MATH 361: NUMBER THEORY — TENTH LECTURE

The subject of this lecture is finite fields.

1. Root FIELDS

Let k be any field, and let f(X) € k[X] be irreducible and have positive degree.
We want to construct a field K containing k in which f has a root. To do so,
consider the quotient ring

R = K[X]/(f),

where (f) is the principal ideal f(X)k[X] of k[X]. That is, R is the usual ring
of polynomials over k subject to the additional rule f(X) = 0. Specifically, the
ring-elements are cosets and the operations are

(g+ () +(h+(f)=(g+h)+(f),
(g + (N +(f) = gh+(f)-

The fact that f is irreducible gives R the structure of a field, not only a ring. The
only matter in question is multiplicative inverses. To see that they exist, consider
a nonzero element of R,

g+ (f) # (f)-

This nonzeroness condition is g ¢ (f), i.e., f t g. So (f,g9) = 1 because f is
irreducible, and so there exist F, G € k[X] such that

Ff+Gg=1.
Equivalently, f | Gg — 1, i.e., Gg — 1 € (f), so that
Gg+ (f)=14+(f) inR.
That is,

G+ U+ ) =1+(f) iR,

showing that G + (f) inverts g + (f) in R.
Now use the field R to create a set K of symbols that contains k and is in bijective
correspondence with R. That is, there is a bijection

o:R—=K, ola+(f)) =aforalack.

Endow K with addition and multiplication operations that turn the set bijection
into a field isomorphism. The operations on K thus extend the operations on k.
Name a particular element of K,

r=o(X +(f)).
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(f))) by definition of r

))) because algebra passes through o
X)+(f)) Dbecause R inherits its algebra from k[X]
() because f(X) € {f)

by construction of o.
Thus K is a superfield of k containing an element » such that f(r) = 0.

For example, because the polynomial f(X) = X3 — 2 is irreducible over Q, the
corresponding quotient ring

R=Q[X]/(X?—-2)={a+bX +cX?+ (X3 —-2):a,b,ccQ}

is a field. And from R we construct a field (denoted Q(r) or Q[r]) such that 3 = 2.
Yes, we know that there exist cube roots of 2 in the superfield C of Q, but the
construction given here is purely algebraic and makes no assumptions about the
nature of the starting field k to which we want to adjoin a root of a polynomial.

2. SPLITTING FIELDS

Again let k be a field and consider a nonunit polynomial f(X) € k[X]. We can
construct an extension field
k1 = k(’l“l)7
where r; satisfies some irreducible factor of f. Thus
f(X)=(X —r)fo(X) in ky[X].
We can construct an extension field
k2 = k1(7"2) = k(?"l,?"g),

where 7o satisfies some irreducible factor of f,. Continue in this fashion until
reaching a field where the original polynomial f factors down to linear terms. The
resulting field is the splitting field of f over k, denoted

spli(f)-

Continuing the example of the previous section, compute that
X3 -2

X—r

Let s = 7t where t> = 1 but ¢ # 1. Then, working in Q(r,t) we have

=X?4+rX +7? in Q(r)[X].

sSEtrs+ri=r it =2 (P +t+ 1) =1r*-0=0,
Thus s = rt satisfies the polynomial X2 + rX + 72, and now compute that
X2 4rX 412
% — X —rf inQr1)X].

That is,
X3 2= (X —r)(X —rt)(X —rt?) € Q(r,t)[X],
showing that
spl@(X3 —2)=Q(r,t).
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3. EXAMPLES OF FINITE FIELDS

We already know the finite fields
F, =Z/pZ, p prime.
For any positive integer n we can construct the extension field
K = sply (X*" — X).

Furthermore, the roots of X?" — X in K form a subfield of K. To see this, check
that if a?” = @ and b*" = b then

(a b)p =a”" V" = ab,
(a+ )p =a” +"" =a+b,
(@) = (@) P =a"ifa#0,

a)

n n

P = (=1)P"aP" = —a (even if p = 2).

(=

The modulo p result that (a+b)P = aP+bP is sometimes called the freshman’s dream,
but this derisive label can distract a person from appreciating the important idea
that raising to the pth power is a ring homomorphism in characteristic p that doesn’t
exist in characteristic 0. In any case, the splitting field K consists of exactly the
roots of X?" — X. The roots are distinct because the derivative

(XP" - X) =-1

is nonzero, precluding multiple roots. Altogether, K contains p™ elements. We give
it a name,

F, = splIFp(Xpn — X) where ¢ =p".

4. EXHAUSTIVENESS OF THE EXAMPLES
In fact the fields
Fy, g=p", n>1

are the only finite fields, up to isomorphism. To see this, let K be a finite field.
The natural homomorphism

7Z—K, nr—n-lg
has for its kernel an ideal I = nZ of Z such that
Z]I — K,
and so Z/I is a finite integral domain. This forces I = pZ for some prime p, and so
F, — K.

Identify F, with its image in K. Then K is a finite-dimensional vector space over I,
so that |K| = p™ for some n. Every nonzero element x € K* satisfies the condition
2P"~1 = 1, and so every element = € K satisfies the condition 2" = z. In sum,

K = F, up to isomorphism where again ¢ = p".
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5. CONTAINMENTS OF FINITE FIELDS

A natural question is:
For which m,n € Z* do we have Fym C Fyn ?

Assuming that the containment holds, the larger field is a vector space over the
smaller one, and so p" = (p™)¢ = p™? for some d, showing that m | n. Conversely,
if m | n then p™ — 1 | p™ — 1 by the finite geometric sum formula, their quotient

being ¢ = Z;L:/gn_lpmi, and then in turn
qg—1
XV o= (X o) Yy X
i=0

That is, X" ~! — 1| X?" ! — 1, and so F,m C F,n. Altogether,

Fm CEpn <= m|n.
For instance, [%7 is not a subfield of Fg;.

6. CYCLIC STRUCTURE

For any prime power ¢ = p", the unit group F is cyclic. The proof is exactly
the same as for F) = (Z/pZ)*. One argument is to quote the structure theorem for
finitely-generated abelian groups. Alternatively, note that for any divisor d of ¢ —1,

(a-D/d=1
Xt o1=(x4-1 Y X%

1=0

and the left side has a full contingent of ¢ — 1 roots in F,;, forcing each factor on
the right to have as many roots as its degree, so that in particular the first factor
has d roots. Now factor ¢ — 1,

q—1= H rér.

For each prime factor #, X”* —1 has 7€ roots and X' —1 hasre! roots, showing
that there are ¢(r¢) roots of order r¢. Thus there are ¢(g—1) elements of order g—1
in F,. That is, F* has ¢(q — 1) generators.

7. EXAMPLES

To construct the field of 9 = 3% elements we need an irreducible polynomial of
degree 2 over F;. The polynomial X2 + 1 will do. Thus up to isomorphism,

Fy = Fs[X]/(X? +1).

Here we have created Fy by adjoining a square root of —1 to Fs.
To construct the field of 16 = 2* elements we need an irreducible polynomial of
degree 4 over F.

Note that the principle no roots implies irreducible is valid only for
polynomials of degree 2 and 3. For example, a quartic polynomial
can have two quadratic factors.
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The polynomial X* + X + 1 works: it has no roots, and it doesn’t factor into two
quadratic terms because (recalling that 2 = 0 here)

(X?+aX+1D)(X?2+bX +1) = X"+ (a+b) X3+ abX? + (a +b)X + 1.
Thus, again up to isomorphism,
Fig =F[X]/(X*+ X +1)
=Fy(r) where r* +7r+1=0
={a+br+ter?+dr®:abcdeR}.

8. A REMARKABLE POLYNOMIAL FACTORIZATION

Fix a prime p and a positive integer n. To construct the field F,», we need an
irreducible monic polynomial of degree n over F,. Are there such? How do we find
them?

For any d > 1, let MI,(d) denote the set of monic irreducible polynomials over F,
of degree d. We will show that

x"-x=1] JI r&x) nE[X]

dln fEMI,(d)

To establish the identity, let F,,(X) = X?" — X, so that the field F,» consists of a
set of roots of F},. The polynomial F,,(X) factors uniquely in F,[X] as a product of
monic irreducibles of positive degree, with no repeat factors because F), (X) = —1.

e Each monic irreducible factor f of F,,, lying in MI,(d) for some d, has a
root « in Fyn, and the subfield F, () of F,» has order p?. Thus d divides n.
o Conversely, for each divisor d of n and each f € MI,(d), each root « of f

generates a field F,(a) of order p?; so o'~ = 1, from which a?" "1 = 1
because p? — 1 | p" — 1, giving F,,(a) = 0. Thus f divides F,.
To count the monic irreducible polynomials over F, of a given degree, take the
degrees of both sides of the identity

x-x=1] [I r&) nE[X]
din feMI,(d)
to get

= d- ML (d)]
d|
By Mobius inversion, with p the Mobius function as usual,

ML ()| = = 3 /)y
d|n

The sum on the right side is positive because it is a base-p expansion with top
term p" and the coefficients of the lower powers of p all in {0,+1}. So |[MI,(n)| > 0
for all n > 0. That is, there do exist monic irreducible polynomials of every degree
over every field F,.

For example, taking p = 2 and n = 3,
XX =XX"-1)=XX-DX+X°+ X'+ X*+ X2+ X +1)
=X(X-1D)(X*+X*+1)(X®+ X +1) mod 2,
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a product of two linear factors and two cubic factors. And the counting formula
from the previous section gives the results that it must,

1
MI(1)] = $u(1)2 =2,

ML) = 5 (6(1)2° + p(3)2') = 5(8-2) =2
Similarly, taking p = 3 and n = 2,
XP-X=XX*-1)=XX*"+D)(X*+ D)X +1)(X -1
= XX -DX+D)(X2+1D)(X*+ X - 1)(X? =X — 1) mod 3,

and

1
MI(1)] = £(1)3" =3,

MIy(2)] = 5 (u(1)8” + u(3)3") = 29— 3) =3

9. CoMMON ERRORS

The finite field F, where ¢ = p™ is neither of the algebraic structures Z/qZ
and (Z/pZ)" as a ring. As a vector space, I}, = !, but the ring (multiplicative)
structure of I, is not that of Z/¢Z or of (Z/pZ)™.

The finite field F,m is not a subfield of F,» unless m | n, in which case it is.

10. PRIMES IN EXTENSIONS

We return to a question from the very first lecture: Does a given odd prime p
factor or remain prime in the Gaussian integer ring Z[i]? Equivalently, is the
quotient ring Z[i]/pZ[i] = Z[i]/(p) an integral domain? Compute,

Zli)/{p) = Z[X]/{p. X* + 1) = F,[X]/(X* +1).

Thus the question is whether X2 + 1 is reducible or irreducible in F,[X], which
is to say whether the Legendre symbol (—1/p) is 1 or —1. By Euler’s Criterion,
(=1/p) = (=1)P=Y/2 50 the 1 mod 4 primes p factor in Z[i] while the 3 mod 4
primes p don’t. Returning to quotient ring structure, we have shown that

Z[i)/(p) = B[ X]/(X —r) x E,[X]/(X +7), p=1mod4,
where 72 = —1modp. Take, for example, p = 5, and create two ideals of Z][i]
modeled on the two polynomial ideals in the previous display with r = 2.

I = (5,i—2), I, = (5,i+2).
Their product is generated by the pairwise products of their generators,
LI, = (5%,5(i — 2),5(i + 2), —5).

Each generator of I1 I, is a multiple of 5 in Z[i], and 5 is a Z[i]-linear combination
of the generators. That is, the methods being illustrated here have factored 5 as
an ideal of Z[i],

L1, = 57]i).
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The previous example deliberately overlooks the elementwise factorization 5 =
(2 —14)(2+14). Here is another example. For any odd prime p # 19,
ZIV19]/(p) =~ Z[X]/(p, X — 19) = F,[X]/(X* — 19),
and this ring decomposes if (19/p) = 1. For example, (19/5) = 1 because 22 = 4 =
19mod 5, and so we compute that in Z[/19],
(5,V19 — 2) - (5, V19 4+ 2) = (5%, 5(V19 — 2),5(V/19 + 2), 15) = 5Z[V19].

Here we have factored the ideal 5Z[v/19] without factoring the element 5 itself.
Similarly, letting ¢ be an odd prime and ®4,(X) the gth cyclotomic polyno-
mial (the smallest monic polynomial over Z satisfied by (;), compute for any odd
prime p # g,
Z[G]/ (p) = Z[X]/(p, ¢(X)) = B[ X]/(Dg(X).
Thus if

@,(X) = [[e:(X) i BLx]

then the Sun Ze Theorem gives the corresponding ring decomposition
g
211/ (p) ~ [[ B IX)/ (o (X)),
i=1

and plausibly this decomposition somehow indicates the decomposition of p in Z[(,].
Factoring ®,(X) in F,[X] is a finite problem, so these methods finite-ize the deter-
mination of how p decomposes in Z[(,].



