
DIRICHLET L VALUES AT NONPOSITIVE INTEGERS

(Modeled on exposition in Washington’s Cyclotomic Fields.)
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1. Basic Bernoulli numbers and polynomials

Recall the definitions of the Bernoulli numbers and the Bernoulli polynomials,
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the Bernoulli polynomials are
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Arguably it would be better to take t/(1 − e−t) = tet/(et − 1) = t/(et − 1) + t
instead as the definition of the Bernoulli number generating function

∑
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the only effect being to modify B1 from −1/2 to 1/2, but the stated definition is
entrenched. Opting between the definitions is a matter of deciding whether one
deems it more natural to count from 1 to n or from 0 to n− 1.

Because
t

et − 1
+ t =

tet

et − 1
=

−t
e−t − 1

we have for all k ≥ 0,
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fact that this equals Bk(0) = Bk except when k = 1 is the defining condition of the
Bernoulli numbers, t = (et − 1)
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That is, B0 = 1 and then
∑k−1
j=0
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Bk = 0 for k ≥ 2. This lets us compute the

Bernoulli numbers handily.

The Bernoulli polynomials have a sort of averaging property, as follows. For any
positive integer m, the Bernoulli polynomial definition and the finite geometric sum
formula give
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which is to say,

(1) Bk(X) = mk−1
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m ), k = 0, 1, 2, . . . .

We will use this relation below.

2. Dirichlet character Bernoulli numbers

Let χ be a Dirichlet character of conductor N . The generating function defini-
tions of the χ-Bernoulli numbers Bk,χ and the Bernoulli polynomials Bk(X) are
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so that each χ-Bernoulli number is a weighted average of Bernoulli polynomial
values,

(2) Bk,χ = Nk−1
N−1∑
a=0

χ(a)Bk( aN ), k = 0, 1, 2, . . . .

Now let M = QN be an integer multiple of the conductor. We show that if N is
replaced by its multiple M in the right side of the previous display then the result
is still Bk,χ. Each a from 0 to M − 1 is uniquely a = qN + a′ with 0 ≤ q < Q and
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0 ≤ a′ < N . Compute for any nonnegative integer k,
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Returning to the χ-Bernoulli number definition
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note that when χ is trivial, so that N = 1, this is not the same thing as summing
over a from 1 to N : the previous display has t/(et − 1) on the right side, whereas
the other way would be tet/(et − 1). These are exactly the two definitions of the
basic Bernoulli numbers, which is to say that by our definitions B1 = −1/2 but
B1,1 = 1/2.

Assuming that χ is nontrivial, so that N > 1 and χ(0) = 0, replace t by −t in
the right side of the previous display to get
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This shows that if χ is even then all Bk,χ for odd k are zero, and if χ is odd then
all Bk,χ for even k are zero.

The χ-Bernoulli numbers can be computed iteratively in the same fashion as the
basic Bernoulli numbers. Indeed, the relation
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(If χ = 1 then this is
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Bk = n · 0n−1 and the right side is 1 for n = 1 and

otherwise 0.) Assuming that χ is nontrivial, the previous display with n = 1 gives
NB0,χ =
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∑
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We will use this formula at the end of this writeup.

3. Hurwitz zeta function and its continuation

For any positive real number r,
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and so, with the Hurwitz zeta function, defined as
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It follows that for 0 < ε < 1 and Hε the Hankel contour,
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The equality just given extends ζ(s, b) meromorphically to C.
At s = 1 − k for k = 1, 2, 3, . . . we have Γ(s)(e2πis − 1) = 2πi(−1)k−1/(k − 1)!,
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the residue is Bk(1 − b)/k!. Thus
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4. Dirichlet L at nonpositive integers

Let χ be a Dirichlet character. We evaluate L(χ, 1 − k) for k = 1, 2, 3, . . . . The
Dirichlet L-function is a weighted average of Hurwitz zeta function values,

L(χ, s) =

N∑
a=1

χ(a)N−sζ(s, a/N),

and this determines L(χ, 1 − k) to be essentially Bk,χ,

L(χ, 1 − k) =
(−1)k−1

k
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=
(−1)k−1sgn(χ)Bk,χ

k
, k = 1, 2, 3, . . . .

If χ is even then Bk,χ = 0 for odd k (except for the special case (χ, k) = (1, 1))
and so (−1)k−1sgn(χ)Bk,χ = −Bk,χ, and if χ is odd then Bk,χ = 0 for even k and
again (−1)k−1sgn(χ)Bk,χ = −Bk,χ. So finally,

L(χ, 1 − k) = −Bk,χ
k

, k = 1, 2, 3, . . . (excluding (χ, k) = (1, 1)).

In the special case (χ, k) = (1, 1),

ζ(0) = − 1
2 .

The boxed equality subsumes this if we take B1 = 1/2.

5. Odd quadratic case

Let χ = χ be an odd quadratic character of conductor N . We have learned
that its Gauss sum τ(χ) is iN1/2. Suppose that s ∼ 0. Then Γ(s) ∼ 1/s and
cos(π(s − 1)/2) ∼ πs/2, and so from our writeup on continuations and functional
equations,

L(χ, 1 − s) =
2i

τ(χ)

(
2π

N

)−s
Γ(s) cos

(
π(s− 1)

2

)
L(χ, s) ∼ 2

N1/2

1

s

πs

2
L(χ, s).

This and then the previous boxed formula with k = 1 give

L(χ, 1) =
π

N1/2
L(χ, 0) = − π

N1/2
B1,χ,

which is to say, by the computation of B1,χ earlier in this writeup,

L(χ, 1) = − π

N3/2

N−1∑
a=0

χ(a)a, χ odd quadratic.

Later in the semester we will see that this L-value plays an important role in the
theory of imaginary quadratic fields.


