
QUADRATIC RECIPROCITY, AFTER WEIL

The character associated to a quadratic extension field K of Q,

χ : Z+ −→ C, χ(n) = (disc(K)/n) (Jacobi symbol),

is in fact a Dirichlet character; specifically its conductor is |disc(K)|. This fact
encodes basic quadratic reciprocity from elementary number theory, phrasing it in
terms that presage class field theory.

This writeup discusses Hilbert quadratic reciprocity in the same spirit. Let k
be a number field, and let K be a quadratic extension field of k. We show that a
global quadratic norm residue character,

νK/k : A×k −→ {±1},

is a Hecke character, i.e., it is trivial on k×. This fact encodes the Hilbert quadratic
reciprocity rule, i.e., the product formula for quadratic Hilbert symbols. The reci-
procity rule in turn encodes elementary quadratic reciprocity statements, including
basic quadratic reciprocity.

The ideas here work in the geometric (function field) case as well, but for sim-
plicity we discuss only number fields.

This writeup is modeled on a writeup by Paul Garrett,

http://www.math.umn.edu/∼garrett/m/v/quad rec 02.pdf .

The Weil representation appears in

A. Weil, Sur certaines d’opérateurs unitaires, Acta Math. 111 (1964),
143–211,

and Hilbert quadratic reciprocity in

D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresber.
Deutsch. Math. Verein. 4 (1897), 175–546.
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1. The additive character of the rational adeles

For each finite rational prime p define a corresponding local character,

ep : Qp −→ T, ep(x) = exp(2πix).

The defining formula is meaningful on the dense subset Z[1/p] of Qp, from which
it extends continuously to all of Qp. Also define an Archimedean character,

e∞ : R −→ T, e∞(x) = exp(−2πix).

The resulting rational adele character is

eA : A −→ T, eA =
⊗

p∈f∪∞

ep.

The adele character is trivial on Q (diagonally embedded in A). Indeed, “partial
fractions” says that

Q =
∑
p∈f

Z[1/p] (indirect sum),

and on each summand eA = ep ⊗ e∞ is trivial.

2. The additive character of the k-adeles

Let k be a number field. For each place v of k, divisible by a unique rational
place p (possibly p =∞), define

ψv : kv −→ T, ψv = ep ◦ Trkv/Qp
.

If v is non-Archimedean then the kernel of ψv is the local inverse-different δ−1
kv/Qp

.

The resulting k-adele character is

ψ : Ak −→ T, ψ = eA ◦ TrAk/A =
⊗
v

ψv.

Since TrAk/A takes k to Q, it follows that ψ is trivial on k. Here we tacitly use the
fact that the global trace is the sum of the local traces, i.e., the following diagram
commutes:

k

Trk/Q

��

// Ak
TrAk/A

��

Q // A
(Note: ψ can be constructed more conceptually by noting that a certain repre-

sentation is one-dimensional. See Paul Garrett’s pieces on dualities, linked from
my page of number theory materials.)

3. The quadratic extension and desiderata

Let K be a quadratic extension of k. Let σ be the nontrivial automorphism of K
over k. The trace from K to k,

TrK/k : K −→ k, TrK/k(x) = x+ xσ,

defines a sequilinear symmetric pairing,

〈 , 〉 : K ×K −→ k, 〈x, y〉 = TrK/k(xyσ).
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Note that in particular,

〈x, x〉 = TrK/k(NK/k(x)) = 2NK/k(x).

For each place v of k, define

Kv = K ⊗k kv.
Since K = k(

√
α) ≈ k[X]/〈X2 − α〉, it follows that

Kv ≈ kv[X]/〈X2 − α〉 =

{
kv(
√
α) if α is not a square in kv,

kv × kv if it is,

and σ extends to a nontrivial automorphism of Kv over kv in either case. The local
pairing is

〈 , 〉v : Kv ×Kv −→ kv, 〈x, y〉v = TrKv/kv (xyσ),

and again

〈x, x〉v = 2NKv/kv (x).

(In the case Kv = kv×kv, the smaller field kv embeds diagonally, so that Tr(xyσ) =
Tr((x1, x2)(y2, y1)) = Tr((x1y2, x2y1)) = x1y2 +x2y1 and N(x) = (x1, x2)(x2, x1) =
x1x2 under the identification of kv with its embedded image.)

The local Fourier transform is

Ff(y) =

∫
Kv

ψv(〈x, y〉v)f(x) dx,

with the Haar measure normalized so that FFf(x) = f(−x).

Lemma 1. Let v be non-Archimedean. Then for any Schwartz–Bruhat function f
on Kv and any smooth function φ on Kv,

F(φf) = Fφ ∗ Ff.

Granting convergence, the fact that the Fourier transform of the product is the
convolution of the Fourier transforms is purely formal, so the point of interest is
that φ need only be smooth. If φ were Schwartz–Bruhat then the lemma would
merely state a standard result.

Proof. Let 1X denote the characteristic function of any subset X of Kv. The
assertion

φ = lim
X

(1Xφ) (limit of tempered distributions)

refers to a limit over increasing balls X, and the limit is taken in the weak dual
topology. That is, for any Schwartz–Bruhat function g,

φ(g) = lim
X

(1Xφ)(g) (limit of complex numbers).

Indeed, the limit is attained as soon as X contains the support of g. Also, the
Fourier transform is a topological automorphism of the space of tempered distribu-
tions. Introduce two operators on Schwartz–Bruhat functions,

(mg)(y) = g(−y) and (Txg)(y) = g(y + x).

Then the convolution of a tempered distribution and a Schwartz–Bruhat function
is by definition

(u ∗ g)(x) = u(T−xmg), x ∈ Kv.
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This gives u(mTxg) =
∫
u(y)g(x− y) dy as desired if u itself is a smooth function.

To avoid the variable, the formula is

u ∗ g = u(T−•mg).

Now we can prove the lemma. Since the desired formula does hold when both
functions are Schwartz–Bruhat, we have the third equality in

F(φf) = F(lim
X

1Xφf) = lim
X
F(1Xφf) = lim

X
(F(1Xφ) ∗ Ff).

Next, by the definition of convolution,

lim
X

(F(1Xφ) ∗ Ff) = lim
X

(F(1Xφ))(T−•mFf).

Push the limit back through everything,

lim
X

(F(1Xφ))(T−•mFf) = (F lim
X

(1Xφ))(T−•mFf) = (Fφ)(T−•mtFf),

and then again by the definition of convolution,

(Fφ)(T−•mFf) = Fφ ∗ Ff.
The previous four displays combine to give the result. �

4. Weil’s quadratic exponential distributions

Fix a place v of k. For any t ∈ k×v define a sort of t-dilated oscillation in the
square of the variable,

St,v : Kv −→ T, St,v(x) = ψv(
1
2 t〈x, x〉v) = ψv(tNKv/kv (x)).

We also view St,v as a tempered distribution,

St,v(f) =

∫
Kv

St,v(x)f(x) dx.

Before continuing, we argue that for non-Archimedean v, the integral∫
Kv

St,v = lim
X

∫
X

St,v (limit over increasing balls)

is in fact attained by all large enough X. Since Kv is a semisimple, 2-dimensional
algebra over kv and we are not in characteristic 2, the nondegenerate quadratic
form NKv/kv is diagonalizable over kv,

NKv/kv (x) = a1x
2
1 + a2x

2
2.

Thus St,v(x) = ψv(tNKv/kv (x)) = ψv(ta1x
2
1)ψv(ta2x

2
2) and consequently∫

Kv

St,v(x) dx =

∫
kv

ψv(ta1x
2
1) dx1

∫
kv

ψv(ta2x
2
2) dx2,

and so, absorbing constants into t, it suffices to show that the integral∫
kv

ψv(tx
2) dx

stabilizes over large enough balls.
Let $v be a uniformizer of Ov. Let m and ` be large positive integers. Introduce

a large shell of kv and a small subgroup of O×v ,

Xm = $−mv O×v , U` = exp($`
vOv) = 1 +$`

vOv.
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Thus U` acts on Xm. Normalize µOv to 1 and compute∫
Xm

ψv(tx
2) dx =

∫
Ov

∫
Xm

ψv(tx
2) dx dz =

∫
Ov

∫
exp($`

vz)Xm

ψv(tx
2) dx dz

=

∫
Ov

∫
Xm

ψv(t exp($`
vz)

2x2) dx dz,

noting that d(exp($`
vz)x) = dx since | exp($`

vz)| = 1. The argument of ψv in the
previous integral is

t exp($`
vz)

2x2 = t(1 +$`
vz + O($2`

v z
2))2x2 = t(1 + 2$`

vz + O($2`
v z

2))x2,

so that

ψv(t exp($`
vz)

2x2) = ψv(tx
2)ψv(2t$

`
vzx

2)ψv(O(t$2`
v z

2x2)).

Now, ker(ψv(t•)) = $n
vOv where n ∈ Z. If 2`− 2m ≥ n then ψv(O(t$2`

v z
2x2)) = 1

for all x ∈ Xm and z ∈ Ov, giving

ψv(t exp($`
vz)

2x2) = ψv(tx
2)ψv(2t$

`
vzx

2),

and thus ∫
Xm

ψv(tx
2) dx =

∫
Ov

∫
Xm

ψv(tx
2)ψv(2t$

`
vzx

2) dx dz

=

∫
Xm

ψv(tx
2)

∫
Ov

ψv(2t$
`
vzx

2) dz dx.

If also ordv(2) + `− 2m < n then for each x ∈ Xm, the character

Ov −→ T, z 7−→ ψv(2t$
`
vzx

2)

is nontrivial, and the inner integral vanishes. Thus, given m, any ` such that
n/2 +m ≤ ` < n+ 2m− ordv(2) will make the argument work.

(Note: The additive group structure of Ov and the multiplicative group structure
of U` are both active in the proof. Because they don’t interact directly, one could
parametrize Ov −→ U` by z 7→ 1 +$`

vz rather than use the exponential map, even
though this parametrization is not a homomorphism. But the resulting argument,
superficially a little simpler, is not natural or robust.)

Lemma 2. Let v be non-Archimedean. Then the Fourier transform of St,v is

FSt,v =

∫
Kv

St,v · S−t−1,v.

As just explained, the integral attains its value over large enough balls X.

Proof. Let X be any compact subset of Kv and consider the truncation 1XSt,v. Its
Fourier transform is

F(1XSt,v)(y) =

∫
X

ψv(〈x, y〉v)St,v(x) dx =

∫
X

ψv(t/2〈x, x〉v − 〈x, y〉v) dx.

Complete the square,

t/2〈x, x〉v − 〈x, y〉v = t/2〈x− t−1y, x− t−1y〉v − t−1/2〈y, y〉v,
and the Fourier transform is now

F(1XSt,v)(y) =

∫
X

St,v(x− t−1y) dx · S−t−1,v(y) =

∫
X−t−1y

St,v(x) dx · S−t−1,v(y).
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Now, St,v = limX(1XSt,v) in the weak dual topology, and the Fourier transform is
continuous, and for any given y we have X − t−1y = X if X is large enough, so
altogether,

FSt,v(y) = lim
X
F(1XSt,v)(y) = lim

X

∫
X

St,v(x) dx · S−t−1,v(y).

�

Lemma 3. Let v be non-Archimedean or Archimedean. Then for any Schwartz–
Bruhat function f on Kv,

(St,v ∗ f)(x) = St,v(x)F(St,vf)(tx).

Proof. The readily-verified polarizing identity

St,v(x− y) = St,v(x)ψv(〈tx, y〉v)St,v(y)

gives the result immediately,

(St,v ∗ f)(x) =

∫
Kv

St,v(x− y)f(y) dy = St,v(x)

∫
Kv

ψv(〈tx, y〉v)(St,vf)(y) dy.

�

5. The quadratic norm residue symbol

For any place v, non-Archimedean or Archimedean, define

νv : k×v −→ {±1}, νv(x) =


1 if Kv is a field and x ∈ NKv/kv (K×v ),

−1 if Kv is a field and x /∈ NKv/kv (K×v ),

1 if Kv is not a field.

We assert without proof that when Kv is a field, the subgroup NKv/kv (K×v ) of k×v
has index 2. Consequently, νv is a homomorphism.

The norm residue symbol captures the reduction of the integral of a dilated
quadratic exponential distribution to the normalized case, as follows.

Lemma 4. For any t ∈ k×v ,∫
Kv

St,v = νv(t)|t|−1
v

∫
Kv

S1,v.

As earlier, the integrals are taken over increasing balls, so that they stabilize if v is
non-Archimedean.

Proof. If t is a norm, i.e., it takes the form t = NKv/kv (x), then∫
Kv

St,v(y) dy =

∫
Kv

ψv(tNKv/kv (y)) dy = |x|−1
Kv

∫
Kv

ψv(NKv/kv (xy)) d(xy).

But
|x|Kv

= |xxσ|kv = |t|kv ,
and so the calculation has given the desired result in this case,∫

Kv

St,v = |t|−1
kv

∫
Kv

S1,v.

If t is not a norm then Kv is a field. Let

Θ = ker(NKv/kv ),
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so that the norm is constant on orbits Θx in Kv, including the one-point orbit 0
that does not contribute to the integral anyway. Furthermore, the multiplicative
group Θ\K×v (without the one-point orbit) is isomorphic to the index-2 subgroup
NKv/kv (K×v ) of norms in k×v . To find the relation between the Haar measures,

compute that for x ∈ K×v and u = NKv/kv (x) ∈ k×v ,

du = |u|kv d×u = |xxσ|kv d×(xxσ) = |x|Kv
2d×x = 2dx.

Thus, giving Θ measure 1 and halving du for convenience,∫
Kv

St,v(x) dx =

∫
Θ\Kv

∫
Θ

ψv(tN(θx)) dθ dx =

∫
Θ\Kv

ψv(tN(x)) dx

=

∫
N(K×

v )

ψv(tu) du = |t|−1
v

∫
tN(K×

v )

ψv(u) du.

Similarly, ∫
Kv

S1,v(x) dx =

∫
N(K×

v )

ψv(u) du,

and so it suffices to show that ∫
kv

ψv(u) du = 0.

Since ψv is a nontrivial character on kv, this is immediate. �

6. Global quadratic norm residue symbol reciprocity law

The global quadratic norm residue symbol is

νK/k : A×k −→ {±1}, νK/k =
⊗
v

νv.

Theorem 5. The global quadratic norm residue symbol is a Hecke character.

Proof. Introduce the global Weil quadratic exponential distribution,

St : AK −→ T, St =
⊗
v

St,v.

Specifically,

St(x) =
∏
v

St,v(xv) =
∏
v

ψv(tNKv/kv (xv)) = ψ(tNAK/Ak
(x)),

so that in particular St = 1 on K by the usual commutative diagram encoding that
the global norm is the product of the local norms,

K

Nk/Q

��

// AK
NAK/Ak
��

k // Ak

and by the fact that ψ is trivial on k.
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Take any t ∈ k× and any Schwartz–Bruhat function f on K. Then∑
x∈K

f(x) =
∑
x∈K

(St · f)(x) since St = 1 on K

=
∑
x∈K
F(St · f)(x) by Poisson summation

=
∑
x∈K

(FSt ∗ Ff)(x) by Lemma 1

=

∫
AK

St ·
∑
x∈K

(S−t−1 ∗ Ff)(x) by Lemma 2

=

∫
AK

St ·
∑
x∈K

S−t−1(x)(S−t−1 · Ff)(tx) by Lemma 3

=

∫
AK

St ·
∑
x∈K
Ff(tx) since S−t−1 = 1 on K

=

∫
AK

St ·
∑
x∈K
Ff(x) changing variable

=

∫
AK

St ·
∑
x∈K

f(x) by Poisson summation.

By choosing a Schwartz–Bruhat function f so that the sum doesn’t vanish we see
that ∫

AK

St = 1.

Using Lemma 4 and the idele product formula, compute∫
AK

St =
∏
v

∫
Kv

St,v =
∏
v

νv(t)|t|−1
v

∫
Kv

S1,v = νK/k(t)

∫
AK

S1,

Since both integrals equal 1, we have the result,

νK/k = 1 on k×.

(Note: The global calculation also uses Archimedean versions of lemmas that were
established only for non-Archimedean places.) �

7. Hilbert quadratic reciprocity

Let v be a non-Archimedean or Archimedean place of k. The quadratic Hilbert
symbol for any a, b ∈ kv is

(a, b)v =

{
1 if ax2 + by2 = z2 for some (x, y, z) ∈ k3

v − {(0, 0, 0)},
−1 otherwise.

Proposition 6. Let a, b ∈ k× be nonsquares. Let K = k(
√
b). Then the quadratic

Hilbert symbol is the norm residue symbol at all places of k, non-Archimedean or
Archimedean,

(a, b)v = νv(a) for all v.

Consequently, the product formula for quadratic Hilbert symbols holds,∏
v

(a, b)v = 1.
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Proof. We have

Kv = K ⊗k kv =

{
kv(
√
b) if b is not a square in kv,

kv × kv if b is a square in kv.

In the first case, the equation determining the Hilbert symbol has no solution
with x = 0, so by homogeneity it becomes

a = z2 − by2 = NKv/kv (z +
√
b y).

Thus the Hilbert symbol is 1 exactly when a is a local norm. In the second case,
the Hilbert symbol is 1 because b is a local square and the norm residue symbol
is 1 because Kv is not a field. With the local equalities established, the product
formula restates the fact that νK/k is trivial on k×. �

If either of a, b ∈ k× is a square then (a, b)v = 1 for all v, and the product
formula is trivial. Still, in this case we can match the local data as well. Make the
interpretations

K = k[X]/〈X2 − b〉 and Kv = K ⊗k kv = kv[X]/〈X2 − b〉 ≈ kv × kv.

Thus νv(a) = 1 for all v and again the quadratic Hilbert symbol agrees with the
norm residue symbol everywhere.

8. Quadratic reciprocity

Let p be a prime ideal of Ok. For any x ∈ Ok, define a quadratic symbol(
x

p

)
2

=


1 if x+ p is a square in (Ok/p)×,

−1 if x+ p is a nonsquare in (Ok/p)×,

0 if x+ p is zero in Ok/p,

and define (x
π

)
2

=

(
x

p

)
2

for any generator π of p.

A prime ideal of Ok is odd if it does not divide (2).

Theorem 7. (Main part of quadratic reciprocity) Let π and $ generate distinct
odd prime ideals of Ok. Then( π

$

)
2

($
π

)
2

=
∏
v|2·∞

(π,$)v.

(Supplementary part of quadratic reciprocity) Let π generate an odd prime ideal
of Ok, and let α be coprime to π, i.e., α+ (π) ∈ (Ok/(π))×. Then(α

π

)
2

=
∏

v|2α·∞

(π, α)v.

Proof. Let p = (π) and let v be the corresponding place of k. If the Hilbert symbol
(π,$)v is 1 then

πx2 +$y2 = z2, x, y, z ∈ kv, not all 0.

If x = 0 then $ is a square in k×v , hence in k×, hence in (Ok/p)× since ($) 6= (π),
and so certainly the quadratic symbol ($/π)2 is 1. Otherwise ordπ(πx2) is odd
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while ordπ($y2) and ordπ(z2) are even or infinite, so both must be even and hence
equal and less than ordπ(x). After canceling powers of π we thus get

π2e+1x̃2 +$ỹ2 = z̃2, π - x̃ỹz̃.

Take the displayed equality modulo (π) to see that again the quadratic sym-
bol ($/π)2 is 1.

Still with p = (π), suppose now conversely that the quadratic symbol ($/π)2

is 1. Thus $ is a nonzero square in (Ok/p)×, and so by Hensel’s Lemma $ is
a nonzero square in k×v . Consequently the Hilbert symbol (π,$)v is 1. Thus
(π,$)v = ($/π)2, and similarly ($,π)w = (π/$)2 where w is the place of k
corresponding to ($).

Next let p be an odd prime ideal of Ok other than (π) and ($), and let v be
the corresponding place of k. Let Kv = kv(

√
$), so that (π,$)v = νv(π). If $ is

a square in kv then νv(π) = 1 because Kv = kv × kv. If $ is not a square in kv
then Kv is unramified over kv because p is odd. Thus the norm surjects to O×v
(because the image has index 2 in k×v and contains only units times even powers
of $), giving

π = NKv/kv (z + y
√
$) = z2 −$y2, y, z ∈ kv.

So again (π,$)v = 1.
Thus by Hilbert quadratic reciprocity,

1 =
∏
v

(π,$)v = (π/$)2($/π)2

∏
v|2·∞

(π,$)v,

and the main part of quadratic reciprocity follows. The supplementary part is left
as an exercise. �

For the simplest case, let p and q be odd rational primes. We have shown that(
p

q

)
2

(
q

p

)
2

= (p, q)2(p, q)∞.

Clearly the equation

px2 + qy2 = z2

has nonzero real solutions (x, y, z), and so (p, q)∞ = 1. As for whether the equation
has nonzero 2-adic solutions, if p = 1 (8) then Hensel’s Lemma lifts the solution
(1, 0, 1) from Z/8Z to Z2, and similarly if q = 1 (8), while if p = q = 5 (8) then
Hensel’s Lemma lifts the solution (1, 2, 1). Thus (p, q)2 = 1 if either of p, q equals 1
modulo 4. Conversely, if the displayed equation has a nonzero solution in Z2 then
it has a primitive solution and hence has a primitive solution modulo every power
of 2; but if p and q both equal 3 modulo 4 then there is no primitive solution
modulo 4. Thus (p, q)2 = −1 in this case. The main part of the usual quadratic
reciprocity law follows.

9. Ending remarks

Starting from the number field k, our second main datum could be a binary
quadratic form Q over k rather than a quadratic field extension of k. Then we
would define K = k[X]/〈X2 − disc(Q)〉, a quadratic field extension of k if Q is
anisotropic and a 2-dimensional k-vector space regardless. At a suitable level of
equivalence, the norm from K to k is the binary quadratic form Q.



QUADRATIC RECIPROCITY, AFTER WEIL 11

A person might argue that this writeup gets things backwards, that really Hilbert
quadratic reciprocity makes ν a Hecke character rather than conversely. But the
larger issue is that ν being a Hecke character helps to show that a construction called
the Weil representation gives rise to automorphic forms. The Weil representation
space is the Schwartz–Bruhat functions on AK ,

S(AK),

and the group represented is

G×H where


G = Sp(1,Ak) = SL(2,Ak),

H =
∏
v

Hv, Hv = {k ∈ Kv : NKv/kv (h) = 1}.

The Weil representation in general pairs metaplectic and orthogonal groups. The
situation discussed in this writeup is the simplest case.


