
MATH 361: NUMBER THEORY — TENTH LECTURE

The subject of this lecture is finite fields.

1. Root Fields

Let k be any field, and let f(X) ∈ k[X] be irreducible and have positive degree.
We want to construct a field K containing k in which f has a root. To do so,
consider the quotient ring

R = k[X]/〈f〉,

where 〈f〉 is the principal ideal f(X)k[X] of k[X]. That is, R is the usual ring
of polynomials over k subject to the additional rule f(X) = 0. Specifically, the
ring-elements are cosets and the operations are

(g + 〈f〉) + (h+ 〈f〉) = (g + h) + 〈f〉,
(g + 〈f〉)(h+ 〈f〉) = gh+ 〈f〉.

The fact that f is irreducible gives R the structure of a field, not only a ring. The
only matter in question is multiplicative inverses. To see that they exist, consider
a nonzero element of R,

g + 〈f〉 6= 〈f〉.

This nonzeroness condition is g /∈ 〈f〉, i.e., f - g. So (f, g) = 1 because f is
irreducible, and so there exist F,G ∈ k[X] such that

Ff +Gg = 1.

Equivalently, f | Gg − 1, i.e., Gg − 1 ∈ 〈f〉, so that

Gg + 〈f〉 = 1 + 〈f〉 in R.

That is,

(G+ 〈f〉)(g + 〈f〉) = 1 + 〈f〉 in R,

showing that G+ 〈f〉 inverts g + 〈f〉 in R.
Now use the field R to create a set K of symbols that contains k and is in bijective

correspondence with R. That is, there is a bijection

σ : R
∼−→ K, σ(a+ 〈f〉) = a for all a ∈ k.

Endow K with addition and multiplication operations that turn the set bijection
into a field isomorphism. The operations on K thus extend the operations on k.
Name a particular element of K,

r = σ(X + 〈f〉).
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Then

f(r) = f(σ(X + 〈f〉)) by definition of r

= σ(f(X + 〈f〉)) because algebra passes through σ

= σ(f(X) + 〈f〉) because R inherits its algebra from k[X]

= σ(〈f〉) because f(X) ∈ 〈f〉
= 0 by construction of σ.

Thus K is a superfield of k containing an element r such that f(r) = 0.

For example, because the polynomial f(X) = X3 − 2 is irreducible over Q, the
corresponding quotient ring

R = Q[X]/〈X3 − 2〉 = {a+ bX + cX2 + 〈X3 − 2〉 : a, b, c ∈ Q}

is a field. And from R we construct a field (denoted Q(r) or Q[r]) such that r3 = 2.
Yes, we know that there exist cube roots of 2 in the superfield C of Q, but the
construction given here is purely algebraic and makes no assumptions about the
nature of the starting field k to which we want to adjoin a root of a polynomial.

2. Splitting Fields

Again let k be a field and consider a nonunit polynomial f(X) ∈ k[X]. We can
construct an extension field

k1 = k(r1),

where r1 satisfies some irreducible factor of f . Thus

f(X) = (X − r1)f2(X) in k1[X].

We can construct an extension field

k2 = k1(r2) = k(r1, r2),

where r2 satisfies some irreducible factor of f2. Continue in this fashion until
reaching a field where the original polynomial f factors down to linear terms. The
resulting field is the splitting field of f over k, denoted

splk(f).

Continuing the example of the previous section, compute that

X3 − 2

X − r
= X2 + rX + r2 in Q(r)[X].

Let s = rt where t3 = 1 but t 6= 1. Then, working in Q(r, t) we have

s2 + rs+ r2 = r2t2 + r2t+ r2 = r2(t2 + t+ 1) = r2 · 0 = 0,

Thus s = rt satisfies the polynomial X2 + rX + r2, and now compute that

X2 + rX + r2

X − rt
= X − rt2 in Q(r, t)[X].

That is,

X3 − 2 = (X − r)(X − rt)(X − rt2) ∈ Q(r, t)[X],

showing that

splQ(X3 − 2) = Q(r, t).
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3. Examples of Finite Fields

We already know the finite fields

Fp = Z/pZ, p prime.

For any positive integer n we can construct the extension field

K = splFp(Xpn

−X).

Furthermore, the roots of Xpn − X in K form a subfield of K. To see this, check
that if ap

n

= a and bp
n

= b then

(ab)p
n

= ap
n

bp
n

= ab,

(a+ b)p
n

= ap
n

+ bp
n

= a+ b,

(a−1)p
n

= (ap
n

)−1 = a−1 if a 6= 0,

(−a)p
n

= (−1)p
n

ap
n

= −a (even if p = 2).

The modulo p result that (a+b)p = ap+bp is sometimes called the freshman’s dream,
but this derisive label can distract a person from appreciating the important idea
that raising to the pth power is a ring homomorphism in characteristic p that doesn’t
exist in characteristic 0. In any case, the splitting field K consists of exactly the
roots of Xpn −X. The roots are distinct because the derivative

(Xpn

−X)′ = −1

is nonzero, precluding multiple roots. Altogether, K contains pn elements. We give
it a name,

Fq = splFp(Xpn

−X) where q = pn.

4. Exhaustiveness of the Examples

In fact the fields

Fq, q = pn, n ≥ 1

are the only finite fields, up to isomorphism. To see this, let K be a finite field.
The natural homomorphism

Z −→ K, n 7−→ n · 1K

has for its kernel an ideal I = nZ of Z such that

Z/I ↪→ K,

and so Z/I is a finite integral domain. This forces I = pZ for some prime p, and so

Fp ↪→ K.

Identify Fp with its image in K. Then K is a finite-dimensional vector space over Fp,
so that |K| = pn for some n. Every nonzero element x ∈ K× satisfies the condition
xp

n−1 = 1, and so every element x ∈ K satisfies the condition xp
n

= x. In sum,
K = Fq up to isomorphism where again q = pn.
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5. Containments of Finite Fields

A natural question is:

For which m,n ∈ Z+ do we have Fpm ⊂ Fpn?

Assuming that the containment holds, the larger field is a vector space over the
smaller one, and so pn = (pm)d = pmd for some d, showing that m | n. Conversely,
if m | n then pm − 1 | pn − 1 by the finite geometric sum formula, their quotient

being q =
∑n/m−1

i=0 pmi, and then in turn

Xpn−1 − 1 = (Xpm−1 − 1)

q−1∑
i=0

X(pm−1)i.

That is, Xpm−1 − 1 | Xpn−1 − 1, and so Fpm ⊂ Fpn . Altogether,

Fpm ⊂ Fpn ⇐⇒ m | n.

For instance, F27 is not a subfield of F81.

6. Cyclic Structure

For any prime power q = pn, the unit group F×q is cyclic. The proof is exactly

the same as for F×p = (Z/pZ)×. One argument is to quote the structure theorem for
finitely-generated abelian groups. Alternatively, note that for any divisor d of q−1,

Xq−1 − 1 = (Xd − 1)

(q−1)/d−1∑
i=0

Xdi,

and the left side has a full contingent of q − 1 roots in Fq, forcing each factor on
the right to have as many roots as its degree, so that in particular the first factor
has d roots. Now factor q − 1,

q − 1 =
∏

rer .

For each prime factor r, Xre−1 has re roots and Xre−1−1 has re−1 roots, showing
that there are φ(re) roots of order re. Thus there are φ(q−1) elements of order q−1
in Fq. That is, F×q has φ(q − 1) generators.

7. Examples

To construct the field of 9 = 32 elements we need an irreducible polynomial of
degree 2 over F3. The polynomial X2 + 1 will do. Thus up to isomorphism,

F9 = F3[X]/〈X2 + 1〉.

Here we have created F9 by adjoining a square root of −1 to F3.
To construct the field of 16 = 24 elements we need an irreducible polynomial of

degree 4 over F2.

Note that the principle no roots implies irreducible is valid only for
polynomials of degree 2 and 3. For example, a quartic polynomial
can have two quadratic factors.
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The polynomial X4 +X + 1 works: it has no roots, and it doesn’t factor into two
quadratic terms because (recalling that 2 = 0 here)

(X2 + aX + 1)(X2 + bX + 1) = X4 + (a+ b)X3 + abX2 + (a+ b)X + 1.

Thus, again up to isomorphism,

F16 = F2[X]/〈X4 +X + 1〉
= F2(r) where r4 + r + 1 = 0

= {a+ br + cr2 + dr3 : a, b, c, d ∈ F2}.

8. A Remarkable Polynomial Factorization

Fix a prime p and a positive integer n. To construct the field Fpn , we need an
irreducible monic polynomial of degree n over Fp. Are there such? How do we find
them?

For any d ≥ 1, let MIp(d) denote the set of monic irreducible polynomials over Fp
of degree d. We will show that

Xpn

−X =
∏
d|n

∏
f∈MIp(d)

f(X) in Fp[X].

To establish the identity, let Fn(X) = Xpn −X, so that the field Fpn consists of a
set of roots of Fn. The polynomial Fn(X) factors uniquely in Fp[X] as a product of
monic irreducibles of positive degree, with no repeat factors because F ′n(X) = −1.

• Each monic irreducible factor f of Fn, lying in MIp(d) for some d, has a
root α in Fpn , and the subfield Fp(α) of Fpn has order pd. Thus d divides n.
• Conversely, for each divisor d of n and each f ∈ MIp(d), each root α of f

generates a field Fp(α) of order pd; so αpd−1 = 1, from which αpn−1 = 1
because pd − 1 | pn − 1, giving Fn(α) = 0. Thus f divides Fn.

To count the monic irreducible polynomials over Fp of a given degree, take the
degrees of both sides of the identity

Xpn

−X =
∏
d|n

∏
f∈MIp(d)

f(X) in Fp[X]

to get

pn =
∑
d|n

d · |MIp(d)|.

By Möbius inversion, with µ the Möbius function as usual,

|MIp(n)| = 1

n

∑
d|n

µ(n/d)pd.

The sum on the right side is positive because it is a base-p expansion with top
term pn and the coefficients of the lower powers of p all in {0,±1}. So |MIp(n)| > 0
for all n > 0. That is, there do exist monic irreducible polynomials of every degree
over every field Fp.

For example, taking p = 2 and n = 3,

X8 −X = X(X7 − 1) = X(X − 1)(X6 +X5 +X4 +X3 +X2 +X + 1)

= X(X − 1)(X3 +X2 + 1)(X3 +X + 1) mod 2,
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a product of two linear factors and two cubic factors. And the counting formula
from the previous section gives the results that it must,

|MI2(1)| = 1

1
µ(1)21 = 2,

|MI2(3)| = 1

3
(µ(1)23 + µ(3)21) =

1

3
(8− 2) = 2.

Similarly, taking p = 3 and n = 2,

X9 −X = X(X8 − 1) = X(X4 + 1)(X2 + 1)(X + 1)(X − 1)

= X(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X2 −X − 1) mod 3,

and

|MI3(1)| = 1

1
µ(1)31 = 3,

|MI3(2)| = 1

2
(µ(1)32 + µ(3)31) =

1

2
(9− 3) = 3.

9. Common Errors

The finite field Fq where q = pn is neither of the algebraic structures Z/qZ
and (Z/pZ)n as a ring. As a vector space, Fq = Fn

p , but the ring (multiplicative)
structure of Fq is not that of Z/qZ or of (Z/pZ)n.

The finite field Fpm is not a subfield of Fpn unless m | n, in which case it is.

10. Primes in Extensions

We return to a question from the very first lecture: Does a given odd prime p
factor or remain prime in the Gaussian integer ring Z[i]? Equivalently, is the
quotient ring Z[i]/pZ[i] = Z[i]/〈p〉 an integral domain? Compute,

Z[i]/〈p〉 ≈ Z[X]/〈p,X2 + 1〉 ≈ Fp[X]/〈X2 + 1〉.

Thus the question is whether X2 + 1 is reducible or irreducible in Fp[X], which
is to say whether the Legendre symbol (−1/p) is 1 or −1. By Euler’s Criterion,
(−1/p) = (−1)(p−1)/2, so the 1 mod 4 primes p factor in Z[i] while the 3 mod 4
primes p don’t. Returning to quotient ring structure, we have shown that

Z[i]/〈p〉 ≈ Fp[X]/〈X − r〉 × Fp[X]/〈X + r〉, p = 1 mod 4,

where r2 = −1 mod p. Take, for example, p = 5, and create two ideals of Z[i]
modeled on the two polynomial ideals in the previous display with r = 2.

I1 = 〈5, i− 2〉, I2 = 〈5, i+ 2〉.

Their product is generated by the pairwise products of their generators,

I1I2 = 〈52, 5(i− 2), 5(i+ 2),−5〉.

Each generator of I1I2 is a multiple of 5 in Z[i], and 5 is a Z[i]-linear combination
of the generators. That is, the methods being illustrated here have factored 5 as
an ideal of Z[i],

I1I2 = 5Z[i].
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The previous example deliberately overlooks the elementwise factorization 5 =
(2− i)(2 + i). Here is another example. For any odd prime p 6= 19,

Z[
√

19]/〈p〉 ≈ Z[X]/〈p,X2 − 19〉 ≈ Fp[X]/〈X2 − 19〉,
and this ring decomposes if (19/p) = 1. For example, (19/5) = 1 because 22 = 4 =

19 mod 5, and so we compute that in Z[
√

19],

〈5,
√

19− 2〉 · 〈5,
√

19 + 2〉 = 〈52, 5(
√

19− 2), 5(
√

19 + 2), 15〉 = 5Z[
√

19].

Here we have factored the ideal 5Z[
√

19] without factoring the element 5 itself.
Similarly, letting q be an odd prime and Φq(X) the qth cyclotomic polyno-

mial (the smallest monic polynomial over Z satisfied by ζq), compute for any odd
prime p 6= q,

Z[ζq]/〈p〉 ≈ Z[X]/〈p,Φq(X)〉 ≈ Fp[X]/〈Φq(X)〉.
Thus if

Φq(X) =

g∏
i=1

ϕi(X)ei in Fp[X]

then the Sun Ze Theorem gives the corresponding ring decomposition

Z[ζq]/〈p〉 ≈
g∏

i=1

Fp[X]/〈ϕi(X)ei〉,

and plausibly this decomposition somehow indicates the decomposition of p in Z[ζq].
Factoring Φq(X) in Fp[X] is a finite problem, so these methods finite-ize the deter-
mination of how p decomposes in Z[ζq].


