
MATH 361: NUMBER THEORY — ELEVENTH LECTURE

The subjects of this lecture are characters, Gauss sums, Jacobi sums, and count-
ing formulas for polynomial equations over finite fields.

1. Definitions, Basic Properties

Let p be an odd prime. (However, essentially everything to follow here works
verbatim upon replacing p by q = pe.)

Definition 1.1. The character group (or dual group) modulo p is

F̂×p = {homomorphisms : F×p −→ C×}
= {χ : F×p −→ C×

∣∣χ(ab) = χ(a)χ(b) for all a, b ∈ F×p }.

The group law on the character group is that for all χ, λ ∈ F̂×p , the product χλ is
given by

(χλ)(a) = χ(a)λ(a) for all a ∈ F×p .

Examples of characters are

• The trivial character

ε : F×p −→ C×, ε(a) = 1 for all a ∈ F×p .
• The quadratic character(

·
p

)
: F×p −→ C×, a 7−→

(
a

p

)
.

Here if we change p to q then the Legendre symbol becomes the Jacobi
symbol.
• Recall that F×p is cyclic of order p− 1. Choose a generator g of F×p , and let

ζp−1 = e2πi/(p−1). Define

χo : F×p −→ C×, χo(g
n) = ζnp−1, n = 0, 1, . . . , p− 2.

Note that χo is not canonical, but depends on the choice of g.

Proposition 1.2 (Basic Character Properties). For any character χ modulo p, the
following properties hold.

(1) χ(1Fp) = 1C.

(2) χ(a)p−1 = 1C for all a ∈ F×p , and in fact χ(a)d = 1 where d is the order

of a in F×p .

(3) χ(a−1) = χ(a)−1 = χ(a) for all a ∈ F×p , and χ is again a character.
(4) χ(−1) = ±1, and so χ(−1) = χ(−1).

The first three properties follow immediately from the facts that χ is a homo-
morphism and F×p is finite. The fourth follows from the second with d = 2 or from
the third with a = −1.

Proposition 1.3. The character group F̂×p is cyclic.
1
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Proof. Let g generate F×p . Then any χ ∈ F̂×p is determined by its value on g, and

this value must be χ(g) = ζkp−1 for some k ∈ {0, . . . , p− 2}. Thus χ = χko , showing

that χo generates F̂×p . �

Because F×p and F̂×p are both cyclic of order p − 1, they are isomorphic. But
they are noncanonically isomorphic, meaning that there is no one preferred way to
choose the isomorphism between them.

2. An Image and a Kernel

Consider a finite cyclic group, written additively, G = Z/qZ. Let e be a positive
integer, and consider the endomorphsim x 7→ ex of G. To study its image and its
kernel, let

ê = gcd(e, q).

Thinking in terms of ideals quickly shows that the endomorphism has as its image

〈e+ qZ〉 = {me+ nq + qZ} = 〈ê+ qZ〉,

the unique order-q/ê subgroup of G. Consequently its kernel is the unique order-ê
subgroup,

〈q/ê+ qZ〉,
and the endomorphism is ê-to-1 to its image, Note that the image, the kernel, and
the multiplicity depend only on ê = gcd(e, q), rather than on the original datum e.

For example, let q = 6 and let e = 10, so that ê = gcd(10, 6) = 2. The
endomorphism x 7→ 10x of Z/6Z has image {0, 2, 4} and kernel {0, 3}, and these
are the image and the kernel of the variant endomorphism x 7→ 2x of Z/6Z. This
tells us multiplicatively that the endomorphism x 7→ x10 of (Z/7Z)× has image
{1, 32, 34} = {1, 2, 4} (noting that 3 is generator modulo 7) and kernel {1, 33} =
{1, 6}, and these are the image and the kernel of the variant endomorphism x 7→ x2

of (Z/7Z)×. However, this does not say that the endomorphisms x 7→ x10 and
x 7→ x2 of (Z/7Z)× are equal.

3. A Basic Counting Formula

Let e be a positive integer, and let u ∈ Fp. This section will use characters to
count the solutions x modulo p of the equation xe = u. Let the symbol N denote
solution-count,

N(xe = u) = |{x ∈ Fp : xe = u}|.
We want to express N(xe = u) in terms of characters. The previous section has
shown that the kernel and the image of the endomorphism x 7→ xe of F×p depend
only on gcd(e, p − 1). So we freely assume that e | p − 1, i.e., p = 1 mod e. The
result, to be established below, is

If p = 1 mod e then N(xe = u) =
∑
χe=ε

χ(u) for any u ∈ Fp.

We prove the boxed formula. Because the endomorphism x 7→ xe has kernel of
order e, i.e., the endomorphism is e-to-1, it follows that N(xe = u) ∈ {0, e} for
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all u ∈ F×p . Consider the order-e subgroup of F̂×p , consisting of the characters χ
such that χe = ε,

{ε, χ(p−1)/e
o , χ2(p−1)/e

o , . . . , χ(e−1)(p−1)/e
o }.

For example, when e = 2 the subgroup is {ε, (·/p)}. To prove the boxed formula
for u ∈ F×p such that if xeo = u for some xo, compute

N(xe = u) = e =
∑
χe=ε

1 =
∑
χe=ε

χ(xo)
e =

∑
χe=ε

χ(xeo) =
∑
χe=ε

χ(u).

On the other hand, for u ∈ F×p such that xe 6= u for all x ∈ F×p , note that u takes

the form u = gQe+R where 0 < R < e. Therefore,

χ(p−1)/e
o (u) = χ(p−1)/e

o (gQe+R) = ζ
(Qe+R)(p−1)/e
p−1 = ζ

R(p−1)/e
p−1 6= 1,

and thus the general identity

(1)
∑
χe=ε

χ(a) = χ(p−1)/e
o (a)

∑
χe=ε

χ(a) for any a ∈ F×p ,

which holds because multiplying by χ
(p−1)/e
o permutes the characters in the order-e

subgroup of F̂×p , specializes to give

N(xe = u) = 0 =
∑
χe=ε

χ(u).

Finally, to address the case u = 0, extend characters modulo p to all of Fp by
defining

ε(0) = 1, χ(0) = 0 if χ 6= ε.

Then
N(xe = 0) = 1 =

∑
χe=ε

χ(0).

We have proved the boxed formula above in all cases. Reiterating a point already
made, the boxed formula contains the information to compute N(xe = u) for all
positive values of e, not only for divisors e of p− 1: replace e with gcd(e, p− 1) and
the formula for the new e gives the desired solution-count for the original e.

4. The Orthogonality Relations

Proposition 4.1. The following two relations hold.∑
a∈F×

p

χ(a) =

{
p− 1 if χ = ε

0 if χ 6= ε

and ∑
χ∈ F̂×

p

χ(a) =

{
p− 1 if a = 1F×

p

0 if a 6= 1F×
p
.

Proof. Both identities are proved essentially as we proved identity (1) in the pre-
vious section. The first identity is clear if χ = ε. Otherwise χ(ao) 6= 1 for
some ao ∈ F×p ; so, because multiplying by ao permutes F×p ,∑

a∈F×
p

χ(a) =
∑
a∈F×

p

χ(aoa) = χ(ao)
∑
a∈F×

p

χ(a),
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the sum vanishes. The second identity is clear if a = 1Fp . Otherwise χo(a) 6= 1

because χo sends only 1Fp to 1C; so, because multiplying by χo permutes F̂×p ,∑
χ∈ F̂×

p

χ(a) =
∑
χ∈ F̂×

p

(χoχ)(a) = χo(a)
∑
χ∈ F̂×

p

χ(a),

again the sum vanishes. �

The same methods apply to additive characters ψ : Fp −→ C×, meaning char-
acters such that ψ(a + b) = ψ(a)ψ(b) for all a, b ∈ Fp. For example, the character

ψ(a) = e2πia/p = ζap for a ∈ Fp = Z/pZ is additive. Thus we have

∑
a∈Fp

ψ(a) =

{
p if ψ = ε

0 if ψ 6= ε

and ∑
ψ∈F̂p

ψ(a) =

{
p if a = 0Fp
0 if a 6= 0Fp .

5. Gauss Sums Again

Every character χ modulo p has an associated Gauss sum,

τ(χ) =
∑
t∈Fp

χ(t)ζtp.

Note that χ is a character of the multiplicative group F×p while t 7→ ζtp is a nontrivial
character of the additive group Fp. We establish three results, with χ understood
to denote a nontrivial character in the second and third,

τ(ε) = 0, τ(χ)τ(χ) = χ(−1)p, |τ(χ)| = √p.

The first result follows from the orthogonality of characters of Fp.
For nontrivial χ we may sum over t ∈ F×p because χ(0) = 0. In this case compute,

nesting two sums at the first step, replacing t by tu in the inner sum at the second,
and exchanging the order of summation at the third,

τ(χ)τ(χ) =
∑

u,t∈F×
p

χ(tu−1)ζt+up =
∑

u,t∈F×
p

χ(tuu−1)ζu+tup

=
∑
t∈F×

p

χ(t)
∑
u∈Fp

ζ(1+t)up −
∑
t∈F×

p

χ(t).

By the orthogonality of characters of Fp, the first term is χ(−1)p, and by the
orthogonality of characters of F×p , the second term is 0. Thus we have the second
boxed result.

Also for nontrivial χ, noting for the last step that χ(−1) = χ(−1),

τ(χ) =
∑
t∈F×

p

χ(t)ζtp = χ(−1)
∑
t∈F×

p

χ(−t)ζ−tp = χ(−1)τ(χ).

This combines with the second boxed result to give the third.
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6. More Counting Formulas; Jacobi Sums

Still working over Fp, we now want the solution-count

N(a1x
e1
1 + a2x

e2
2 + · · ·+ arx

er
r = b)

where each ai is nonzero and each ei divides p − 1. We expect the solution-count
to be roughly pr−1 because the condition imposes one constraint on r variables
from Fp.

The following two quantities will arise in the course of calculating the solution-
count.

Definition 6.1. Let χ1, . . . , χr be characters modulo p. The corresponding Jacobi
sums are, with ~u = (u1, . . . , ur) ∈ Frp in the following two formulas,

J0(χ1, . . . , χr) =
∑

~u :
∑
ui=0

χ1(u1) · · ·χr(ur)

and

J(χ1, . . . , χr) =
∑

~u :
∑
ui=1

χ1(u1) · · ·χr(ur).

The desired formula is

N(a1x
e1
1 + a2x

e2
2 + · · ·+ arx

er
r = b)

=
∑

~χ: each χ
ei
i =ε

χ1(a−11 ) · · ·χr(a−1r ) ·

{
J0(χ1, . . . , χr) if b = 0,

(χ1 · · ·χr)(b)J(χ1, . . . , χr) if b 6= 0.

The basic counting formula N(xe = u) =
∑
χe=ε χ(u) for e | p−1 gives the boxed

formula, as follows.

N(a1x
e1
1 + a2x

e2
2 + · · ·+ arx

er
r = b)

=
∑

u1,...,ur
u1+···+ur=b

N(xe11 = a−11 u1) · · ·N(xerr = a−1r ur)

=
∑

u1,...,ur
u1+···+ur=b

∑
χ1:χ

e1
1 =ε

χ1(a−11 u1) · · ·
∑

χr:χ
er
r =ε

χr(a
−1
r ur)

=
∑

~u :
∑
ui=b

∑
~χ: each χ

ei
i =ε

χ1(a−11 u1) · · ·χr(a−1r ur)

=
∑

~χ: each χ
ei
i =ε

χ1(a−11 ) · · ·χr(a−1r )
∑

~u :
∑
ui=b

χ1(u1) · · ·χr(ur).

Now inspecting the definition of the two types of Jacobi sum shows that the desired
counting formula is as claimed.

7. A Quadratic Example

Let p be an odd prime. We count the points of the unit circle modulo p,

x2 + y2 = 1.
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The general counting formula gives

N(x2 + y2 = 1) =
∑

χ2
1=χ

2
2=ε

J(χ1, χ2).

The only relevant characters are ε and (·/p). Thus in fact,

N(x2 + y2 = 1) = J(ε, ε) + 2J(ε,

(
·
p

)
) + J(

(
·
p

)
,

(
·
p

)
).

But J(ε, ε) = p (and we expect this to be the dominant term in the answer), while
J(ε, (·/p)) = 0 by the second orthogonality relation, and finally,

J(

(
·
p

)
,

(
·
p

)
) =

∑
u1+u2=1

(
u1
p

)(
u2
p

)
=

∑
u1 6=0,1

(
u1(1− u1)

p

)
.

Because we are working with the quadratic character, we may replace the first u1
in the numerator by u−11 to get

J(

(
·
p

)
,

(
·
p

)
) =

∑
u1 6=0,1

(
u−11 − 1

p

)
= −

(
−1

p

)
.

In sum,

N(x2 + y2 = 1) = p−
(
−1

p

)
=

{
p− 1 if p = 1 mod 4,

p+ 1 if p = 3 mod 4.

What’s secretly happening here is that the unit circle modulo p really should lie in
modulo p projective space, where it has p + 1 points for all p. Depending on the
quadratic character of −1 modulo p, i.e., depending on p mod 4, two of the points
are projective or all of them are affine. We explain this next.

8. A Generalization of the Quadratic Example by Other Means

Let d ∈ Z be squarefree. So in particular, d 6= 0. The quadratic curve

Q : x2 − dy2 = 1

homogenizes to

Qhom : x2 − dy2 = z2.

The maps

P1 −→ Qhom, [s, t] 7−→ [s2 + dt2, 2st, s2 − dt2]

and

Qhom −→ P1,

{
[x, y, z] 7−→ [x+ z, y] if [x, y, z] 6= [1, 0,−1],

[1, 0,−1] 7−→ [0, 1]

are readily checked to be inverses provided that 2 6= 0 and d 6= 0.
Let p - 2d be prime and work over the field Fp. Then

|Qhom(Fp)| = |P1(Fp)| = p+ 1.

Furthermore, all points of P1(Fp) map to affine points [∗, ∗, 1] of Qhom except for
the points {[s, 1] : s2 = d}. There are no exceptional points if (d/p) = −1 and there
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are two exceptional points if (d/p) = 1. Thus the number of affine points is

|Q(Fp)| =

{
p− 1 if (d/p) = 1,

p+ 1 if (d/p) = −1

= p− (d/p).

This is the formula that we obtained by Jacobi sums for d = −1.

9. Analysis of the Jacobi Sums

Recall that the Jacobi sums are defined as

J0(χ1, . . . , χr) =
∑

~u :
∑
ui=0

χ1(u1) · · ·χr(ur),

J(χ1, . . . , χr) =
∑

~u :
∑
ui=1

χ1(u1) · · ·χr(ur).

We will establish the following table.

~χ J(~χ) |J(~χ)| J0(~χ) |J0(~χ)|

~ε pr−1 pr−1 pr−1 pr−1

(~εs, ~χr−s) 0 0 0 0∏
i χi 6= ε

τ(χ1) · · · τ(χr)

τ(χ1 · · ·χr)
p(r−1)/2 0 0∏

i χi = ε −τ(χ1) · · · τ(χr)

p
pr/2−1 (p− 1)

τ(χ1) · · · τ(χr)

p
(p− 1)pr/2−1

The table shows that

|N(a1x
e1
1 + a2x

e2
2 + · · ·+ arx

er
r = b)− pr−1| ≤

{
M0p

r/2−1 +M1p
(r−1)/2 if b 6= 0,

M0(p− 1)pr/2−1 if b = 0,

where there are ei − 1 possibilities for each χi, and

M0 = |{~χ :
∏
i

χi = ε}| and M1 = |{~χ :
∏
i

χi 6= ε}|.

To derive the various results in the table, begin by noting that its top row
is clear because both J(~ε) and J0(~ε) sum the value 1 over r-tuples u such that∑
i ui = 1 or

∑
i ui = 0. In both cases, the first r−1 constants ui are free and then

ur is determined. The second row of the table follows similarly from the second
orthogonality relation. For example,

J(~εs, ~χr−s) =
∑
u2

ε(u2) · · ·
∑
ur

χr(ur)ε(1− u2 − · · · − ur) = 0.
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Next compute that when none of the characters is trivial,

J0(~χ) =
∑
ur∈F×

p

 ∑
u1+···+ur−1=−ur

χ1(u1) · · ·χr−1(ur−1)

χr(ur)
=
∑
ur∈F×

p

 ∑
u1+···+ur−1=1

χ1(u1) · · ·χr−1(ur−1)

 (χ1 · · ·χr−1)(−1)(χ1 · · ·χr)(ur)

= (χ1 · · ·χr−1)(−1)J(χ1, . . . , χr−1)
∑
ur∈F×

p

(χ1 · · ·χr)(ur)

=

{
0 if

∏
i χi 6= ε,

(p− 1)χr(−1)J(χ1, . . . , χr−1) if
∏
i χi = ε.

The first case of this relation gives the right half of the third row. The second case,
in which χ1 · · ·χr−1 6= ε, reduces the right half of the fourth row to the left half of
the third row; we will return to this below.

For the left half of the third row, compute for
∏
i χi 6= ε, quoting the J0(~χ) = 0

result that we already have for the right half of the third row,

τ(χ1) · · · τ(χr) =
∑

t1,...,tr∈Fp

χ1(t1) · · ·χr(tr)ζt1+···+trp

=
∑
u∈Fp

∑
~t:
∑
ti=u

χ1(t1) · · ·χr(tr)ζup

= J0(~χ) + J(~χ)
∑
u∈F×

p

(χ1 · · ·χr)(u)ζup

= J(~χ)τ(χ1 · · ·χr) because the J0 term vanishes.

This establishes the left half of the third row.
Now we obtain the right half of the fourth row. Using the formula in the left

half of the third row, though with r − 1 characters rather than r, and noting that
χ1 · · ·χr−1 = χr, and recalling for the last equality to follow that τ(χr)τ(χr) =
χr(−1)p, compute that

J0(~χ) = (p− 1)χr(−1)J(χ1, . . . , χr−1)

= (p− 1)χr(−1)
τ(χ1) · · · τ(χr−1)

τ(χr)

= (p− 1)χr(−1)
τ(χ1) · · · τ(χr)

τ(χr)τ(χr)

= (p− 1)
τ(χ1) · · · τ(χr)

p
.

Finally, for the left half of the fourth row, so now with
∏
i χi = ε, modify the

calculation of the product τ(χ1) · · · τ(χr) using the fact that now∑
u∈F×

p

(χ1 · · ·χr)(u)ζup =
∑
u∈Fp

ζup − 1 = −1,
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and using the relevant J0-value now that we know it,

τ(χ1) · · · τ(χr) = J0(~χ)− J(~χ)

= (p− 1)
τ(χ1) · · · τ(χr)

p
− J(~χ).

From here basic algebra gives the table’s value of J(~χ).

10. A Cubic Example

Let p be prime. We want to count the points of the cubic Fermat curve modulo p,

x3 + y3 = 1.

If p = 3 or p = 2 mod 3 then cubing is an automorphism modulo p, and the counting
problem reduces to x + y = 1, which trivially has p solutions. So from now on we
assume that we are in the interesting case, p = 1 mod 3.

Again referring to the general counting formula, we have

N(x3 + y3 = 1) =
∑

χ3
1=χ

3
2=ε

J(χ1, χ2).

This time the relevant characters are ε, χ, and χ, where χ(g) = ζ3 with g a generator
of F×p . Expand the nine terms of the formula and then gather terms,

N(x3 + y3 = 1) = J(ε, ε) + 2(J(ε, χ) + J(ε, χ)) + 2J(χ, χ) + J(χ, χ) + J(χ, χ).

According to the table,

N(x3 + y3 = 1) = p− 2τ(χ)τ(χ)/p+ 2Re(J(χ, χ)).

We know that τ(χ)τ(χ) = χ(−1)p, and in fact χ(−1) = 1 because −1 is a cube and
χ3 = ε; specifically, χ(−1) = χ((−1)3) = χ3(−1) = ε(−1) = 1. Therefore,

N(x3 + y3 = 1) = p− 2 + 2Re(J(χ, χ)).

Gauss reasoned as follows. We know that

J(χ, χ) = a+ bω, a, b ∈ Z, ω = ζ3 = − 1
2 + i

√
3
2 .

We are seeking
2Re(J(χ, χ)) = 2a− b.

The process will be twofold:

• study a+ bω such that 2Re(J(χ, χ)) = 2a− b,
• then use the results to characterize 2a − b in a readily computable form,

with no direct reference to a and b.

For the first item, note that |J(χ, χ)|2 = p according to our table, which is to
say that (a+ bω)(a+ bω2) = p, or

a2 − ab+ b2 = p.

Having p and knowing that |a+ bω|2 = p does not uniquely determine a and b: the

six values ã + b̃ω = ±(a + bω),±ω(a + bω),±ω2(a + bω) all satisfy |ã + b̃ω|2 = p,

and so do the six conjugate values ã+ b̃ω = ±(a+ bω2),±ω(a+ bω2),±ω2(a+ bω2).
We show that the Jacobi sum value J(χ, χ) = a+bω satisfies the further conditions
a = 2 mod 3 and b = 0 mod 3. To see this, compute

a+ bω = J(χ, χ) =
τ(χ)2

τ(χ)
=

τ(χ)3

τ(χ)τ(χ)
=

τ(χ)3

χ(−1)p
=
τ(χ)3

p
.
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Consider the resulting equality pa + pbω = τ(χ)3, working modulo 3 in Z[ω]. On
the one hand, because p = 1 mod 3,

pa+ pbω ≡3 a+ bω,

and on the other hand,

τ(χ)3 ≡3

∑
t∈F×

p

χ(t)3ζ3tp =
∑
t∈F×

p

ζ3tp = −1,

Thus a = 2 mod 3 and b = 0 mod 3, as claimed. In our pending studies of the
Eisenstein integer ring Z[ω], we will see that exactly one conjugate pair of the twelve

values ã+b̃ω such that p = ã2−ãb̃+b̃2 satisfy ã = 2 mod 3 and b̃ = 0 mod 3. Thus we
have described 2Re(J(χ, χ)) = 2a−b completely by the conditions p = a2−ab+b2,
a = 2 mod 3, and b = 0 mod 3, even though these conditions don’t fully determine a
and b. More specifically, with J(χ, χ) = a+bω where a = 2 mod 3 and b = 0 mod 3,
also J(χ, χ) = a− b− bω where also a− b = 2 mod 3 and −b = 0 mod 3); we don’t
need to distinguish between these because twice the real part of either is 2a− b.

The second item in our list is to use the results p = a2 − ab+ b2, a = 2 mod 3,
and b = 0 mod 3 to characterize 2a−b in a readily computable form, with no direct
reference to a and b. The equality just quoted is also p = (a − b/2)2 + 3(b/2)2, or
4p = (2a− b)2 + 3b2, and this combines with the congruences to give

4p = A2 + 27B2, A = 1 mod 3,

in which A = 2a − b is the quantity that we seek, and B = b/3. Finding the A
specified by the previous display is an easy search because A2 and 27B2 are positive.
By contrast, searching for a and b such that p = a2−ab+b2 is not so simple because
of the minus sign, and searching for a and b such that p = (a − b/2)2 + 3(b/2)2

involves quarter-integers; further, we want only 2a − b in any case. Below in this
writeup, we will show that the conditions 4p = A2+27B2, A = 1 mod 3 determine A
uniquely. We have proved

Theorem 10.1 (Gauss). Let p = 1 mod 3. The number of points on the cubic
Fermat curve mod p is

N(x3 + y3 = 1) = p− 2 +A, where 4p = A2 + 27B2, A = 1 mod 3.

A crucial point of Gauss’s theorem, as we soon will see, is that:

To solve the problem of counting the Fermat cubic points modulo p
in the interesting case p = 1 mod 3, we need to factor p in the
Eisenstein integer ring Z[ω].

Further, the statement of the theorem gives an algorithm to carry out the fac-
torization. As in other examples from this course, such as Fermat’s fountainhead
theorem about odd primes p = x2 +y2, we see that algebraic number theory, mean-
ing number theory beyond the basic integer ring Z and its quotient field Q, arises
naturally from problems that are set in Z. Also, we have seen that quadratic reci-
procity, despite being set in Z, describes phenomena from algebraic number theory.
The distinction between so-called elementary number theory, set entirely in Z or
maybe Q, and algebraic number theory, set in larger rings and/or fields, is arguably
artificial.

For example, let p = 103, so that 4p = 412. The only values 27B2 less than 4p
are 27, 108, 243. Next, 412 − 27 = 385 and 412 − 108 = 304 are not squares but
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412 − 243 = 169 = (±13)2. Thus A = 13. The equation x3 + y3 = 1 mod 103
has 103− 2 + 13 = 114 solutions.

We turn to the homogeneous Fermat equation of degree 3, given by x3 +y3 = z3.
For a prime p 6= 1 mod 3, this equation has p + 1 projective solutions: the p
affine solutions [x : y : 1] arising from the circumstance that the cubing map is an
automorphism modulo p, and one non-affine solution [−1 : 1 : 0] arising from the
circumstance that −1 is the unique cube root of −1 modulo p. Certainly [1 : 0 : 0]
is not a solution. On the other hand, for a prime p = 1 mod 3, the equation
has p − 2 + A affine solutions according to Gauss, and also it has three non-affine
solutions [x : 1 : 0] because now −1 has three cube roots modulo p. Again [1 : 0 : 0]
is not a solution. So overall, a revision of Gauss’s result is that counting projectively
modulo any prime p, and replacing A from above by its additive inverse here,

N(x3 + y3 = z3) = p+ 1−A,

where

{
4p = A2 + 27B2, A = 2 mod 3 if p = 1 mod 3,

A = 0 if p 6= 1 mod 3.

Here are some values of A in the previous display for primes p = 1 mod 3.

p 7 13 19 31 37 43 61 67 73 79
A −1 5 −7 −4 11 8 −1 5 −7 17

The cubic Fermat curve is an elliptic curve whose conductor is 27. According to
the Modularity Theorem, each value A = Ap in the previous display must also be
the pth Fourier coefficient of a certain modular cusp form whose weight is 2 and
whose level matches the conductor. There exists only one weight 2, level 27 cusp
form, as follows. For a complex number τ having positive imaginary part, define
also q = e2πiτ , a complex number of absolute value less than 1. The Dedekind eta
function is

η(τ) = q1/24
∞∏
n=1

(1− qn),

and the unique weight 2, level 27 cusp form is

f2,27(τ) = η(3τ)2η(9τ)2.

Its expansion in powers of q begins

f2,27(τ) = q − 2q4 + −1 q7 + 5 q13 + 4q16 + −7 q19 − 5q25 + 2q28

+ −4 q31 + 11 q37 + 8 q43 − 6q49 − 10q52 + −1 q61 − 8q64

+ 5 q67 + −7 q73 + 14q76 + 17 q79 + · · · .

We see that each pth Fourier coefficent for p = 1 mod 3 matches the corresponding
A-value in the table above, and further the Fourier coefficients 0 for p 6= 1 mod 3
match the A = 0 values for those primes as well. This phenomenon is the modularity
of the cubic Fermat curve.

Finally, we discuss the fact that for any prime p = 1 mod 3, the condition

4p = A2 + 27B2, A = 1 mod 3
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holds for a unique A. Soon we will see that there exists an Eisenstein integer
π = a+ bω with a = 2 mod 3 and b = 0 mod 3 such that

p = a2 − ab+ b2,

and furthermore the only other such Eisenstein integer is π = (a − b) − bω. Rear-
ranging the previous display,

p = (a− b/2)2 + 3(b/2)2, a = 2 mod 3, b = 0 mod 3.

The relation (a−b)−(−b)/2 = a−b/2 shows that the quantity a−b/2 in the previous
display depends only on p, not on a choice between π and π. Multiplying the display
by 4 gives a condition of the desired form 4p = A2 + 27B2 with A = 1 mod 3.

On the other hand, consider a representation 4p = A2 +27B2 with A = 1 mod 3.
Set b = 3B to get 4p = A2 + 3b2. Note that b has the same parity as A. Now set
a = (A + b)/2, so that 2a = A + b = 1 mod 3, giving a = 2 mod 3. This gives
a representation of p as in the previous display. Thus A = 2a − b for a suitable
a + bω, and our pending study of Z[ω] will show that this quantity is unique to p
up to conjugation.


