MATH 361: NUMBER THEORY - TENTH LECTURE

The subject of this lecture is finite fields.

1. Root Fields

Let \mathbf{k} be any field, and let $f(X) \in \mathbf{k}[X]$ be irreducible and have positive degree. We want to construct a field \mathbb{K} containing \mathbf{k} in which f has a root. To do so, consider the quotient ring

$$
R=\mathbf{k}[X] /\langle f\rangle,
$$

where $\langle f\rangle$ is the principal ideal $f(X) \mathbf{k}[X]$ of $\mathbf{k}[X]$. That is, R is the usual ring of polynomials over \mathbf{k} subject to the additional rule $f(X)=0$. Specifically, the ring-elements are cosets and the operations are

$$
\begin{aligned}
& (g+\langle f\rangle)+(h+\langle f\rangle)=(g+h)+\langle f\rangle, \\
& (g+\langle f\rangle)(h+\langle f\rangle)=g h+\langle f\rangle .
\end{aligned}
$$

The fact that f is irreducible gives R the structure of a field, not only a ring. The only matter in question is multiplicative inverses. To see that they exist, consider a nonzero element of R,

$$
g+\langle f\rangle \neq\langle f\rangle
$$

This nonzeroness condition is $g \notin\langle f\rangle$, i.e., $f \nmid g$. So $(f, g)=1$ because f is irreducible, and so there exist $F, G \in \mathbf{k}[X]$ such that

$$
F f+G g=1
$$

Equivalently, $f \mid G g-1$, i.e., $G g-1 \in\langle f\rangle$, so that

$$
G g+\langle f\rangle=1+\langle f\rangle \quad \text { in } R .
$$

That is,

$$
(G+\langle f\rangle)(g+\langle f\rangle)=1+\langle f\rangle \quad \text { in } R
$$

showing that $G+\langle f\rangle$ inverts $g+\langle f\rangle$ in R.
Now use the field R to create a set \mathbb{K} of symbols that contains \mathbf{k} and is in bijective correspondence with R. That is, there is a bijection

$$
\sigma: R \xrightarrow{\sim} \mathbb{K}, \quad \sigma(a+\langle f\rangle)=a \text { for all } a \in \mathbf{k}
$$

Endow \mathbb{K} with addition and multiplication operations that turn the set bijection into a field isomorphism. The operations on \mathbb{K} thus extend the operations on \mathbf{k}. Name a particular element of \mathbb{K},

$$
r=\sigma(X+\langle f\rangle)
$$

Then

$$
\begin{aligned}
f(r) & =f(\sigma(X+\langle f\rangle)) & & \text { by definition of } r \\
& =\sigma(f(X+\langle f\rangle)) & & \text { because algebra passes through } \sigma \\
& =\sigma(f(X)+\langle f\rangle) & & \text { because } R \text { inherits its algebra from } \mathbf{k}[X] \\
& =\sigma(\langle f\rangle) & & \text { because } f(X) \in\langle f\rangle \\
& =0 & & \text { by construction of } \sigma .
\end{aligned}
$$

Thus \mathbb{K} is a superfield of \mathbf{k} containing an element r such that $f(r)=0$.
For example, because the polynomial $f(X)=X^{3}-2$ is irreducible over \mathbb{Q}, the corresponding quotient ring

$$
R=\mathbb{Q}[X] /\left\langle X^{3}-2\right\rangle=\left\{a+b X+c X^{2}+\left\langle X^{3}-2\right\rangle: a, b, c \in \mathbb{Q}\right\}
$$

is a field. And from R we construct a field (denoted $\mathbb{Q}(r)$ or $\mathbb{Q}[r]$) such that $r^{3}=2$. Yes, we know that there exist cube roots of 2 in the superfield \mathbb{C} of \mathbb{Q}, but the construction given here is purely algebraic and makes no assumptions about the nature of the starting field \mathbf{k} to which we want to adjoin a root of a polynomial.

2. Splitting FieldS

Again let \mathbf{k} be a field and consider a nonunit polynomial $f(X) \in \mathbf{k}[X]$. We can construct an extension field

$$
\mathbf{k}_{1}=\mathbf{k}\left(r_{1}\right)
$$

where r_{1} satisfies some irreducible factor of f. Thus

$$
f(X)=\left(X-r_{1}\right) f_{2}(X) \quad \text { in } \mathbf{k}_{1}[X] .
$$

We can construct an extension field

$$
\mathbf{k}_{2}=\mathbf{k}_{1}\left(r_{2}\right)=\mathbf{k}\left(r_{1}, r_{2}\right)
$$

where r_{2} satisfies some irreducible factor of f_{2}. Continue in this fashion until reaching a field where the original polynomial f factors down to linear terms. The resulting field is the splitting field of \mathbf{f} over \mathbf{k}, denoted

$$
\operatorname{spl}_{\mathbf{k}}(f)
$$

Continuing the example of the previous section, compute that

$$
\frac{X^{3}-2}{X-r}=X^{2}+r X+r^{2} \quad \text { in } \mathbb{Q}(r)[X] .
$$

Let $s=r t$ where $t^{3}=1$ but $t \neq 1$. Then, working in $\mathbb{Q}(r, t)$ we have

$$
s^{2}+r s+r^{2}=r^{2} t^{2}+r^{2} t+r^{2}=r^{2}\left(t^{2}+t+1\right)=r^{2} \cdot 0=0
$$

Thus $s=r t$ satisfies the polynomial $X^{2}+r X+r^{2}$, and now compute that

$$
\frac{X^{2}+r X+r^{2}}{X-r t}=X-r t^{2} \quad \text { in } \mathbb{Q}(r, t)[X]
$$

That is,

$$
X^{3}-2=(X-r)(X-r t)\left(X-r t^{2}\right) \in \mathbb{Q}(r, t)[X]
$$

showing that

$$
\operatorname{spl}_{\mathbb{Q}}\left(X^{3}-2\right)=\mathbb{Q}(r, t)
$$

3. Examples of Finite Fields

We already know the finite fields

$$
\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}, \quad p \text { prime }
$$

For any positive integer n we can construct the extension field

$$
\mathbb{K}=\operatorname{spl}_{\mathbb{F}_{p}}\left(X^{p^{n}}-X\right)
$$

Furthermore, the roots of $X^{p^{n}}-X$ in \mathbb{K} form a subfield of \mathbb{K}. To see this, check that if $a^{p^{n}}=a$ and $b^{p^{n}}=b$ then

$$
\begin{aligned}
(a b)^{p^{n}} & =a^{p^{n}} b^{p^{n}}=a b \\
(a+b)^{p^{n}} & =a^{p^{n}}+b^{p^{n}}=a+b \\
\left(a^{-1}\right)^{p^{n}} & =\left(a^{p^{n}}\right)^{-1}=a^{-1} \text { if } a \neq 0 \\
(-a)^{p^{n}} & =(-1)^{p^{n}} a^{p^{n}}=-a(\text { even if } p=2)
\end{aligned}
$$

The modulo p result that $(a+b)^{p}=a^{p}+b^{p}$ is sometimes called the freshman's dream, but this derisive label can distract a person from appreciating the important idea that raising to the pth power is a ring homomorphism in characteristic p that doesn't exist in characteristic 0 . In any case, the splitting field \mathbb{K} consists of exactly the roots of $X^{p^{n}}-X$. The roots are distinct because the derivative

$$
\left(X^{p^{n}}-X\right)^{\prime}=-1
$$

is nonzero, precluding multiple roots. Altogether, \mathbb{K} contains p^{n} elements. We give it a name,

$$
\mathbb{F}_{q}=\operatorname{spl}_{\mathbb{F}_{p}}\left(X^{p^{n}}-X\right) \quad \text { where } q=p^{n}
$$

4. Exhaustiveness of the Examples

In fact the fields

$$
\mathbb{F}_{q}, \quad q=p^{n}, n \geq 1
$$

are the only finite fields, up to isomorphism. To see this, let \mathbb{K} be a finite field. The natural homomorphism

$$
\mathbb{Z} \longrightarrow \mathbb{K}, \quad n \longmapsto n \cdot 1_{\mathbb{K}}
$$

has for its kernel an ideal $I=n \mathbb{Z}$ of \mathbb{Z} such that

$$
\mathbb{Z} / I \hookrightarrow \mathbb{K}
$$

and so \mathbb{Z} / I is a finite integral domain. This forces $I=p \mathbb{Z}$ for some prime p, and so

$$
\mathbb{F}_{p} \hookrightarrow \mathbb{K}
$$

Identify \mathbb{F}_{p} with its image in \mathbb{K}. Then \mathbb{K} is a finite-dimensional vector space over \mathbb{F}_{p}, so that $|\mathbb{K}|=p^{n}$ for some n. Every nonzero element $x \in \mathbb{K}^{\times}$satisfies the condition $x^{p^{n}-1}=1$, and so every element $x \in \mathbb{K}$ satisfies the condition $x^{p^{n}}=x$. In sum, $\mathbb{K}=\mathbb{F}_{q}$ up to isomorphism where again $q=p^{n}$.

5. Containments of Finite Fields

A natural question is:

$$
\text { For which } m, n \in \mathbb{Z}^{+} \text {do we have } \mathbb{F}_{p^{m}} \subset \mathbb{F}_{p^{n}} \text { ? }
$$

Assuming that the containment holds, the larger field is a vector space over the smaller one, and so $p^{n}=\left(p^{m}\right)^{d}=p^{m d}$ for some d, showing that $m \mid n$. Conversely, if $m \mid n$ then $p^{m}-1 \mid p^{n}-1$ by the finite geometric sum formula, their quotient being $q=\sum_{i=0}^{n / m-1} p^{m i}$, and then in turn

$$
X^{p^{n}-1}-1=\left(X^{p^{m}-1}-1\right) \sum_{i=0}^{q-1} X^{\left(p^{m}-1\right) i}
$$

That is, $X^{p^{m}-1}-1 \mid X^{p^{n}-1}-1$, and so $\mathbb{F}_{p^{m}} \subset \mathbb{F}_{p^{n}}$. Altogether,

$$
\mathbb{F}_{p^{m}} \subset \mathbb{F}_{p^{n}} \Longleftrightarrow m \mid n .
$$

For instance, \mathbb{F}_{27} is not a subfield of \mathbb{F}_{81}.

6. Cyclic Structure

For any prime power $q=p^{n}$, the unit group \mathbb{F}_{q}^{\times}is cyclic. The proof is exactly the same as for $\mathbb{F}_{p}^{\times}=(\mathbb{Z} / p \mathbb{Z})^{\times}$. One argument is to quote the structure theorem for finitely-generated abelian groups. Alternatively, note that for any divisor d of $q-1$,

$$
X^{q-1}-1=\left(X^{d}-1\right) \sum_{i=0}^{(q-1) / d-1} X^{d i}
$$

and the left side has a full contingent of $q-1$ roots in \mathbb{F}_{q}, forcing each factor on the right to have as many roots as its degree, so that in particular the first factor has d roots. Now factor $q-1$,

$$
q-1=\prod r^{e_{r}}
$$

For each prime factor $r, X^{r^{e}}-1$ has r^{e} roots and $X^{r^{e-1}}-1$ has r^{e-1} roots, showing that there are $\phi\left(r^{e}\right)$ roots of order r^{e}. Thus there are $\phi(q-1)$ elements of order $q-1$ in \mathbb{F}_{q}. That is, \mathbb{F}_{q}^{\times}has $\phi(q-1)$ generators.

7. ExAMPLES

To construct the field of $9=3^{2}$ elements we need an irreducible polynomial of degree 2 over \mathbb{F}_{3}. The polynomial $X^{2}+1$ will do. Thus up to isomorphism,

$$
\mathbb{F}_{9}=\mathbb{F}_{3}[X] /\left\langle X^{2}+1\right\rangle
$$

Here we have created \mathbb{F}_{9} by adjoining a square root of -1 to \mathbb{F}_{3}.
To construct the field of $16=2^{4}$ elements we need an irreducible polynomial of degree 4 over \mathbb{F}_{2}.

Note that the principle no roots implies irreducible is valid only for polynomials of degree 2 and 3 . For example, a quartic polynomial can have two quadratic factors.

The polynomial $X^{4}+X+1$ works: it has no roots, and it doesn't factor into two quadratic terms because (recalling that $2=0$ here)

$$
\left(X^{2}+a X+1\right)\left(X^{2}+b X+1\right)=X^{4}+(a+b) X^{3}+a b X^{2}+(a+b) X+1
$$

Thus, again up to isomorphism,

$$
\begin{aligned}
\mathbb{F}_{16} & =\mathbb{F}_{2}[X] /\left\langle X^{4}+X+1\right\rangle \\
& =\mathbb{F}_{2}(r) \text { where } r^{4}+r+1=0 \\
& =\left\{a+b r+c r^{2}+d r^{3}: a, b, c, d \in \mathbb{F}_{2}\right\}
\end{aligned}
$$

8. A Remarkable Polynomial Factorization

Fix a prime p and a positive integer n. To construct the field $\mathbb{F}_{p^{n}}$, we need an irreducible monic polynomial of degree n over \mathbb{F}_{p}. Are there such? How do we find them?

For any $d \geq 1$, let $\mathrm{MI}_{p}(d)$ denote the set of monic irreducible polynomials over \mathbb{F}_{p} of degree d. We will show that

$$
X^{p^{n}}-X=\prod_{d \mid n} \prod_{f \in \mathrm{MI}_{p}(d)} f(X) \quad \text { in } \mathbb{F}_{p}[X]
$$

To establish the identity, let $F_{n}(X)=X^{p^{n}}-X$, so that the field $\mathbb{F}_{p^{n}}$ consists of a set of roots of F_{n}. The polynomial $F_{n}(X)$ factors uniquely in $\mathbb{F}_{p}[X]$ as a product of monic irreducibles of positive degree, with no repeat factors because $F_{n}^{\prime}(X)=-1$.

- Each monic irreducible factor f of F_{n}, lying in $\mathrm{MI}_{p}(d)$ for some d, has a root α in $\mathbb{F}_{p^{n}}$, and the subfield $\mathbb{F}_{p}(\alpha)$ of $\mathbb{F}_{p^{n}}$ has order p^{d}. Thus d divides n.
- Conversely, for each divisor d of n and each $f \in \operatorname{MI}_{p}(d)$, each root α of f generates a field $\mathbb{F}_{p}(\alpha)$ of order p^{d}; so $\alpha^{p^{d}-1}=1$, from which $\alpha^{p^{n}-1}=1$ because $p^{d}-1 \mid p^{n}-1$, giving $F_{n}(\alpha)=0$. Thus f divides F_{n}.
To count the monic irreducible polynomials over \mathbb{F}_{p} of a given degree, take the degrees of both sides of the identity

$$
X^{p^{n}}-X=\prod_{d \mid n} \prod_{f \in \mathrm{MI}_{p}(d)} f(X) \quad \text { in } \mathbb{F}_{p}[X]
$$

to get

$$
p^{n}=\sum_{d \mid n} d \cdot\left|\operatorname{MI}_{p}(d)\right|
$$

By Möbius inversion, with μ the Möbius function as usual,

$$
\left|\mathrm{MI}_{p}(n)\right|=\frac{1}{n} \sum_{d \mid n} \mu(n / d) p^{d}
$$

The sum on the right side is positive because it is a base- p expansion with top term p^{n} and the coefficients of the lower powers of p all in $\{0, \pm 1\}$. So $\left|\mathrm{MI}_{p}(n)\right|>0$ for all $n>0$. That is, there do exist monic irreducible polynomials of every degree over every field \mathbb{F}_{p}.

For example, taking $p=2$ and $n=3$,

$$
\begin{aligned}
X^{8}-X=X\left(X^{7}-1\right) & =X(X-1)\left(X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1\right) \\
& =X(X-1)\left(X^{3}+X^{2}+1\right)\left(X^{3}+X+1\right) \bmod 2
\end{aligned}
$$

a product of two linear factors and two cubic factors. And the counting formula from the previous section gives the results that it must,

$$
\begin{aligned}
\left|\mathrm{MI}_{2}(1)\right| & =\frac{1}{1} \mu(1) 2^{1}=2 \\
\left|\mathrm{MI}_{2}(3)\right| & =\frac{1}{3}\left(\mu(1) 2^{3}+\mu(3) 2^{1}\right)=\frac{1}{3}(8-2)=2 .
\end{aligned}
$$

Similarly, taking $p=3$ and $n=2$,

$$
\begin{aligned}
X^{9}-X & =X\left(X^{8}-1\right)=X\left(X^{4}+1\right)\left(X^{2}+1\right)(X+1)(X-1) \\
& =X(X-1)(X+1)\left(X^{2}+1\right)\left(X^{2}+X-1\right)\left(X^{2}-X-1\right) \bmod 3
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\mathrm{MI}_{3}(1)\right| & =\frac{1}{1} \mu(1) 3^{1}=3 \\
\left|\mathrm{MI}_{3}(2)\right| & =\frac{1}{2}\left(\mu(1) 3^{2}+\mu(3) 3^{1}\right)=\frac{1}{2}(9-3)=3 .
\end{aligned}
$$

9. Common Errors

The finite field \mathbb{F}_{q} where $q=p^{n}$ is neither of the algebraic structures $\mathbb{Z} / q \mathbb{Z}$ and $(\mathbb{Z} / p \mathbb{Z})^{n}$ as a ring. As a vector space, $\mathbb{F}_{q}=\mathbb{F}_{p}^{n}$, but the ring (multiplicative) structure of \mathbb{F}_{q} is not that of $\mathbb{Z} / q \mathbb{Z}$ or of $(\mathbb{Z} / p \mathbb{Z})^{n}$.

The finite field $\mathbb{F}_{p^{m}}$ is not a subfield of $\mathbb{F}_{p^{n}}$ unless $m \mid n$, in which case it is.

10. Primes in Extensions

We return to a question from the very first lecture: Does a given odd prime p factor or remain prime in the Gaussian integer ring $\mathbb{Z}[i]$? Equivalently, is the quotient ring $\mathbb{Z}[i] / p \mathbb{Z}[i]=\mathbb{Z}[i] /\langle p\rangle$ an integral domain? Compute,

$$
\mathbb{Z}[i] /\langle p\rangle \approx \mathbb{Z}[X] /\left\langle p, X^{2}+1\right\rangle \approx \mathbb{F}_{p}[X] /\left\langle X^{2}+1\right\rangle
$$

Thus the question is whether $X^{2}+1$ is reducible or irreducible in $\mathbb{F}_{p}[X]$, which is to say whether the Legendre symbol $(-1 / p)$ is 1 or -1 . By Euler's Criterion, $(-1 / p)=(-1)^{(p-1) / 2}$, so the $1 \bmod 4$ primes p factor in $\mathbb{Z}[i]$ while the $3 \bmod 4$ primes p don't. Returning to quotient ring structure, we have shown that

$$
\mathbb{Z}[i] /\langle p\rangle \approx \mathbb{F}_{p}[X] /\langle X-r\rangle \times \mathbb{F}_{p}[X] /\langle X+r\rangle, \quad p=1 \bmod 4
$$

where $r^{2}=-1 \bmod p$. Take, for example, $p=5$, and create two ideals of $\mathbb{Z}[i]$ modeled on the two polynomial ideals in the previous display with $r=2$.

$$
I_{1}=\langle 5, i-2\rangle, \quad I_{2}=\langle 5, i+2\rangle .
$$

Their product is generated by the pairwise products of their generators,

$$
I_{1} I_{2}=\left\langle 5^{2}, 5(i-2), 5(i+2),-5\right\rangle
$$

Each generator of $I_{1} I_{2}$ is a multiple of 5 in $\mathbb{Z}[i]$, and 5 is a $\mathbb{Z}[i]$-linear combination of the generators. That is, the methods being illustrated here have factored 5 as an ideal of $\mathbb{Z}[i]$,

$$
I_{1} I_{2}=5 \mathbb{Z}[i]
$$

The previous example deliberately overlooks the elementwise factorization $5=$ $(2-i)(2+i)$. Here is another example. For any odd prime $p \neq 19$,

$$
\mathbb{Z}[\sqrt{19}] /\langle p\rangle \approx \mathbb{Z}[X] /\left\langle p, X^{2}-19\right\rangle \approx \mathbb{F}_{p}[X] /\left\langle X^{2}-19\right\rangle
$$

and this ring decomposes if $(19 / p)=1$. For example, $(19 / 5)=1$ because $2^{2}=4=$ $19 \bmod 5$, and so we compute that in $\mathbb{Z}[\sqrt{19}]$,

$$
\langle 5, \sqrt{19}-2\rangle \cdot\langle 5, \sqrt{19}+2\rangle=\left\langle 5^{2}, 5(\sqrt{19}-2), 5(\sqrt{19}+2), 15\right\rangle=5 \mathbb{Z}[\sqrt{19}]
$$

Here we have factored the ideal $5 \mathbb{Z}[\sqrt{19}]$ without factoring the element 5 itself.
Similarly, letting q be an odd prime and $\Phi_{q}(X)$ the q th cyclotomic polynomial (the smallest monic polynomial over \mathbb{Z} satisfied by ζ_{q}), compute for any odd prime $p \neq q$,

$$
\mathbb{Z}\left[\zeta_{q}\right] /\langle p\rangle \approx \mathbb{Z}[X] /\left\langle p, \Phi_{q}(X)\right\rangle \approx \mathbb{F}_{p}[X] /\left\langle\Phi_{q}(X)\right\rangle
$$

Thus if

$$
\Phi_{q}(X)=\prod_{i=1}^{g} \varphi_{i}(X)^{e_{i}} \quad \text { in } \mathbb{F}_{p}[X]
$$

then the Sun Ze Theorem gives the corresponding ring decomposition

$$
\mathbb{Z}\left[\zeta_{q}\right] /\langle p\rangle \approx \prod_{i=1}^{g} \mathbb{F}_{p}[X] /\left\langle\varphi_{i}(X)^{e_{i}}\right\rangle
$$

and plausibly this decomposition somehow indicates the decomposition of p in $\mathbb{Z}\left[\zeta_{q}\right]$. Factoring $\Phi_{q}(X)$ in $\mathbb{F}_{p}[X]$ is a finite problem, so these methods finite-ize the determination of how p decomposes in $\mathbb{Z}\left[\zeta_{q}\right]$.

