NONVANISHING OF DIRICHLET L-FUNCTIONS AT $s=1$

In the proof of Dirichlet's theorem on arithmetic progressions, after the various sums and products are unwound, and after what amounts to a simple piece of Fourier analysis, the crucial fact is that for any nontrivial Dirichlet character χ,

$$
L(\chi, s) \neq 0 \quad \text { at } s=1
$$

The fact can be proved in various ways. For example, our handout on Dirichlet's theorem made use of cyclotomic arithmetic. Here we give, with some motivation, a more direct elementary argument, which admittedly is a bit ad hoc.

Contents

1. The argument when χ^{2} is nontrivial 1
2. The argument when χ^{2} is trivial 2
3. Landau's lemma 3

1. The argument when χ^{2} is nontrivial

For any $s \in \mathbb{C}$ such that $\operatorname{Re}(s)>1$,

$$
\begin{aligned}
L(\chi, s) & =\exp \log L(\chi, s)=\exp \log \prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1} \\
& =\exp \sum_{p \in \mathcal{P}} \log \left(1-\chi(p) p^{-s}\right)^{-1}=\exp \sum_{p \in \mathcal{P}} \sum_{n \in \mathbb{Z}^{+}} \frac{\chi(p)^{n}}{n p^{n s}} .
\end{aligned}
$$

Because in general $|\exp (z)|=\exp (\operatorname{Re}(z))$, it follows that for real $s>1$,

$$
|L(\chi, s)|=\exp \sum_{p, n} \frac{\cos \left(n \theta_{p}\right)}{n p^{n s}} \quad \text { where } \chi(p)=e^{i \theta_{p}}
$$

The cosines in the sum could well be positive or negative. However, modifying the calculation makes the summands nonnegative,

$$
\begin{aligned}
\zeta(s) L(\chi, s) & =\exp \log \left(\prod_{p}\left(1-p^{-s}\right)^{-1}\left(1-\chi(p) p^{-s}\right)^{-1}\right) \\
& =\exp \sum_{p \in \mathcal{P}} \log \left(1-p^{-s}\right)^{-1}+\log \left(1-\chi(p) p^{-s}\right)^{-1} \\
& =\exp \sum_{p \in \mathcal{P}} \sum_{n \in \mathbb{Z}^{+}} \frac{1+\chi(p)^{n}}{n p^{n s}}, \quad s>1
\end{aligned}
$$

so that

$$
|\zeta(s) L(\chi, s)|=\exp \sum_{p, n} \frac{1+\cos \left(n \theta_{p}\right)}{n p^{n s}}, \quad s>1
$$

Now the summands are nonnegative, and thus

$$
|\zeta(s) L(\chi, s)| \geq 1, \quad s>1
$$

This doesn't give $L(\chi, 1) \neq 0$, though, because ζ has a simple pole at $s=1$, and so the previous display shows only that $L(\chi, s)$ either is nonzero at $s=1$ or has a simple zero at $s=1$. Because a zero would force $\zeta(s) L(\chi, s)^{2}$ to vanish at $s=1$, the next step is to study

$$
\left|\zeta(s) L(\chi, s)^{2}\right|=\exp \sum_{p, n} \frac{1+2 \cos \left(n \theta_{p}\right)}{n p^{n s}}, \quad s>1
$$

but now we are back to a scenario where the terms of the sum need not be positive. To address this, the expression $1+2 \cos \left(n \theta_{p}\right)$ can be augmented to a square by adding $\cos ^{2}\left(n \theta_{p}\right)$. Thus, consider

$$
L\left(\chi^{2}, s\right)=\exp \sum_{p, n} \frac{\left(\chi(p)^{n}\right)^{2}}{n p^{n s}}
$$

so that, because $\chi(p)^{n}=\cos \left(n \theta_{p}\right)+i \sin \left(n \theta_{p}\right)$, and hence $\left(\chi(p)^{n}\right)^{2}$ has real part $\cos ^{2}\left(n \theta_{p}\right)-\sin ^{2}\left(n \theta_{p}\right)=2 \cos ^{2}\left(n \theta_{p}\right)-1$,

$$
\left|L\left(\chi^{2}, s\right)\right|=\exp \sum_{p, n} \frac{2 \cos ^{2}\left(n \theta_{p}\right)-1}{n p^{n s}}, \quad s>1
$$

Thus, more generally,

$$
\left|\zeta(s)^{a} L(\chi, s)^{b} L\left(\chi^{2}, s\right)^{c}\right|=\exp \sum_{p, n} \frac{a-c+b \cos \left(n \theta_{p}\right)+2 c \cos ^{2}\left(n \theta_{p}\right)}{n p^{n s}}, \quad s>1
$$

Specialize to $(a, b, c)=(3,4,1)$ to get

$$
\begin{aligned}
\left|\zeta(s)^{3} L(\chi, s)^{4} L\left(\chi^{2}, s\right)\right| & =\exp \sum_{p, n} \frac{2+4 \cos \left(n \theta_{p}\right)+2 \cos ^{2}\left(n \theta_{p}\right)}{n p^{n s}} \\
& =\exp \sum_{p, n} \frac{2\left(1+\cos \left(n \theta_{p}\right)\right)^{2}}{n p^{n s}} \geq 1, \quad s>1
\end{aligned}
$$

so that

$$
\zeta(s)^{3} L(\chi, s)^{4} L\left(\chi^{2}, s\right) \quad \text { does not go to } 0 \text { as } s \rightarrow 1^{+} .
$$

But $\zeta(s)^{3}$ has a pole of order 3 at $s=1$, and assuming that χ^{2} is not the trivial character, $L\left(\chi^{2}, s\right)$ does not have a pole at $s=1$. So the previous display shows that $L(\chi, s)$ can't have a zero at $s=1$ if χ^{2} is nontrivial.

2. The argument when χ^{2} is trivial

The case where χ^{2} is trivial needs to be handled separately. Here we have

$$
\zeta(s) L(\chi, s)=\exp \sum_{p, n} \frac{1+\chi(p)^{n}}{n p^{n s}}, \quad \operatorname{Re}(s)>1
$$

The sum in the previous display is a Dirichlet series $D(s)$ with nonnegative coefficients,

$$
D(s)=\sum_{m \in \mathbb{Z}^{+}} \frac{a_{m}}{m^{s}}, \quad a_{m}= \begin{cases}\left(1+\chi(p)^{n}\right) / n & \text { if } m=p^{n} \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that $L(\chi, 1)=0$. Then consequently:

- The function $\zeta(s) L(\chi, s)$ is analytic on $\{\operatorname{Re}(s)>0\}$.
- The Dirichlet series $D(s)$ converges on $\operatorname{Re}(s)>1$ to a function $g(s)$ such that $\exp g(s)=\zeta(s) L(\chi, s)$. Landau's lemma, below, says that consequently $\exp D(s)=\zeta(s) L(\chi, s)$ for $s \in(0,1)$.
- However, when n is even, $\chi(p)^{n}=1$, and so for real $s>1 / 2$,

$$
D(s) \geq \sum_{p, n} \frac{2}{2 n p^{2 n s}}=\sum_{p, n} \frac{1}{n p^{2 n s}}=\log \zeta(2 s)
$$

Thus $D(s) \rightarrow \infty$ as $s \rightarrow 1 / 2^{+}$.
The third bullet contradicts the second, so the supposition $L(\chi, 1)=0$ is untenable.

3. LANDAU's LEmma

Proposition 3.1 (Weak version of Landau's lemma). Suppose that a Dirichlet series with nonnegative coefficients,

$$
D(s)=\sum_{n \geq 1} a_{n} n^{-s}, \quad a_{n} \geq 0 \text { for all } n
$$

converges to an analytic function $f(s)$ on the open right half plane $\left\{\operatorname{Re}(s)>\sigma_{o}\right\}$. Suppose that for some $\varepsilon>0$, the function $f(s)$ extends analytically to the larger open right half plane $\left\{\operatorname{Re}(s)>\sigma_{o}-\varepsilon\right\}$. Then the Dirichlet series $D(s)$ converges to $f(s)$ on the x-axis portion of the larger right half plane, i.e., $D(\sigma)=f(\sigma)$ for all $\sigma \in\left(\sigma_{o}-\varepsilon, \sigma_{o}\right)$.

Proof. By way of quick review, recall the basic definition

$$
a^{z}=e^{z \log a}, \quad a \in \mathbb{R}^{+}, \quad z \in \mathbb{C}
$$

so that the derivatives of a^{z} are

$$
\left(a^{z}\right)^{(k)}=(\log a)^{k} a^{z}, \quad a \in \mathbb{R}^{+}, z \in \mathbb{C}, k \in \mathbb{Z}_{\geq 0}
$$

Thus the power series expansion of a^{z} about $z=0$ is

$$
a^{z}=\sum_{k \geq 0} \frac{(\log a)^{k}}{k!} z^{k}, \quad a \in \mathbb{R}^{+}, z \in \mathbb{C}
$$

Note that this is a small variant of the familiar series of e^{z}. We will refer back to this expansion later in the argument.

Returning to Landau's lemma, we may translate the problem and take $\sigma_{o}=0$. The translation leaves the Dirichlet series coefficients nonnegative. The function $f(s)$ is analytic on $B(1,1+\varepsilon)$. Thus for any $\sigma \in(-\varepsilon, 0)$ the power series representation of $f(s)$ about $s=1$ converges at σ to $f(\sigma)$,

$$
f(\sigma)=\sum_{k \geq 0} \frac{f^{(k)}(1)}{k!}(\sigma-1)^{k}=\sum_{k \geq 0} \frac{(-1)^{k} f^{(k)}(1)}{k!}(1-\sigma)^{k}, \quad-\varepsilon<\sigma<0
$$

Because the Dirichlet series $D(s)=\sum_{n \geq 1} a_{n} n^{-s}$ converges to $f(s)$ about $s=1$, compute the summand-numerator $(-1)^{k} f^{(k)}(1)$ at the end of the previous display by differentiating $D(s)$ termwise,

$$
(-1)^{k} f^{(k)}(1)=\left.(-1)^{k} \sum_{n \geq 1} a_{n}(-\log n)^{k} n^{-s}\right|_{s=1}=\sum_{n \geq 1} \frac{a_{n}(\log n)^{k}}{n}
$$

Thus the penultimate display is now

$$
f(\sigma)=\sum_{k \geq 0} \sum_{n \geq 1} \frac{a_{n}(\log n)^{k}}{k!n}(1-\sigma)^{k}, \quad-\varepsilon<\sigma<0 .
$$

All of the terms are nonnegative, so we may rearrange the sum,

$$
f(\sigma)=\sum_{n \geq 1} \frac{a_{n}}{n} \sum_{k \geq 0} \frac{(\log n)^{k}}{k!}(1-\sigma)^{k}, \quad-\varepsilon<\sigma<0
$$

As explained at the beginning of the proof, the inner sum is the power series expansion of n^{s} about 0 at $s=1-\sigma$. Thus

$$
f(\sigma)=\sum_{n \geq 1} \frac{a_{n}}{n} n^{1-\sigma}=\sum_{n \geq 1} a_{n} n^{-\sigma}=D(\sigma), \quad-\varepsilon<\sigma<0 .
$$

This is the desired result.

