DIRICHLET L VALUES AT NONPOSITIVE INTEGERS

(Modeled on exposition in Washington's Cyclotomic Fields.)

Contents

1. Basic Bernoulli numbers and polynomials 1
2. Dirichlet character Bernoulli numbers 2
3. Hurwitz zeta function and its continuation 4
4. Dirichlet L at nonpositive integers 5
5. Odd quadratic case 5

1. Basic Bernoulli numbers and polynomials

Recall the definitions of the Bernoulli numbers and the Bernoulli polynomials,

$$
\frac{t}{e^{t}-1}=\sum_{k \geq 0} B_{k} \frac{t^{k}}{k!} \quad \text { and } \quad \frac{t e^{X t}}{e^{t}-1}=\sum_{k \geq 0} \mathbb{B}_{k}(X) \frac{t^{k}}{k!}
$$

Because

$$
\frac{t e^{X t}}{e^{t}-1}=\sum_{i \geq 0} X^{i} \frac{t^{i}}{i!} \sum_{j \geq 0} B_{j} \frac{t^{j}}{j!}=\sum_{k \geq 0} \sum_{j=0}^{k}\binom{k}{j} B_{j} X^{k-j} \frac{t^{k}}{k!}
$$

the Bernoulli polynomials are

$$
\mathbb{B}_{k}(X)=\sum_{j=0}^{k}\binom{k}{j} B_{j} X^{k-j}, \quad k \geq 0
$$

Arguably it would be better to take $t /\left(1-e^{-t}\right)=t e^{t} /\left(e^{t}-1\right)=t /\left(e^{t}-1\right)+t$ instead as the definition of the Bernoulli number generating function $\sum_{k} B_{k} t^{k} / k$!, the only effect being to modify B_{1} from $-1 / 2$ to $1 / 2$, but the stated definition is entrenched. Opting between the definitions is a matter of deciding whether one deems it more natural to count from 1 to n or from 0 to $n-1$.

Because

$$
\frac{t}{e^{t}-1}+t=\frac{t e^{t}}{e^{t}-1}=\frac{-t}{e^{-t}-1}
$$

we have for all $k \geq 0$,

$$
\mathbb{B}_{k}(0)+\delta_{k, 1}=\mathbb{B}_{k}(1)=(-1)^{k} \mathbb{B}_{k}(0)
$$

The relation $\mathbb{B}_{k}(X)=\sum_{j=0}^{k}\binom{k}{j} B_{j} X^{k-j}$ specializes to $\mathbb{B}_{k}(1)=\sum_{j=0}^{k}\binom{k}{j} B_{j}$. The fact that this equals $\mathbb{B}_{k}(0)=B_{k}$ except when $k=1$ is the defining condition of the Bernoulli numbers, $t=\left(e^{t}-1\right) \sum_{k \geq 0} B_{k} t^{k} / k$!; indeed, this condition is

$$
t=\sum_{i \geq 1} \frac{t^{i}}{i!} \sum_{j \geq 0} B_{j} \frac{t^{j}}{j!}=\sum_{k \geq 1} \sum_{j=0}^{k-1}\binom{k}{j} B_{k} \frac{t^{k}}{k!} .
$$

That is, $B_{0}=1$ and then $\sum_{j=0}^{k-1}\binom{k}{j} B_{k}=0$ for $k \geq 2$. This lets us compute the Bernoulli numbers handily.

The Bernoulli polynomials have a sort of averaging property, as follows. For any positive integer m, the Bernoulli polynomial definition and the finite geometric sum formula give

$$
\sum_{k \geq 0} \mathbb{B}_{k}(X) \frac{t^{k}}{k!}=\frac{t e^{X t}}{e^{t}-1} \quad \text { and } \quad \frac{1}{e^{t}-1}=\frac{1}{e^{m t}-1} \sum_{j=0}^{m-1} e^{j t}
$$

and consequently

$$
\sum_{k \geq 0} \mathbb{B}_{k}(X) \frac{t^{k}}{k!}=\frac{1}{m} \sum_{j=0}^{m-1} \frac{m t e^{(X+j) / m \cdot m t}}{e^{m t}-1}=\sum_{k \geq 0} \sum_{j=0}^{m-1} m^{k-1} \mathbb{B}_{k}\left(\frac{X+j}{m}\right) \frac{t^{k}}{k!}
$$

which is to say,

$$
\begin{equation*}
\mathbb{B}_{k}(X)=m^{k-1} \sum_{j=0}^{m-1} \mathbb{B}_{k}\left(\frac{X+j}{m}\right), \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

We will use this relation below.

2. Dirichlet character Bernoulli numbers

Let χ be a Dirichlet character of conductor N. The generating function definitions of the χ-Bernoulli numbers $B_{k, \chi}$ and the Bernoulli polynomials $\mathbb{B}_{k}(X)$ are

$$
\sum_{k \geq 0} B_{k, \chi} \frac{t^{k}}{k!}=\sum_{a=0}^{N-1} \chi(a) \frac{t e^{a t}}{e^{N t}-1} \quad \text { and } \quad \frac{t e^{X t}}{e^{t}-1}=\sum_{k \geq 0} \mathbb{B}_{k}(X) \frac{t^{k}}{k!}
$$

and it follows that

$$
\sum_{k \geq 0} B_{k, \chi} \frac{t^{k}}{k!}=\frac{1}{N} \sum_{a=0}^{N-1} \chi(a) \frac{N t e^{a / N \cdot N t}}{e^{N t}-1}=\sum_{k \geq 0} N^{k-1} \sum_{a=0}^{N-1} \chi(a) \mathbb{B}_{k}\left(\frac{a}{N}\right) \frac{t^{k}}{k!}
$$

so that each χ-Bernoulli number is a weighted average of Bernoulli polynomial values,

$$
\begin{equation*}
B_{k, \chi}=N^{k-1} \sum_{a=0}^{N-1} \chi(a) \mathbb{B}_{k}\left(\frac{a}{N}\right), \quad k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Now let $M=Q N$ be an integer multiple of the conductor. We show that if N is replaced by its multiple M in the right side of the previous display then the result is still $B_{k, \chi}$. Each a from 0 to $M-1$ is uniquely $a=q N+a^{\prime}$ with $0 \leq q<Q$ and
$0 \leq a^{\prime}<N$. Compute for any nonnegative integer k,

$$
\begin{aligned}
M^{k-1} \sum_{a=0}^{M-1} \chi(a) \mathbb{B}_{k}\left(\frac{a}{M}\right) & =(Q N)^{k-1} \sum_{q=0}^{Q-1} \sum_{a^{\prime}=0}^{N-1} \chi\left(q N+a^{\prime}\right) \mathbb{B}_{k}\left(\frac{q N+a^{\prime}}{Q N}\right) \\
& =N^{k-1} \sum_{a^{\prime}=0}^{N-1} \chi\left(a^{\prime}\right) Q^{k-1} \sum_{q=0}^{Q-1} \mathbb{B}_{k}\left(\frac{a^{\prime} / N+q}{Q}\right) \\
& =N^{k-1} \sum_{a^{\prime}=0}^{N-1} \chi\left(a^{\prime}\right) \mathbb{B}_{k}\left(\frac{a^{\prime}}{N}\right) \quad \text { by }(1) \\
& =B_{k, \chi} \quad \text { by }(2) .
\end{aligned}
$$

Returning to the χ-Bernoulli number definition

$$
\sum_{k \geq 0} B_{k, \chi} \frac{t^{k}}{k!}=\sum_{a=0}^{N-1} \chi(a) \frac{t e^{a t}}{e^{N t}-1}
$$

note that when χ is trivial, so that $N=1$, this is not the same thing as summing over a from 1 to N : the previous display has $t /\left(e^{t}-1\right)$ on the right side, whereas the other way would be $t e^{t} /\left(e^{t}-1\right)$. These are exactly the two definitions of the basic Bernoulli numbers, which is to say that by our definitions $B_{1}=-1 / 2$ but $B_{1,1}=1 / 2$.

Assuming that χ is nontrivial, so that $N>1$ and $\chi(0)=0$, replace t by $-t$ in the right side of the previous display to get

$$
-\sum_{a=1}^{N-1} \chi(a) \frac{t e^{-a t}}{e^{-N t}-1}=\operatorname{sgn}(\chi) \sum_{a=1}^{N-1} \chi(N-a) \frac{t e^{(N-a) t}}{e^{N t}-1}=\operatorname{sgn}(\chi) \sum_{a=1}^{N} \chi(a) \frac{t e^{a t}}{e^{N t}-1}
$$

This shows that if χ is even then all $B_{k, \chi}$ for odd k are zero, and if χ is odd then all $B_{k, \chi}$ for even k are zero.

The χ-Bernoulli numbers can be computed iteratively in the same fashion as the basic Bernoulli numbers. Indeed, the relation

$$
\sum_{k \geq 0} B_{k, \chi} \frac{t^{k}}{k!}=\sum_{a=0}^{N-1} \chi(a) \frac{t e^{a t}}{e^{N t}-1}
$$

is, multiplying through by the denominator of the right side,

$$
\sum_{j \geq 1} N^{j} \frac{t^{j}}{j!} \sum_{k \geq 0} B_{k, \chi} \frac{t^{k}}{k!}=\sum_{a=0}^{N-1} \chi(a) \sum_{n \geq 0} a^{n} \frac{t^{n+1}}{n!}
$$

or

$$
\sum_{n \geq 1} \sum_{k=0}^{n-1}\binom{n}{k} N^{n-k} B_{k, \chi} \frac{t^{n}}{n!}=\sum_{n \geq 1} n \sum_{a=0}^{N-1} \chi(a) a^{n-1} \frac{t^{n}}{n!}
$$

so that

$$
\sum_{k=0}^{n-1}\binom{n}{k} N^{n-k} B_{k, \chi}=n \sum_{a=0}^{N-1} \chi(a) a^{n-1}, \quad n=1,2,3, \ldots
$$

(If $\chi=1$ then this is $\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=n \cdot 0^{n-1}$ and the right side is 1 for $n=1$ and otherwise 0.) Assuming that χ is nontrivial, the previous display with $n=1$ gives $N B_{0, \chi}=\sum_{a} \chi(a) a^{0}=0$ so that

$$
B_{0, \chi}=0 \quad(\chi \text { nontrivial })
$$

and then $n=2$ gives $N^{2} B_{0, \chi}+2 N B_{1, \chi}=2 \sum_{a} \chi(a) a$ so that

$$
B_{1, \chi}=\frac{1}{N} \sum_{a=0}^{N-1} \chi(a) a \quad(\chi \text { nontrivial })
$$

We will use this formula at the end of this writeup.

3. Hurwitz zeta function and its continuation

For any positive real number r,

$$
\Gamma(s) r^{-s}=\int_{t=0}^{\infty} e^{-r t} t^{s} \frac{\mathrm{~d} t}{t}, \quad \operatorname{Re}(s)>1
$$

and so, with the Hurwitz zeta function, defined as

$$
\zeta(s, b)=\sum_{n \geq 0}(n+b)^{-s}, \quad \operatorname{Re}(s)>1,0<b \leq 1
$$

we have

$$
\begin{aligned}
\Gamma(s) \zeta(s, b) & =\sum_{n \geq 0} \int_{t=0}^{\infty} e^{-(n+b) t} t^{s} \frac{\mathrm{~d} t}{t}=\int_{t=0}^{\infty} \sum_{n \geq 0} e^{-n t} e^{-b t} t^{s} \frac{\mathrm{~d} t}{t} \\
& =\int_{t=0}^{\infty} \frac{e^{-b t}}{1-e^{-t}} t^{s} \frac{\mathrm{~d} t}{t}=\int_{t=0}^{\infty} \frac{t e^{(1-b) t}}{e^{t}-1} t^{s-2} \mathrm{~d} t
\end{aligned}
$$

It follows that for $0<\varepsilon<1$ and H_{ε} the Hankel contour,

$$
\zeta(s, b)=\frac{1}{\Gamma(s)\left(e^{2 \pi i s}-1\right)} \int_{H_{\varepsilon}} \frac{z e^{(1-b) z}}{e^{z}-1} z^{s-2} \mathrm{~d} z, \quad \operatorname{Re}(s)>1
$$

The equality just given extends $\zeta(s, b)$ meromorphically to \mathbb{C}.
At $s=1-k$ for $k=1,2,3, \ldots$ we have $\Gamma(s)\left(e^{2 \pi i s}-1\right)=2 \pi i(-1)^{k-1} /(k-1)$!, and so

$$
\begin{aligned}
\zeta(1-k, b) & =(-1)^{k-1}(k-1)!\frac{1}{2 \pi i} \int_{H_{\varepsilon}} \frac{z e^{(1-b) z}}{e^{z}-1} z^{-k-1} \mathrm{~d} z \\
& =(-1)^{k-1}(k-1)!\operatorname{Res}_{z=0}\left(\frac{z e^{(1-b) z}}{e^{z}-1} z^{-k-1}\right), \quad k=1,2,3, \ldots
\end{aligned}
$$

And because

$$
\frac{z e^{(1-b) z}}{e^{z}-1} z^{-k-1}=\sum_{\ell \geq 0} \mathbb{B}_{\ell}(1-b) \frac{z^{\ell-k-1}}{\ell!}
$$

the residue is $\mathbb{B}_{k}(1-b) / k!$. Thus

$$
\zeta(1-k, b)=\frac{(-1)^{k-1}}{k} \mathbb{B}_{k}(1-b), \quad k=1,2,3, \ldots
$$

4. Dirichlet L at nonpositive integers

Let χ be a Dirichlet character. We evaluate $L(\chi, 1-k)$ for $k=1,2,3, \ldots$ The Dirichlet L-function is a weighted average of Hurwitz zeta function values,

$$
L(\chi, s)=\sum_{a=1}^{N} \chi(a) N^{-s} \zeta(s, a / N)
$$

and this determines $L(\chi, 1-k)$ to be essentially $B_{k, \chi}$,

$$
\begin{aligned}
L(\chi, 1-k) & =\frac{(-1)^{k-1}}{k} \sum_{a=1}^{N} \chi(a) N^{k-1} \mathbb{B}_{k}(1-a / N) \\
& \left.=\frac{(-1)^{k-1} \operatorname{sgn}(\chi)}{k} \sum_{a=0}^{N-1} \chi(a) N^{k-1} \mathbb{B}_{k}(a / N) \quad \text { (replacing } a \text { with } N-a\right) \\
& =\frac{(-1)^{k-1} \operatorname{sgn}(\chi) B_{k, \chi}}{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

If χ is even then $B_{k, \chi}=0$ for odd k (except for the special case $\left.(\chi, k)=(1,1)\right)$ and so $(-1)^{k-1} \operatorname{sgn}(\chi) B_{k, \chi}=-B_{k, \chi}$, and if χ is odd then $B_{k, \chi}=0$ for even k and again $(-1)^{k-1} \operatorname{sgn}(\chi) B_{k, \chi}=-B_{k, \chi}$. So finally,

$$
L(\chi, 1-k)=-\frac{B_{k, \chi}}{k}, \quad k=1,2,3, \ldots \quad(\text { excluding }(\chi, k)=(1,1))
$$

In the special case $(\chi, k)=(1,1)$,

$$
\zeta(0)=-\frac{1}{2} .
$$

The boxed equality subsumes this if we take $B_{1}=1 / 2$.

5. Odd quadratic case

Let $\chi=\bar{\chi}$ be an odd quadratic character of conductor N. We have learned that its Gauss sum $\tau(\chi)$ is $i N^{1 / 2}$. Suppose that $s \sim 0$. Then $\Gamma(s) \sim 1 / s$ and $\cos (\pi(s-1) / 2) \sim \pi s / 2$, and so from our writeup on continuations and functional equations,

$$
L(\chi, 1-s)=\frac{2 i}{\tau(\chi)}\left(\frac{2 \pi}{N}\right)^{-s} \Gamma(s) \cos \left(\frac{\pi(s-1)}{2}\right) L(\chi, s) \sim \frac{2}{N^{1 / 2}} \frac{1}{s} \frac{\pi s}{2} L(\chi, s)
$$

This and then the previous boxed formula with $k=1$ give

$$
L(\chi, 1)=\frac{\pi}{N^{1 / 2}} L(\chi, 0)=-\frac{\pi}{N^{1 / 2}} B_{1, \chi}
$$

which is to say, by the computation of $B_{1, \chi}$ earlier in this writeup,

$$
L(\chi, 1)=-\frac{\pi}{N^{3 / 2}} \sum_{a=0}^{N-1} \chi(a) a, \quad \chi \text { odd quadratic. }
$$

Later in the semester we will see that this L-value plays an important role in the theory of imaginary quadratic fields.

