
COMPLETING A METRIC SPACE

A completion of a metric space X is an isometry from X to a complete metric
space,

ι : X −→ X̃,

which satisfies a mapping property encoded in the diagram

X̃

F

&&M
MMMMMM

X

ι

OO

f
// Z

Here the isometry condition is

dX̃(ι(x), ι(x′)) = dX(x, x′) for all x, x′ ∈ X,

and the completeness property is that every Cauchy sequence in X̃ converges in X̃.
Reviewing the Cauchy criterion for a sequence { x̃i }, for each ε > 0 there exists
some starting index io such that

i, j ≥ io =⇒ dX̃(x̃i, x̃j) < ε.

The function f : X −→ Z in the mapping property is an auxiliary uniformly
continuous map to an auxiliary complete metric space, and the mapping property

is that there exists a unique uniformly continuous function F : X̃ −→ Z that makes
the diagram commute. Reviewing the uniform continuity definition for f , for each
ε > 0 there exists some δ = δ(f, ε) > 0 such that

x, x′ ∈ X, dX(x, x′) < δ =⇒ dZ(f(x), f(x′)) < ε.

And similarly for F . The existence and essential uniqueness of the completion will
be shown below.

Especially, if X is literally a subspace of its completion X̃, so that the isometry ι
is just the inclusion map, then the diagram property is that a uniformly continuous
function f : X −→ Z where Z is a complete metric space extends uniquely to

F : X̃ −→ Z, again uniformly continuous.
The uniform continuity of f , or some property of f that makes it preserve Cauchy

sequences, is genuinely required here, rather than just pointwise continuity. To see
that uniform continuity preserves Cauchy sequences, let f : X −→ Y be a uniformly
continuous map of metric spaces, and let {xi } be Cauchy in X. Let ε > 0 be
given, and let δ = δ(f, ε). There exists io such that dX(xi, xj) < δ for all i, j ≥ io.
Consequently, dY (f(xi), f(xj)) < ε for all i, j ≥ io. Thus { f(xi) } is Cauchy in Y .
On the other hand, the pointwise continuous map f(x) = 1/x from (0, 1] to [1,∞)
takes the Cauchy sequence { 1/n } to {n }, which is not Cauchy.

An example showing the need for continuous functions that preserve Cauchy
sequences in the completion’s mapping property is

f : R− {0} −→ R, f(x) =

{
0 if x < 0

1 if x > 0.
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2 COMPLETING A METRIC SPACE

This continuous function has no continuous extension to R. It does not preserve
the Cauchy property of a rational sequence that approaches 0 alternatingly above
and below, so it cannot be uniformly continuous. One can see the failure of uniform
continuity directly as well.

For another example, this time positive, suppose that the metric space X arises
from a normed linear space. That is, X is a vector space over the complex number
field C, and it carries a norm function

| · |X : X −→ R

that is positive, absolute-homogeneous, and subadditive,

• |x|X ≥ 0 for all x ∈ X, with equality if and only if x = 0,
• |ax|X = |a|C|x|X for all a ∈ C and x ∈ X,
• |x+ x′|X ≤ |x|X + |x′|X for all x, x′ ∈ X.

The resulting metric is

dX(x, x′) = |x− x′|X ,
with the required metric properties in turn, i.e., it is positive, and symmetric and
it satisfies the triangle inequality,

• dX(x, x′) ≥ 0 for all x, x′ ∈ X, with equality if and only if x = x′,
• dX(x, x′) = dX(x′, x) for all x, x′ ∈ X,
• dX(x, x′) ≤ dX(x, x′′) + dX(x′′, x′) for all x, x′, x′′ ∈ X.

For any x, x′ ∈ X we have |x|X = |x − x′ + x′|X ≤ |x − x′|X + |x′|X , so that
|x|X − |x′|X ≤ |x − x′|X , and symmetrically |x′|X − |x|X ≤ |x − x′|X . Thus∣∣|x′|X − |x|X ∣∣R ≤ |x − x′|X . This shows that the norm is uniformly continuous.
The norm therefore extends uniquely to the completion of X. We will use this fact
frequently.

For a more specific example, let X be the space of step functions from [0, 1] to R,
meaning functions of the form

s =

n∑
i=1

ciχi,

with each χi the characteristic function of an interval Ii such that overall [0, 1] is
the disjoint union

⊔n
i=1 Ii. The space X carries the norm

|s|X = max
i
|ci|R.

Define the integration function
∫
[0,1]

: X −→ R,∫
[0,1]

s =
∑
i

ci length(Ii) where s =
∑
i

ciχi.

This function is linear, and it satisfies the condition∣∣∣∣∣
∫
[0,1]

s

∣∣∣∣∣ =

∣∣∣∣∣∑
i

ci length(Ii)

∣∣∣∣∣ ≤∑
i

|ci| length(Ii) ≤ max
i
|ci| = |s|X ,

which combines with its linearity to make it uniformly continuous. Therefore
∫
[0,1]

extends to a function on the completion of X. This extension is the Riemann
integral. If we start instead with the space Y of simple functions from [0, 1] to R,
these being the finite linear combinations of characteristic functions of disjoint
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measurable subsets of [0, 1] rather than disjoint subintervals, then the resulting∫
[0,1]

extends to the Lebesgue integral on the completion of Y .

1. Uniqueness

Granting a completion, a standard argument shows that it is determined up to a
unique uniformly continuous isomorphism with uniformly continuous inverse. Fur-
ther we will see that this isomorphism is an isometry. That is, any two completions
of a metric space X are related by a unique isometric isomorphism, which is to say
that the completion is essentially unique.

The standard argument is as follows. Let ι : X −→ X̃ be a completion of X.
Let this completion take the role of f : X −→ Z in the characterizing property.
The property gives a unique F in the commutative diagram

X̃

F

&&M
MMMMMM

X

ι

OO

ι // X̃

Of course the identity map works, but the characterizing property says that only

the identity map of X̃ extends the isometry of X into X̃ to a uniformly continuous

map of X̃ into itself. Next, if ιj : X −→ X̃j for j = 1, 2 are completions of X then
in the diagram

X̃1 X̃2 X̃1

X

ι1

ffNNNNNNNNNNNNN
ι2

OO

ι1

88ppppppppppppp

we give ι1 : X −→ X̃1 and ι2 : X −→ X̃2 respectively the roles of the completion
and the auxiliary, and then exchange their roles, to get unique uniformly continuous
functions F21, F1,2 in the commutative diagram

X̃1
F21 // X̃2

F12 // X̃1

X

ι1

ffNNNNNNNNNNNNN
ι2

OO

ι1

88ppppppppppppp

As noted above, this makes F12 ◦F21 the identity map on X̃1. The same argument

with 1 and 2 exchanged shows that F21 ◦ F12 is the identity map on X̃2. Thus

F21 : X̃1 −→ X̃2 is a uniformly continuous isomorphism whose inverse is also
uniformly continuous. Further, because ι1 and ι2 are isometries, also F21 is an
isometry on ι1(X).

Below we will show that ι1(X) is dense in X1, and that consequently F21 is
an isometry on all of X1. Granting this, we have shown that any two completion

spaces X̃1 and X̃2 of X are isomorphic by a unique isometry, which is to say that
the completion is determined up to unique isometric isomorphism.
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2. Density

Assuming a completion ι : X −→ X̃, we show that X is dense in X̃. Literally

the statement is that ι(X) is dense in X̃, i.e., any point in X̃ is the limit of a

sequence { ι(xi) } in X̃. Indeed, let W ⊂ X̃ be the subspace of such limits, which
includes ι(X) because each x ∈ X gives the constant sequence { ι(x) }. To show
that W is complete, we must show that any Cauchy sequence {wi } in W converges
in W . Since each wi is the limit of a sequence in ι(X), there exists a sequence {xi }
in X such that dW (ι(xi), wi) < 2−i for each i. To show that {wi } converges in W ,
we show that:

• Because {wi } is Cauchy in W , hence is Cauchy in X̃, also { ι(xi) } is

Cauchy in X̃, where it has a limit w. This limit lies in W by definition
of W .

• Because { ι(xi) } converges to w in W , so does {wi }.
For the first bullet, given ε > 0 there exists io such that 2−io < ε and dW (wi, wj) < ε
for all i, j ≥ io. Thus { ι(xi) } is Cauchy because for all i, j ≥ io,

dW (ι(xi), ι(xj)) ≤ dW (ι(xi), wi) + dW (wi, wj) + dW (wj , ι(xj)) < 3ε.

Similarly for the second bullet, given ε > 0 there exists io such that 2−io < ε and
dW (ι(xi), w) < ε for all i ≥ io. Thus limi wi = w because for all i ≥ io,

dW (wi, w) ≤ dW (wi, ι(xi)) + dW (ι(xi), w) < 2ε.

This finishes the argument that W is complete.
Next we show that ιo : X −→ W , where ι0 is ι with its codomain restricted

from X̃ to W , satisfies the completion mapping property, so that in fact W is all

of X̃. Indeed, letting inc denote the inclusion map, the diagram

W
inc // X̃

F

&&M
MMMMMM

X

ιo

``@@@@@@@@
ι

OO

f
// Z

shows that f induces the map G = F ◦ inc : W −→ Z, which inherits uniform
continuity from F because the inclusion is an isometry. Furthermore, any induced
map G out of W is determined by its values on ιo(X), because ιo(X) is dense in W
by the construction of W and because G is continuous. More specifically, every
point w of W takes the form w = limi ιo(xi), and so

G(w) = G(lim
i
ιo(xi)) = lim

i
G(ιo(xi)).

Thus G is uniquely determined by f because G ◦ ιo = f , and so ιo : X −→ W
satisfies the completion mapping property. The inclusion map from W to X is the
isomorphism between the two completions, as established above, and so W is all

of X̃.

Now we can establish a fact that we used at the end of the previous section:

Because X is dense in X̃, if a map f : X −→ Z from X to a complete metric space
is an isometry, rather than just being uniformly continuous, then the resulting

map F : X̃ −→ Z is an isometry as well. This is because F is continuous, and the
metrics dZ and dX̃ are continuous (see below), and F is an isometry on ι(X) because
F ◦ ι = f . Belaboring the matter by carefully avoiding limits in the noncomplete
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space X while using limits in the complete spaces X̃ and Z, compute for any x̃

and x̃′ in X̃,

dZ(F (x̃), F (x̃′))

= dZ(F (lim
i
ι(xi)), F (lim

i
ι(x′i))) because ι(X) is dense in X̃

= dZ(lim
i
F (ι(xi)), lim

i
F (ι(x′i))) because F is continuous

= lim
i
dZ(F (ι(xi)), F (ι(x′i))) because dZ is continuous

= lim
i
dX̃(ι(xi), ι(x

′
i)) because F is an isometry on ι(X)

= dX̃(lim
i
ι(xi), lim

i
ι(x′i)) because dX̃ is continuous

= dX̃(x̃, x̃′).

To review that dZ is continuous, let { zi } and { z′i } be convergent sequences in Z,
having limits z and z′. Let ε > 0 be given. For any j and k we have

dZ(z, z′) ≤ dZ(z, zj) + dZ(zj , z
′
k) + dZ(z′k, z

′)

dZ(zj , z
′
k) ≤ dZ(zj , z) + dZ(z, z′) + dZ(z′, z′k),

so that

|dZ(zj , z
′
k)− dZ(z, z′)| ≤ dZ(z, zj) + dZ(z′, z′k).

For large enough j and k we have dZ(z, zj) < ε and dZ(z′, z′k) < ε, and so
|dZ(zj , z

′
k)−dZ(z, z′)| < 2ε. This shows that limj,k dZ(zj , z

′
k) = dZ(limi zi, limi z

′
i),

which is the continuity. Especially, limi dZ(zi, z
′
i) = dZ(limi zi, limi z

′
i), as in the

computation above. This argument uses only general metric properties, so it applies

to every metric space, and in particular to X̃ along with Z.

3. Construction

3.1. Pseudometric Space of Cauchy Sequences. Let C be the space of Cauchy
sequences in X. Let a typical element of C be c = {xj }. We show that the function

d : C × C −→ R≥0, dC(c, c′) = lim
j
dX(xj , x

′
j)

is meaningful, i.e., the limit in the previous display exists. Given ε > 0 there
exists jo(c) such that dX(xj , xk) < ε for all j, k ≥ jo(c), and similarly for c′. Let
jo = max{ jo(c), jo(c′) }. For any indices j, k ≥ io, the triangle inequality in X gives

|dX(xj , x
′
j)− dX(xk, x

′
k)| ≤ dX(xj , xk) + dX(x′j , x

′
k) < 2ε.

This shows that the real sequence { dX(xj , x
′
j) } is Cauchy, and hence it has a

limit as claimed. Next, given sequences c, c′, c′′ ∈ C and any index j, the triangle
inequality in X gives dX(xj , x

′
j) ≤ dX(xj , x

′′
j ) + dX(x′′j , x

′
j), and so passing to the

limit gives the triangle inequality in C,

dC(c, c′) ≤ dC(c, c′′) + dC(c′′, c′).

Also, dC is obviously symmetric and nonnegative. However, it is a pseudomet-
ric rather than a metric because it is not strictly positive. The intuition is that
dC(c, c′) = 0 if the Cauchy sequences c and c′ are trying to converge to the same
limit even if that limit does not exist. We will construct a true metric from dC
below.
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3.2. Completeness of C. The proof that the pseudometric space C is complete is
the main technical matter in all this. The argument is Cantor diagonalization. Let
{ ci } be a Cauchy sequence in C. Thus each ci = {xi,j } is a Cauchy sequence in X.
This is the famous, or infamous, Cauchy sequence of Cauchy sequences construct
of analysis. Let ε > 0 be given. Since { ci } is Cauchy in C,

∃ i(ε) : dC(ci, ci′) < ε ∀ i, i′ ≥ i(ε),

and so, since dC(ci, ci′) = limj dX(xi′,j , xi,j) by definition,

(∗) ∀ i, i′ ≥ i(ε) ∃ j(i, i′) : dX(xi′,j , xi,j) < ε ∀ j ≥ j(i, i′).

Since each ci is Cauchy in X,

(∗∗) ∀ i, ∃ j(i) : dX(xi,j , xi,j′) < ε ∀ j, j′ ≥ j(i).

We may take j(i′) ≥ j(i), j(i, i′) for all i′ > i ≥ i(ε). Define a diagonal-like sequence,

` = {xi,j(i) }.

Visually, ` is something like this:

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 . . .

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 . . .

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 . . .

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 x4,7 x4,8 x4,9 . . .

. . .

To see that ` is Cauchy, note that for any i′ > i ≥ i(ε), the distance between its
i′th and ith terms satisfies

dX(`i′ , `i) = dX(xi′,j(i′), xi,j(i)) ≤ dX(xi′,j(i′), xi,j(i′)) + dX(xi,j(i′), xi,j(i)).

The first term is less than ε by (∗) because j(i′) ≥ j(i, i′), and the second term is
less than ε by (∗∗) because j(i), j(i′) ≥ j(i). So indeed ` is Cauchy. To see that
` = limi ci, take any i ≥ i(ε) and note that for any i′ ≥ i, j(i), the distance between
the i′th terms of ` and ci satisfies

dX(`i′ , xi,i′) = dX(xi′,j(i′), xi,i′) ≤ dX(xi′,j(i′), xi,j(i′)) + dX(xi,j(i′), xi,i′).

Again the first term is less than ε by (∗) because j(i′) ≥ j(i, i′), and the second
term is less than ε by (∗∗) because j(i′), i′ ≥ j(i). So indeed ` = limi ci.

3.3. Mapping Property of C. Now we show that the pseudometric space C
satisfies the mapping property of the completion other than not being a true metric
space. The isometry from X to C takes each element to the corresponding constant
sequence. Given a uniformly continuous function f : X −→ Z where Z is complete,
the only possible compatible induced uniformly continuous function is

F : C −→ Z, F (c) = lim
j
f(xj) where c = {xj }.

The limit exists because the sequence { f(xj) } is Cauchy in Z in consequence of the
sequence {xj } being Cauchy in X and f being uniformly continuous, and because
Z is complete. With F now well defined, also it is uniformly continuous, as follows.
Let ε > 0 be given, and let δ = δ(f, ε/2). For Cauchy sequences c = {xj } and
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c′ = {x′j } in C with dC(c, c′) < δ, we have dX(xj , x
′
j) < δ for all large enough j,

and so dZ(f(xj), f(x′j)) < ε/2 for all large enough j. Thus

dZ(F (c), F (c′)) = dZ(lim
j
f(xj), lim

i
f(x′j)) = lim

j
dZ(f(xj), f(x′j)) ≤ ε/2 < ε.

This shows that F is uniformly continuous as desired.
In particular, if f is a norm function | · |X : X −→ R, then

• F (c) = limj |xj |X ≥ 0, with equality if and only if limj |xj |X = 0,
• F (ac) = limj |axj |X = limj |a|C|xj |X = |a|C limj |xj |X , so F is absolute-

homogeneous,
• F (c+c′) = limj |xj+x′j |X ≤ limj(|xj |X+|x′j |X) = limj |xj |X+limj |x′j |X =
F (c) + F (c′), so F is subadditive.

This F is a pseudonorm, failing only the strict positivity condition.

3.4. True Metric Space X̃ = C/ ∼, Its Mapping Property. Finally, to repair
the problem that C is only a pseudometric space, construct its quotient space

X̃ = C/ ∼,

where the equivalence relation is

c′ ∼ c ⇐⇒ dC(c, c′) = 0,

and the elements of the quotient space are equivalence classes,

[c] = { c′ ∈ C : c′ ∼ c }.

Especially, if X is a linear space then the class [{0, 0, 0, . . . }] consists of all Cauchy
sequences that converge to 0. We show that dC is defined on pairs of classes.
Suppose that c′1 ∼ c1 in C and take any c2 in C. Thus

dC(c1, c2) ≤ dC(c1, c
′
1) + dC(c′1, c2) = dC(c′1, c2),

and similarly dC(c′1, c2) ≤ dC(c1, c2), so in fact dC(c′1, c2) = dC(c1, c2). Symmet-
rically, dC(c1, c

′
2) = dC(c1, c2) if c′2 ∼ c2. Thus dX̃([c1], [c2]) is well defined as the

common value of dC(c′1, c
′
2) over all c′1 ∈ [c1] and c′2 ∈ [c2]. And if dX̃([c1], [c2]) = 0

then [c1] = [c2], so dX̃ is a true metric. The projection map π : C −→ X̃ taking
each c ∈ C to [c] is an isometry.

To see that the mapping property of the completion holds for X̃, we check
that any induced map out of C is constant on equivalence classes and therefore

factors uniquely through X̃. Let ε > 0 be given, and let δ = δ(f, ε). For Cauchy
sequences c = {xj } and c′ = {x′j }, the condition c ∼ c′ is dC(c, c′) = 0, or
limj dX(xj , x

′
j) = 0, giving

dX(xj , x
′
j) < δ for all large enough j,

so that

dZ(f(xj), f(x′j)) < ε for all large enough j.

Thus limj dZ(f(xj), f(x′j)) = 0. Consequently, dZ(limj f(xj), limj f(x′j)) = 0, so
that limj f(xj) = limj f(x′j), meaning precisely that F (c) = F (c′). Thus F is



8 COMPLETING A METRIC SPACE

well defined on classes as claimed, and the definition F ([c]) = F (c) is sensible. So
F ◦ π = F , and we have the desired diagram

X̃

F

##G
G

G
G

G
G

G
G

G
G

G

C

π

OO

F

))SSS
SSSS

SSSS
SSSS

SSSS

X

ι

OO

f
// Z

The map F : X̃ −→ Z is uniformly continuous in consequence of F : C −→ Z being

uniformly continuous, because the projection π : C −→ X̃ is an isometry.

As a last comment, we note that for many purposes it suffices to have the comple-
tion definition posit that f and F are subisometries, meaning that dZ(f(x), f(x′)) ≤
dX(x, x′) for all x, x′ ∈ X and similarly for F , rather than f and F being uniformly
continuous functions. With this variant characterizing property, some of the argu-
ments of this writeup become a little easier. In particular, the argument that if the
completion exists then it is determined up to unique isometry doesn’t depend on
the density of the space in its completion.


