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Let

ω = ζ3 = e2πi/3 =
−1 +

√
−3

2
.

The subjects of this lecture are the arithmetic of the ring

D = Z[ω]

and the cubic reciprocity law.
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1. D is the full integer ring

Consider the field

F = Q(ω) = Q[ω],

the second equality holding because for nonzero a, b ∈ Q, the multiplicative inverse
of a+ bω is (a+ bω2)/(a2 − ab+ b2); here the denominator cannot be 0 because it
is (a− b/2)2 + 3(b/2)2 = 1

4 ((2a− b)2 + 3b2).
The ring D lies in the field F . Each element of D is an algebraic integer, because

such an element a+bω with a, b ∈ Z satisfies the monic polynomial x2− (2a−b)x+
(a2−ab+b2) whose coefficients lie in Z because its coefficients a and b do. We show
that conversely, every algebraic integer in F lies in D, so that D = F ∩Z. That is,
we show that for a, b ∈ Q, if 2a − b and a2 − ab + b2 lie in Z then so do a, b. The
conditions are 2a − b ∈ Z and (2a − b)2 + 3b2 ∈ 4Z. Immediately, 3b2 ∈ Z, from
which b ∈ Z. If b is even then 3b2 ≡4 0 and so the condition (2a − b)2 + 3b2 ∈ 4Z
makes 2a−b even, making 2a an even integer and so a ∈ Z. If b is odd then 3b2 ≡4 3
and so the condition (2a − b)2 + 3b2 ∈ 4Z makes 2a − b odd, again making 2a an
even integer and so again a ∈ Z. This completes the argument.

1
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2. Unique factorization

The ring D is Euclidean with norm function

N : D −→ Z≥0, Nz = zz, N(a+ bω) = a2 − ab+ b2.

Hence D is a PID and consequently a UFD. That is, every nonzero z ∈ D takes
the form

z = u

g∏
i=1

πeii , u ∈ D×, each πi irreducible, each ei ∈ Z+,

and if also z = ũ
∏g̃
i=1 π̃

ẽi
i then g̃ = g and after indexing we may take each π̃i = uiπi

with ui ∈ D× (that is, π̃i and πi are associate) and ẽi = ei.

3. Units

Only 0D has norm 0. For any u ∈ D, because the norm is multiplicative we have
the equivalence

u ∈ D× ⇐⇒ Nu = 1.

Indeed, =⇒ is immediate because if uv = 1 inD thenNuNv = N(uv) = N(1) = 1
in Z≥1; ⇐= is also immediate because if uu = 1 then u has inverse u. Here and
throughout we use the fact that beyond being a ring, D is closed under complex
conjugation. The equivalence shows that

D× = {±1,±ω,±ω2} = 〈ζ6〉.

Structurally, D× ∼= Z/6Z, with generators ζ6 = −ω2 and ζ−16 = −ω.

4. Irreducibles (nonzero primes)

Let π ∈ D be irreducible. Then π | ππ = Nπ ∈ Z>1. Thus (because π is prime)
π | p for at least one rational prime p. If also π | q for a different rational prime q
then consequently π | 1, a false statement. So in fact

π | p for a unique rational prime p.

The result just displayed can also be established by working with ideals, as follows.
Because πD is a prime ideal of D, πD ∩ Z is a prime ideal of Z, nonzero because
it contains ππ. Thus πD ∩ Z = pZ for some rational prime p. Because pZ ⊂ πD,
also pD ⊂ πD, showing that π | p. If also π | q for a different rational prime q then
consequently qD ⊂ πD and thus 1 ∈ πD, leading to the false statement that π is a
unit.

If π | q then π | q = q, showing that q = p. Thus Nπ = ππ is a power of p. Let
the letter f denote the relevant power. That is, define f by the formula

Nπ = pf .

5. Factorization of rational primes

Because each irreducible π is a factor of a unique rational prime p, the question
now is how rational primes factor in D. The factorization of any rational prime p
is

p = u

g∏
i=1

πeii , u ∈ D×, Nπi = pfi for each i.
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It follows that

p2 = Np = N

(
u

g∏
i=1

πeii

)
= 1 ·

g∏
i=1

(pfi)ei =

g∏
i=1

peifi = p
∑g
i=1 eifi .

Therefore, the positive integers ei, fi, and g satisfy the relation
g∑
i=1

eifi = 2.

There are three possibilities.

• p splits: g = 2, e1 = f1 = 1, e2 = f2 = 1. Here we have p = uπ1π2 where
Nπ1 = Nπ2 = p, so that in fact

p = ππ and π, π are nonassociate.

• p is inert: g = 1, e = 1, f = 2. Here we have p = uπ where Nπ = p2, so
that

p is irreducible in D.

• p ramifies: g = 1, e = 2, f = 1. Here we have p = uπ2 where Nπ = p, so
that

p = ππ and π, π are associate.

Note that in the first possibility, e1 = e2, and so we may as well just call it e, and
similarly for f . So in all three cases the formula

∑g
i=1 eifi = 2 simplifies to

efg = 2.

A prime p splits when g = 2, is inert when f = 2, and ramifies when e = 2.
The next question is: Which rational primes p split, which are inert, and which

ramify?

• The prime p = 3 ramifies. Specifically, recalling that ω = ζ3 = e2πi/3 ∈ D×,

3 = −ω2λ2 where λ = 1− ω .

This was a homework problem. To see where the factorization comes from,
set X = 1 in the relation X2 +X + 1 = (X − ω2)(X − ω) to get

3 = (1− ω2)(1− ω) = (1 + ω)(1− ω)2 = −ω2λ2.

• The prime p = 3 is the only prime that ramifies. If p ramifies then p = ππ
with π ∈ D×π. After replacing π by ωπ or ω2π if necessary, we may assume
that π = ±π (i.e., π = ±ωjπ =⇒ ω2jπ = ωj · ±ωjπ = ±ω2jπ), and hence
π2 = ±p. Let π = a+ bω (with b 6= 0), so that π2 = (a2− b2) + (2ab− b2)ω.
Because π2 = ±p and b 6= 0, necessarily b = 2a. Thus Nπ = a2 − ab + b2

equals 3a2. Consequently p = 3, and furthermore π = ±(1+2ω) = ±ω(ω2+
2) = ±ω(1− ω) = ±ωλ.

• If p = 1 mod 3 then p splits. Indeed, the character group F̂×p contains an
element χ of order 3. Note that χ(F×p ) ⊂ D×. Let π = J(χ, χ) ∈ D. By
the table of Jacobi sum values, Nπ = p. So p is not inert. Nor does it
ramify, so the remaining possibility is that it splits.
• If p = 2 mod 3 then p is inert. We show this by contraposition. If p is not

inert then p = Nπ for some π, i.e., p = a2 − ab + b2 for some a and b. So
4p = (2a− b)2 + 3b2 for some a and b, so that p is a square modulo 3. Thus
p 6= 2 mod 3. Note:
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From now on we use the symbol q to denote a 2 mod 3 prime.

In sum, we have shown that the Legendre symbol (p/3) describes factorization in D:
p splits, is inert, or ramifies as (p/3) equals 1, −1, or 0. Equivalently, by the laws
of quadratic reciprocity,

p splits ⇐⇒ (−3/p) = 1

p is inert ⇐⇒ (−3/p) = −1

p ramifies ⇐⇒ (−3/p) = 0.

6. Factorization via ideals

To see again how a rational prime p decomposes in D, consider the quotient
ring D/pD. Because D = Z[ω] and the polynomial of ω is X2 +X + 1, we have

D/pD ≈ Z[X]/〈p,X2 +X + 1〉 ≈ Fp[X]/〈X2 +X + 1〉.
The polynomial X2 + X + 1 has discriminant −3. For odd primes p = 2 mod 3
the Legendre symbol (−3/p) = (3∗/p) = (p/3) is −1, and so the polynomial is
irreducible modulo p. Also the polynomial is irreducible modulo 2. Thus D/pD is
a field of order p2 for all primes p = 2 mod 3, showing that such p remain prime
in D.

For primes p = 1 mod 3, the Legendre symbol (−3/p) is 1, and so the polynomial
factors as X2 +X+ 1 = (X−α)(X−β) modulo p with α and β distinct modulo p.
Thus

Fp[X]/〈X2 +X + 1〉 ≈ Fp[X]/〈X − α〉 × Fp[X]/〈X − β〉, p = 1 mod 3.

Here it is relevant that α and β are distinct modulo p, so that the sum 〈X − α〉+
〈X − β〉 contains α − β, which is invertible in Fp, making the sum all of Fp[X].
The previous display shows that D/pD is not a field but rather is the product
of two fields of order p, and hence p decomposes. The surjection from D/pD
to Fp[X]/〈X−α〉 gives an isomorphism D/〈p, ω−α〉 ≈ Fp[X]/〈X−α〉 and similarly
for β, and so

D/pD ≈ D/〈p, ω − α〉 ×D/〈p, ω − β〉, p = 1 mod 3.

By the Sun Ze theorem, 〈p〉 factors as the product of 〈p, ω − α〉 and 〈p, ω − α〉.
For p = 3, the Legendre symbol (−3/p) is 0 and the polynomial factors as

X2 +X + 1 = (X − 1)2 modulo 3. Thus

Fp[X]/〈X2 +X + 1〉 = Fp[X]/〈(X − 1)2〉, p = 3.

Here we get 〈3〉 = 〈3, ω − 1〉2 = 〈λ〉2 in D, as before.

7. Canonical representative of each associate class

Each irreducible in D is one of six associates. We now specify one associate from
each class of six.

As before, we specify λ = 1− ω among the irreducibles that divide 3.
For any rational prime p 6= 3, each divisor π of p has a so-called primary

associate, meaning the associate π′ such that

π′ = 2 mod 3.

That is,
π′ = a+ bω, a = 2 mod 3, b = 0 mod 3.



MATH 361: NUMBER THEORY — TWELFTH LECTURE 5

Indeed, if π divides a rational prime q = 2 mod 3 then its primary associate is
simply q. Otherwise, π divides a rational prime p = 1 mod 3 and Nπ = p. To show
that the prime π = a+ bω has a unique primary associate, note that altogether its
associates are

±(a+ bω), ±(b+ (b− a)ω), ±((a− b) + aω).

The relation a2− ab+ b2 = p = 1 mod 3 says that not both of a and b are 0 mod 3,
and also that ab 6= −1 mod 3. If a = 0 mod 3 then one of the third pair in the
previous display is primary, and no other; if b = 0 mod 3 then one of the first pair
is primary, and no other; if ab = 1 mod 3 then one of the second pair is primary,
and no other.

Given a rational prime p = 1 mod 3, to find a primary prime π lying over p,
proceed as follows. We know that π = a+ bω where a = 2 mod 3 and b = 0 mod 3,
and we want to find a and b. Because p = Nπ = a2 − ab + b2, it follows that
4p = (2a− b)2 + 3b2. The procedure is to find A and B such that 4p = A2 + 27B2

and A = 1 mod 3 (note that A and B must have the same parity; also note that we
have two choices for B, leading to the two primary primes π and π lying over p) and
then set b = 3B. Note that b has the same parity as A. Finally, set a = (A+ b)/2,
which is 2 mod 3 because 2a = A+b = 1 mod 3. All of this is exactly the procedure
described in Gauss’s Theorem about the solution-count of the equation x3 +y3 = 1
modulo p. Repeating,

4p = A2 + 27B2, with A = 1 mod 3 and two choices of B,

b = 3B and then a =
A+ b

2
, producing two pairs (a, b).

For example, let p = 103, so that 4p = 412. The values 27B2 through 412 are
27, 108, 243, and 412 − 27 = 385 and 412 − 108 = 304 are nonsquares. But 412 −
243 = 169, so we have A = 13 and B = ±3. Thus b = ±9 and then a = (A+ b)/2 is
correspondingly 11 or 2. Thus the primary primes lying over p = 103 are {π, π} =
{11 + 9ω, 2 − 9ω}. These are visibly primary, and it is easy to check that their
product is 103.

8. The residue field D/πD

For each irreducible π ∈ D, the ideal πD is maximal, and so the quotient ring
D/πD is a field. The fact that πD is maximal follows from π being irreducible
because for any ideal gD of D,

πD ⊂ gD =⇒ g | π =⇒ g ∼ π or g ∈ D× =⇒ gD = πD or gD = D.

The fact that the quotient of a commutative ring with 1 by a maximal ideal yields a
field is a basic fact of algebra, essentially a rephrasing of the definition of maximal
ideal. Indeed, let R be such a ring and let M be a maximal ideal of R; if a+M 6= M
in R/M then (a,M) = R, so ar + m = 1 for some r ∈ R and m ∈ M , and thus
(a+M)(r +M) = 1 +M , i.e., a+M is invertible in R/M .

Also, we can show that D/πD is a field by using the special circumstance of the
Euclidean property of D: If z ∈ D − πD then (z, π) = 1, and so xz + yπ = 1 for
some x, y ∈ D, showing that xz = 1 mod π.

Recall that πD ∩ Z = pZ where π | p. It follows that the composition

Z −→ D −→ D/πD
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induces an injection

Z/pZ ↪→ D/πD.

We view the injection as a containment, i.e., we identify Z/pZ with its image
in D/πD.

Now assume that π is primary.

• If π = q = 2 mod 3 then

D/qD ∼= {x+ yω : x, y ∈ {0, . . . , q − 1}}

and so

|D/πD| = |D/qD| = q2 = Nq = Nπ.

• If π = λ = 1 − ω then for any x, y ∈ Z, x + yω ≡λ x + y ≡λ x + y mod 3,
and so we have an injection

D/λD ↪→ Z/3Z.

Along with the opposite injection from before, this shows that

D/λD ∼= Z/3Z

and so

|D/λD| = |Z/3Z| = 3 = Nλ.

• If π | p where p = 1 mod 3 then π = a + bω with p = a2 − ab + b2. Note
that p - b, because otherwise the previous equality shows that also p | a
and then p | a+ bω = π, contradicting the fact that p splits in D. Because
p - b, there exists c ∈ Z such that cb = 1 mod p, and so ω ≡π cbω. Because
π = a + bω, this gives ω ≡π −ca, and thus π = a + bω ≡π a(1 − bc) ∈ Z.
We may further translate a(1 − bc) freely by multiples of p, so that as in
the ramified case, D/πD ↪→ Z/pZ and thus

D/πD ∼= Z/pZ

and

|D/πD| = |Z/pZ| = p = Nπ.

The second and third bullets just above can be gathered into a single argument,
as follows. In both cases, p = ππ′ where π and π′ are nonassociate, and so if we
believe that the Sun Ze theorem works for D as it works for Z then

D/pD ∼= D/πD ×D/π′D.

Because |D/pD| = p2 and D/πD and D/π′D are nontrivial, |D/πD| = p. Regard-
less of which argument is used, the results gather together to give

|D/πD| = Nπ = pf in all cases.

The formula
∑g
i=1 eifi = 2 shows that for any rational prime p, the decomposition

(the number g of nonassociate irreducible factors of p), the ramification (the powers
ei of the factors in the factorization of p), and the inertia (the dimension of D/πD
over Z/pZ) always sum to 2, the dimension of Q(ω) as a vector space over Q.
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9. The cubic character

Continuing to work in D, let π be a primary prime, π 6= λ. (Recall that λ = 1−ω
divides 3.) We want a cubic character modulo π,

χπ : (D/πD)× −→ {1, ω, ω2},
akin to the quadratic character (·/p) : (Z/pZ)× −→ {±1}.

To define χπ, first note that (D/πD)× is cyclic of order Nπ−1. If π | p where p =
1 mod 3 thenNπ = p = 1 mod 3, while if π = q = 2 mod 3 thenNπ = q2 = 1 mod 3.
Thus Nπ = 1 mod 3 in all cases. Consequently 3 | |(D/πD)×|, and so (D/πD)×

contains three cube roots of unity. Specifically, they are {1, g(Nπ−1)/3, g2(Nπ−1)/3}
where g generates (D/πD)×. Next we establish that:

These three cube roots of unity are {1 + πD,ω + πD,ω2 + πD}.
Because each of 1, ω, ω2 cubes to 1 in D, certainly the three elements in the display
cube to 1 in D/πD. What needs to be shown is that they are distinct. But indeed
they are, because 1−ω = λ and ω−ω2 = ωλ and 1−ω2 = (1 +ω)(1−ω) = −ω2λ
are all associates of λ, and so they are not divisible by π.

For all a ∈ D − πD, the relation

aNπ−1 = 1 mod π

shows that

a(Nπ−1)/3 + πD ∈ {1 + πD,ω + πD,ω2 + πD}.
Now we can define the cubic character.

Definition 9.1. Let π ∈ D be a primary prime, π 6= λ. The cubic character
modulo π is

χπ : (D/πD)× −→ {1, ω, ω2},
defined by the condition

χπ(α) = a(Nπ−1)/3 mod π for any a ∈ D such that α = a+ πD.

The formula for χπ can be rewritten in various ways. For example,

χπ(α) + πD = α(Nπ−1)/3, χπ(α) ∈ {1, ω, ω2},
or

χπ(a+ πD) = a(Nπ−1)/3 mod π, χπ(a+ πD) ∈ {1, ω, ω2}.
In practice, after one has some experience working in this environment, one adopts
notation that is less fussy about distinguishing elements a of D − πD from their
equivalence classes α = a + πD in (D/πD)×. In fact, one often refers to the
composite map

D − πD −→ (D/πD)×
χπ−→ {1, ω, ω2}

as χπ also. This version of χπ is defined by the condition

χπ(a) = a(Nπ−1)/3 mod π, χπ(a) ∈ {1, ω, ω2}.
The various cubic character formulas are all analogous to Euler’s identity

(a/p) = a(p−1)/2 mod p for a ∈ Z such that p - a,

but now the same idea is being used to define the cubic character. Note that
because a ∈ Z here, it is the last version of the cubic character formula that most
closely parallels Euler’s identity.
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For example, take p = 7 = 1 mod 3. To factor p in D, note that the relations
28 = A2 +27B2, A = 1 mod 3 have solutions (A,B) = (1,±1), giving b = 3B = ±3
and then a = (A± b)/2 = 2,−1. Thus

7 = ππ, π = 2 + 3ω, π = −1− 3ω,

and we can confirm the factorization of 7 directly now that we have it. To compute
χπ, note that in D/πD we have the relations 3ω = −2 and 7 = 0, giving ω = −3,
and D/πD ≈ Z/7Z. Because (Z/7Z)× is generated by 3 + 7Z, the character χπ is
entirely determined by the observation that 3(7−1)/3 = 9 = ω2 mod πD. That is,

χπ(3e + 7Z) = ω2e, e = 0, . . . , 5.

One can check that similarly

χπ(3e + 7Z) = ωe, e = 0, . . . , 5.

Thus χπ = χπ on Z − 7Z. However, χπ and χπ are not equal on all of D − πD,
as we can see by computing that χπ(ω) = ω2 while χπ(ω) = ω. Instead, χπ(ω) =

χπ(ω2) = ω4 = ω does match χπ(ω). Part (c) of the next proposition confirms this.

Proposition 9.2 (Properties of the Cubic Character). Let π ∈ D be a primary
prime, π 6= λ. Then

(a) For all a ∈ D − πD,

χπ(a) = 1 ⇐⇒ a is a cube modulo π.

(b) For all a, b ∈ D − πD,

χπ(ab) = χπ(a)χπ(b).

That is, χπ is multiplicative.
(c) For all a ∈ D − πD,

χπ(a) = χπ(a2) = χπ(a).

(d) If π = q = 2 mod 3 then for all a ∈ D − πD,

χπ(a) = χπ(a),

and so in particular, still with π = q = 2 mod 3,

χπ(n) = 1 for all n ∈ Z− qZ.

Proof. (a) First working additively, the kernel of the multiply-by-(Nπ − 1)/3 map
on Z/(Nπ − 1)Z is 〈3 + (Nπ − 1)Z〉. Now multiplicatively, the kernel of the raise-
to-the-(Nπ−1)/3 map on (D/πD)× is 〈g3〉, where g is a generator, and this kernel
consists of the cubes.

(b) For any a, b ∈ D − πD, compute, working modulo π, that

χπ(ab) = (ab)(Nπ−1)/3 = a(Nπ−1)/3b(Nπ−1)/3 = χπ(a)χπ(b).

Because the values at the beginning and the end of the display agree modulo π and
both lie in {1, ω, ω2}, they are truly equal.

(c) For any a ∈ D − πD, compute that

χπ(a) = χπ(a)2 because χπ(a) ∈ {1, ω, ω2}
= χπ(a2) because χπ is a homomorphism.
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Compute also, working modulo π and noting that Nπ = Nπ, that

χπ(α) = α(Nπ−1)/3 = α(Nπ−1)/3 = χπ(α),

and because the values at the beginning and the end of the display agree modulo π
and both lie in {1, ω, ω2}, they are truly equal.

(d) The first part of (d) follows from (c), and the second part of (d) follows from
the first. The second part of (d) is clear anyway because 3 - |(Z/qZ)×| = q− 1, and
so the cubing map is an automorphism of (Z/qZ)×, making each element of (Z/qZ)×

a cube that χπ therefore takes to 1. �

10. Cubic reciprocity

Theorem 10.1 (Cubic Reciprocity). The main law of cubic reciprocity is:

Let π and π′ be primary primes in D, neither of them λ. Assume
that Nπ 6= Nπ′, so that π and π′ lie over different rational primes
p and p′, neither of them 3. Then

χπ(π′) = χπ′(π).

The auxiliary laws of cubic reciprocity are:

χπ(λ) = ω2m where π = 3m− 1 + bω

and

χπ(−1) = 1

and

χπ(ω) =


1 if Nπ = 1 mod 9,

ω if Nπ = 4 mod 9,

ω2 if Nπ = 7 mod 9.

The first auxiliary law is exercises 9.24–9.26 in Ireland and Rosen. The second
auxiliary law holds because −1 is a cube. The third auxiliary law follows from the
definition χπ(ω) = ω(Nπ−1)/3.

The main law here is analogous to the main law of quadratic reciprocity expressed
as (p∗/q) = (q/p). The first auxiliary law is analogous to the formula for the
Legendre symbol (2/p), but now λ is the anomalous prime rather than 2. The
second and third auxiliary laws are analogous to the formula for the Legendre
symbol (−1/p), but now there are six units rather than two.

A review of the proof of quadratic reciprocity will clarify the proof of cubic
reciprocity. Let p and q be distinct odd primes. Recall the square of the Gauss
sum for the quadratic character modulo p,

τ((·/p))2 = p∗ where p∗ = (−1)(p−1)/2p = (−1/p)p.

Compute, working modulo q in Z, that on the one hand,

τ((·/p))q+1 = τ((·/p))2(τ(·/p))2)(q−1)/2 = p∗(p∗)(q−1)/2

= p∗(p∗/q),
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and on the other, still working modulo q in Z, and noting that (·/p)q = (·/p)
because q is odd,

τ((·/p))q+1 = τ((·/p))τ((·/p))q = τ((·/p))
∑
t∈F×p

(q2t/p)qζqtp = τ((·/p))2(q/p)

= p∗(q/p).

So

p∗(p∗/q) = p∗(q/p) mod q in Z,
and therefore

p∗(p∗/q) = p∗(q/p) mod q in Z,
and therefore, because p∗ is invertible modulo q,

(p∗/q) = (q/p) mod q in Z,

and therefore

(p∗/q) = (q/p).

The crucial fact here was τ((·/p))2 = p∗.
To prepare for the proof of cubic reciprocity, we establish an analogous identity.

Let π ∈ D, π 6= λ be a nonrational primary prime, so that Nπ = p = 1 mod 3.
Consider the Jacobi sum

J = J(χπ, χπ) =
τ(χπ)2

τ(χπ)
=

τ(χπ)3

τ(χπ)τ(χπ)
=

τ(χπ)3

χπ(−1)p
=
τ(χπ)3

p
.

Because the Gauss sum has norm p, the Jacobi sum has norm N(J) = p, and so J
is associate to π or to π. To show that J is associate to π, compute that modulo π,

J =

p−1∑
t=1

t(p−1)/3(1− t)(p−1)/3 =

p−1∑
t=1

t(p−1)/3
(p−1)/3∑
j=0

(
(p− 1)/3

j

)
(−t)j

=

(p−1)/3∑
j=0

(
(p− 1)/3

j

)
(−1)j

p−1∑
t=1

t(p−1)/3+j .

Each inner sum at the end of the previous display is a nontrivial character sum
of (Z/pZ)×, showing that J = 0 mod πD, and so J is associate to π. Furthermore,
working modulo 3,

J = pJ = τ(χπ)3 =
∑
t∈F×p

χπ(t)3ζ3tp =
∑
t∈F×p

ζ3tp = −1 = 2.

That is, J is primary. Altogether we have shown that J = π, and so

τ(χπ)3 = pπ.

This is analogous to an earlier result that we can find the square of the quadratic
Gauss sum without too much difficulty, whereas finding the value of the quadratic
Gauss sum itself was considerably harder. We now use the boxed relation to prove
the main law of cubic reciprocity.

Proof. First consider the case where q and q′ are distinct rational primes, both
congruent to 2 modulo 3. Then by Proposition 9.2(d),

χq(q
′) = 1 = χq′(q).
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Next consider the case where π and q are distinct primary primes in D. Thus
π /∈ Z and Nπ = p = 1 mod 3 and the cubic character χπ is defined on (D/πD)× ∼=
(Z/pZ)×, while on the other hand q ∈ Z and q = 2 mod 3. Recall that τ(χπ)3 = pπ.
Compute, working modulo q in Z, that on the one hand,

τ(χπ)q
2+2 = τ(χπ)3(τ(χπ)3)(q

2−1)/3 = pπ(pπ)(q
2−1)/3 = pπχq(pπ)

= pπχq(π),

and on the other, still working modulo q in Z, and noting that χq
2

π = χπ because
q2 = 1 mod 3,

τ(χπ)q
2+2 = τ(χπ)2τ(χπ)q

2

= τ(χπ)2
∑
t∈F×p

χπ(q3t)q
2

ζq
2t
p = τ(χπ)3χπ(q)

= pπχπ(q).

So

pπχq(π) = pπχπ(q) mod q in Z,
and therefore

pπχq(π) = pπχπ(q) mod q in D,

and therefore, because pπ is invertible modulo q in D,

χq(π) = χπ(q) mod q in D,

and therefore

χq(π) = χπ(q).

Finally consider the case where π and π′ are distinct primary primes in D. Thus
Nπ = p with p = 1 mod 3 and similarly for π′. Compute, working modulo π′ in Z,
that on the one hand,

τ(χπ)p
′+2 = τ(χπ)3(τ(χπ)3)(p

′−1)/3 = pπ(pπ)(Nπ
′−1)/3

= pπχπ′(pπ),

and on the other, still working modulo π′ in Z, and noting that χp
′

π = χπ because
p′ = 1 mod 3,

τ(χπ)p
′+2 = τ(χπ)2τ(χπ)p

′
= τ(χπ)2

∑
t∈F×p

χπ(p′
3
t)p
′
ζp
′t
p = τ(χπ)3χπ(p′

2
)

= pπχπ(p′
2
).

So as twice before,

χπ′(pπ) = χπ(p′
2
).

By symmetry, also

χπ′(p
2) = χπ(p′π′).

The product of the previous two left sides is the product of the previous two right
sides, completing the proof of the third case,

χπ′(π) = χπ(π′).

�
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11. Examples

Recall the process to find a primary prime π lying over a given rational prime
p = 1 mod 3: Find A and B such that 4p = A2 + 27B2 and A = 1 mod 3, and then
set b = 3B and finally a = (A+ b)/2. For instance,

43 = ππ, π = −1 + 6ω, π = −7− 6ω, Z/43Z ∼= D/πD,

37 = ρρ, ρ = −4 + 3ω, ρ = −7− 3ω, Z/37Z ∼= D/ρD,

19 = σσ, σ = 5 + 3ω, σ = 2− 3ω, Z/19Z ∼= D/σD,

7 = ττ , τ = 2 + 3ω, τ = −1− 3ω, Z/7Z ∼= D/τD,

103 = νν, ν = 11 + 9ω, ν = 2− 9ω, Z/103Z ∼= D/νD.

So, for example:

• Is 19 a cube modulo 41? Because 41 = 2 mod 3, yes: 3 - 41 − 1 and
so the cubing map is an automorphism of (Z/41Z)×. Alternatively, by
Proposition 9.2(d), χ41(19) = 1.
• Is 19 a cube modulo 43? Because Z/43Z ∼= D/πD, the question is whether
χπ(19) = 1. Compute that

χπ(19) = χπ(σσ) because 19 = σσ

= χπ(σ)χπ(σ) because χπ is a homomorphism

= χσ(π)χσ(π) by cubic reciprocity

= χσ(8)χσ(3) because π = 8 mod σ and π = 3 mod σ

= χσ(3) because 8 is a cube

= χσ(−1)χσ(ω)2χσ(λ)2 because 3 = −ω2λ2 and χσ is a homomorphism.

The auxiliary laws give χσ(−1) = 1 and χσ(ω) = 1 (because Nσ = 19 =
1 mod 9). Also, χσ(λ) = ω2m where σ = 3m− 1 + bω. Because σ = 2− 3ω
we have m = 1 and hence χσ(λ) = ω2. In sum,

χπ(19) = (ω2)2 = ω,

and so 19 is not a cube modulo 43.
We might expect 19 = g3k+1 for some k, where g generates (Z/43Z)×.

Note that |(Z/43Z)×| = 42 = 2 · 3 · 7. Thus, to check whether g = 2 is
a generator it suffices to check 242/2 = 221, 242/3 = 214, and 242/7 = 26

modulo 43. Fast exponentiation modulo 43 gives

(1, 2, 14)→ (1, 4, 7)→ (4, 4, 6)→ (4, 16, 3)

→ (21, 16, 2)→ (21,−2, 1)→ ( 1 ,−2, 0),

so 2 is not a generator. Similarly, g = 3 is a generator. Another fast
modular exponentiation shows that 19 = 319 mod 43, and the exponent 19
is indeed 1 mod 3. One can check that the next generator after 3 is g = 5,
and 19 = 531 and 31 = 1 mod 3, and the next generator is g = 12, and
19 = 1237 and 37 = 1 mod 3. However, the next generator after that is
g = 18, and 19 = 185 mod 43 and 5 = 2 mod 3, so our possible expectation is
wrong. In fact, of the φ(42) = 12 generators g modulo 43, half are such that
19 = g3k+1 mod 43 and the other half are such that 19 = g3k+2 mod 43. In
hindsight, the issue is that we could just as well have used π to determine
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whether 19 is a cube modulo 43, but the value χπ(19) = χπ(19) = ω2

equally suggests that 19 = g3k+2 for generators g until we realize that the
choice of generator matters.
• Is 22 a cube modulo 43? The question is whether χπ(22) = 1. Compute,

using the fact that π | 43 for the second equality and remembering that
χπ(−1) = 1 for the third, that

χπ(22) = χπ(2)χπ(11) = χπ(2)χπ(−32) = χπ(2)6 = 1.

So, yes, 22 is a cube modulo 43. Because 3 is a generator modulo 43, we can
find the cube roots of 22 by using fast modular exponentiation to compute
33, 36, 39, . . . , or we can just conduct an instant computer search. They are
19, 28, and 39.

But the calculation was rather flukish. To proceed conventionally, com-
pute instead that

χπ(22) = χπ(2)χπ(11) = χ2(π)χπ(11)

= χπ(11) because π = −1 + 6ω = 1 mod 2.

But 11 − 2ω2π = 11 + 2ω2 − 12 = −3 − 2ω = −ωτ , so now, quoting an
auxiliary law and reducing π modulo τ at the last step,

χπ(11) = χπ(−ωτ) = χπ(ω)χτ (π) = ω2χτ (−3).

Because −3 = ω2λ2, we thus have, quoting the auxiliary laws,

ω2χτ (−3) = ω2χτ (ω)2χτ (λ)2 = ω2 · ω4 · 12 = 1.

And again the answer is yes.
• Is 37 a cube modulo 103? Recall that 103 = Nν where ν = 11 + 9ω, and

that 37 = ρρ where ρ = −4+3ω and ρ = −7−3ω. The question is whether
χν(37) = 1. Compute first that

χν(37) = χν(ρρ) = χν(ρ)χν(ρ) = χρ(ν)χρ(ν)

This is progress because Nρ = 37 < 103 = Nν. Note that working mod-
ulo ρ,

ν = 11 + 9ω = 11 + 12 = 23 = −14,

so that the first term in the product of character-values is

χρ(ν) = χρ(−1)χρ(2)χρ(7)

= 1 · χ2(ρ)χρ(ττ)

= χ2(ω)χρ(τ)χρ(τ) because ρ = ω mod 2

= ωχτ (ρ)χτ (ρ)

= ωχτ (−6)χτ (−5)

= ωχτ (ω2 · 2 · λ2)χτ (2)

= ωχ2(ττ)(ω2)2(ω2m)2 where 2 = 3m− 1, so m = 1

= ωχ2(7)ω8

= 1.
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Similarly, because ν = 11 + 9ω = 11− 21 = −10 mod ρ, the second term is

χρ(ν) = χρ(−1 · 2 · 5)

= χ2(ρ)χ5(ρ)

= χ2(−1− ω)χ5(−2(1− ω))

= χ2(ω)2χ5(2)χ5(λ)

= ω2 · 1 · ω2m where 5 = 3m− 1, so m = 2

= ω2ω4

= 1.

In sum, yes, 37 is a cube modulo 103. Indeed, 40, 77, and 89 cube to 37
modulo 103. Of these, 40 is particularly easy to check because 403 = 64000.

12. Comment on Ireland and Rosen section 9.6

Our text shows that for any prime p,

p = x2 + 27y2 ⇐⇒ p = 1 mod 3 and (2/p)3 = 1.

This equivalence can be viewed as a mechanism to check whether 2 is a cube
modulo p for any given prime p = 1 mod 3. (If p = 2 mod 3 then cubing is an
automorphism modulo p and so 2 is a cubic residue except when p = 2. And
2 = −1 = (−1)3 mod 3.) However, another perspective is that the equivalence says
what primes p take the form p = x2 + 27y2, and that in some sense the answer
depends only on congruence conditions where the modulus is related to p. The idea
is that any such p equals 1 mod 3, and so it factors in D = Z[ω] as p = ππ with π not
associate to π; the condition (2/p)3 = 1 is (2/π)3 = 1, which in turn is (π/2)3 = 1
by cubic reciprocity, and this last condition depends only on π modulo 2D.

13. Fermat’s last theorem for n = 3

The Descent Principle rephrases the principle of mathematical induction.

Proposition 13.1 (Descent Principle). Suppose that a subset T of Z+ satisfies the
conditions

(a) 1 /∈ T ,
(b) For all n ∈ Z+, n+ 1 ∈ T =⇒ n ∈ T .

Then T = ∅.

Indeed, the complement T c is all of Z+ by the induction principle.

Proposition 13.2 (Fermat’s Last Theorem for n = 3). The equation

(1) x3 + y3 + z3 = 0

has no solutions in (Z− {0})3.

Proof. We will work in the ring D = Z[ω]. Two results that we will cite are:

• D/λD ∼= F3 ∼= {−1, 0, 1},
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• If α = ±1 mod λ then α3 = ±1 mod 9. (For the “+” case note that
α3 − 1 = (α − 1)(α − ω)(α − ω2), and also that ω = 1 − λ and so ω2 =
−1 − ω = −2 + λ, so that α3 − 1 = (α − 1)(α − 1 + λ)(α + 2 − λ); write
α = βλ+ 1 to get α3 − 1 = βλ(β + 1)λ((β − 1)λ+ 3), and this is the sum
of two terms, the first term divisible by 9 because one of β, β + 1, β − 1 is
divisible by λ and the second term clearly so,

α3 − 1 = λ3β(β + 1)(β − 1) + 3λ2β(β + 1).

The “−” case follows from the “+” case.)

Assume a solution of equation (1) in (D−{0})3. We may assume that the solution
is primitive, i.e., gcd(x, y, z) = 1; and consequently we may assume that x, y, and z
are pairwise coprime. Using the two bullets, inspect the equation modulo 9 to see
that λ | xyz, so that without loss of generality λ | z. Replace z by λez to see that
the solution of (1) give us a solution (x, y, z, u, e) of the more general equation

(2) x3 + y3 = uλ3ez3, where



x, y, z ∈ D − {0},
x, y, z pairwise coprime,

λ - xyz,
u ∈ D×,
e ∈ Z+.

Consider the set of e-values that are possible in solutions of (2),

T = {e ∈ Z+ : there exists a solution (x, y, z, u, e) of (2)}.

We will use the descent principle to show that T = ∅, and hence that (2) has no
solutions.

The first part of the descent argument is to establish that 1 /∈ T . To do so, set
e = 1 in (2) and reduce modulo 9,

±1± 1 = ±uλ3 mod 9.

The conditions ±2 = ±uλ3 mod 9 would force the false conditions ±2 = 0 mod λ,
so they are impossible. The remaining possibility, 0 = ±uλ3 mod 9, is false as well.
Thus e = 1 is impossible.

For the second part of the descent argument, suppose that e ∈ T (so that e ≥ 2).
We want to show that consequently e − 1 ∈ T . Factor the left side x3 + y3 of (2)
to get

(x+ y)(x+ ωy)(x+ ω2y) = uλ3ez3.

The right side is divisible by λ6 because e ≥ 2, so some factor of the left side is
divisible by λ2. We may replace y by ωy or ω2y (with no effect on y3) to assume
that in fact λ2 | x+ y. We show that exactly one power of λ divides each of x+ωy
and x+ ω2y. Indeed,

gcd(x+ y, x+ ωy) | (x+ ωy)− ω(x+ y) = λx,

gcd(x+ y, x+ ωy) | (x+ y)− (x+ ωy) = λy,

and so, because x and y are coprime,

gcd(x+ y, x+ ωy) | λ.
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On the other hand, because λ | x+ y, also λ | x+ y − λy = x+ ωy, so in fact

gcd(x+ y, x+ ωy) = λ.

Similarly,
gcd(x+ y, x+ ω2y) = λ.

Now the factorization (x+ y)(x+ ωy)(x+ ω2y) = uλ3ez3 shows that

1 · (x+ y) = −u3λ3e−2z̃3,
ω · (x+ ωy) = u1λx̃

3,

ω2 · (x+ ω2y) = u2λỹ
3,

where x̃, ỹ, and z̃ are pairwise coprime and λ - x̃ỹz̃. But adding the left sides of
the previous display columnwise gives 0,

(1 + ω + ω2)x+ (1 + ω2 + ω4)y = 0.

Consequently the right sides sum to 0 as well,

u1λx̃
3 + u2λỹ

3 = u3λ
3e−2z̃3.

Cancel u1λ to get
x̃3 + ũ2ỹ

3 = ũ3λ
3(e−1)z̃3.

Using the second bullet at the beginning of the proof, inspect modulo 3 to see that
±1± ũ2 = 0 mod 3, so that ũ2 = ±1. If ũ2 = −1 then replace ỹ by −ỹ, so that in
either case,

x̃3 + ỹ3 = ũ3λ
3(e−1)z̃3.

Thus e− 1 ∈ T , completing the descent. �


