}_{j}, \ldots, r_{n}\right)$, where the overbar means the variable is omitted.

2. Resultants

Given polynomials $p(T)$ and $q(T)$, we can determine whether they have a root in common without actually finding their roots.

Let m and n be nonnegative integers, let $a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}$ be symbols (possibly elements of the base field \mathbb{C}) with $a_{0} \neq 0$ and $b_{0} \neq 0$, and let $\mathbf{k}=$ $\mathbb{C}\left(a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right)$. The polynomials

$$
p(T)=\sum_{i=0}^{m} a_{i} T^{m-i} \quad \text { and } \quad q(T)=\sum_{i=0}^{n} b_{i} T^{n-i}
$$

in $\mathbf{k}[T]$ are utterly general when the a_{i} 's and the b_{i} 's form an algebraically independent set, or conversely they can be explicit polynomials when all the coefficients
are in \mathbb{C}. The polynomials p and q share a nonconstant factor in $\mathbf{k}[T]$ if and only if there exist nonzero polynomials in $\mathbf{k}[T]$

$$
P(T)=\sum_{i=0}^{n-1} c_{i} T^{n-1-i}, \operatorname{deg}(P)<n \quad \text { and } \quad Q(T)=\sum_{i=0}^{m-1} d_{i} T^{m-1-i}, \operatorname{deg}(Q)<m
$$

such that

$$
p P=q Q
$$

Such P and Q exist if and only if the system

$$
v M=0
$$

of $m+n$ linear equations over \mathbf{k} in $m+n$ unknowns has a nonzero solution v, where

$$
v=\left[c_{0}, c_{1}, \ldots, c_{n-1},-d_{0},-d_{1}, \ldots,-d_{m-1}\right] \in \mathbf{k}^{m+n}
$$

and M is the Sylvester matrix,

$$
M=\left[\begin{array}{ccccccc}
a_{0} & a_{1} & \cdots & \cdots & a_{m} & & \\
& \ddots & \ddots & & & \ddots & \\
& & a_{0} & a_{1} & \cdots & \cdots & a_{m} \\
b_{0} & b_{1} & \cdots & b_{n} & & & \\
& b_{0} & b_{1} & \cdots & b_{n} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & b_{0} & b_{1} & \cdots & b_{n}
\end{array}\right] \in \mathbf{k}^{(m+n) \times(m+n)},
$$

with n staggered rows of a_{i} 's, m staggered rows of b_{j} 's, all other entries 0 . Such a nonzero solution exists in turn if and only if $\operatorname{det} M=0$. This determinant is called the resultant of p and q, and it is written $R(p, q)$,

$$
R(p, q)=\operatorname{det}(M) \in \mathbf{k}=\mathbb{C}\left[a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right]
$$

The condition that $p(T)$ and $q(T)$ share a factor in $\mathbf{k}[T]$ is equivalent to their sharing a root in the splitting field over \mathbf{k} of $p q$. Thus the result is

Theorem 2.1. The polynomials $p(T)$ and $q(T)$ in $\mathbf{k}[T]$ share a nonconstant factor in $\mathbf{k}[T]$, or equivalently, share a root in the splitting field over \mathbf{k} of their product, if and only if $R(p, q)=0$.

Again, this is handy since $R(p, q)$ is a calculable expression in the coefficients of p and q that makes no reference to the roots. When the coefficients of p and q are algebraically independent, $R(p, q)$ is a master formula that applies to all polynomials of degrees m and n. At the other extreme, when the coefficients are specific values in \mathbb{C}, the resultant $R(p, q)$ is a complex number that is zero or nonzero depending on whether the particular polynomials p and q share a factor.

Taking the resultant of p and q to check whether they share a root can also be viewed as eliminating the variable T from the pair of equations $p(T)=0, q(T)=0$, leaving one equation $R(p, q)=0$ in the remaining variables $a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}$.

In principle, evaluating $R(p, q)=\operatorname{det} M$ can be carried out via row and column operations. In practice, evaluating a large determinant by hand is an error-prone process. The next theorem will supply as a corollary a more efficient method to compute $R(p, q)$. In any case, since any worthwhile computer symbolic algebra package is equipped with a resultant function, nontrivial resultants can often be found by machine.

In their splitting field over \mathbf{k}, the polynomials p and q factor as

$$
p(T)=a_{0} \prod_{i=1}^{m}\left(T-r_{i}\right), \quad q(T)=b_{0} \prod_{j=1}^{n}\left(T-s_{j}\right)
$$

To express the resultant $R(p, q)$ explicitly in terms of the roots of p and q, introduce the quantity

$$
\tilde{R}(p, q)=a_{0}^{n} b_{0}^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(r_{i}-s_{j}\right)
$$

This polynomial vanishes if and only if p and q share a root, so it divides $R(p, q)$. Note that $\tilde{R}(p, q)$ is homogeneous of degree $m n$ in the r_{i} and s_{j}. On the other hand, each coefficient $a_{i}=a_{0}(-1)^{i} \sigma_{i}\left(r_{1}, \ldots, r_{m}\right)$ of p has homogeneous degree i in r_{1}, \ldots, r_{m}, and similarly for each b_{j} and s_{1}, \ldots, s_{n}. Thus in the Sylvester matrix the (i, j) th entry has degree

$$
\begin{cases}j-i \text { in the } r_{i} & \text { if } 1 \leq i \leq n, i \leq j \leq i+m \\ j-i+n \text { in the } s_{j} & \text { if } n+1 \leq i \leq n+m, i-n \leq j \leq i\end{cases}
$$

It quickly follows that any nonzero term in the determinant $R(p, q)$ has degree $m n$ in the r_{i} and the s_{j}, and so $\tilde{R}(p, q)$ and $R(p, q)$ agree up to multiplicative constant. Matching coefficients of $\left(s_{1} \cdots s_{n}\right)^{m}$ shows that the constant is 1 . This proves
Theorem 2.2. The resultant of the polynomials

$$
p=\sum_{i=0}^{m} a_{i} T^{m-i}=a_{0} \prod_{i=1}^{m}\left(T-r_{i}\right) \quad \text { and } \quad q=\sum_{j=0}^{n} b_{j} T^{n-j}=b_{0} \prod_{j=1}^{n}\left(T-s_{j}\right)
$$

is given by the formulas

$$
R(p, q)=a_{0}^{n} b_{0}^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(r_{i}-s_{j}\right)=a_{0}^{n} \prod_{i=1}^{m} q\left(r_{i}\right)=(-1)^{m n} b_{0}^{m} \prod_{j=1}^{n} p\left(s_{j}\right)
$$

A special case of this theorem gives the efficient formula for the discriminant promised earlier. See exercise 4.

Computing resultants can now be carried out via a Euclidean algorithm procedure: repeatedly do polynomial division with remainder and apply formula (4) in

Corollary 2.3. The following formulas hold:
(1) $R(q, p)=(-1)^{m n} R(p, q)$.
(2) $R(p \tilde{p}, q)=R(p, q) R(\tilde{p}, q)$ and $R(p, q \tilde{q})=R(p, q) R(p, \tilde{q})$.
(3) $R\left(a_{0}, q\right)=a_{0}^{n}$ and $R\left(a_{0} T+a_{1}, q\right)=a_{0}^{n} q\left(-a_{1} / a_{0}\right)$.
(4) If $q=Q p+\tilde{q}$ with $\operatorname{deg}(\tilde{q})<\operatorname{deg}(p)$ then

$$
R(p, q)=a_{0}^{\operatorname{deg}(q)-\operatorname{deg}(\tilde{q})} R(p, \tilde{q})
$$

Exercise 5 asks for the proofs.
Exercises:

- Show that p and q share a nonconstant factor in $\mathbf{k}[T]$ if and only if there exist nonzero polynomials P of degree less than n and Q of degree less than m in $\mathbf{k}[T]$ such that $p P=q Q$.
- Write out the matrix M for various small values of m and n, and compute the corresponding resultants.
- Fill in the details of the proof of Theorem 2.2.
- (a) Use Theorem 2.2 to show that if p is monic, so that consequently $p^{\prime}=$ $\sum_{i=1}^{n} \prod_{j \neq i}\left(T-r_{j}\right)$, then

$$
R\left(p, p^{\prime}\right)=(-1)^{n(n-1) / 2} \Delta(p)
$$

This formula gives the relation between the resultant and the discriminant.
(b) Use part (a) to recompute the discriminants of $p=T^{2}+b T+c$ and of $p=T^{3}+b T+c$.

- (a) Prove the formulas in Corollary 2.3.
(b) Let $p=T^{n}+b T+c$. Compute $\Delta(p)=(-1)^{n(n-1) / 2} R\left(p, p^{\prime}\right)$ by using the corollary. (Do a polynomial division and apply the second formula in Corollary 2.3. The answer is

$$
(-1)^{(n-1)(n-2) / 2}(n-1)^{n-1} b^{n}+(-1)^{n(n-1) / 2} n^{n} c^{n-1}
$$

Note that since n is a general symbol here, evaluating $R\left(p, p^{\prime}\right)$ as a determinant is much more awkward than this method.

