
MATH 361: NUMBER THEORY — EIGHTH LECTURE:

QUADRATIC RECIPROCITY

Quadratic reciprocity is the first result of modern number theory. Motivated by
specific problems, Euler and others worked on the quadratic reciprocity law in the
1700’s, as described in texts such as David Cox’s Primes of the form x2 + ny2

and Franz Lemmermeyer’s Reciprocity Laws, but it was first proven by Gauss
in 1796. From a naive viewpoint, there is no apparent reason for it to be true, but
now we recognize it as the first of a family of reciprocity laws, themselves part of
class field theory, itself part of the famous Langlands program.

Results up to now in the course, such as the Sun Ze Theorem, the cyclic struc-
ture of (Z/pZ)×, or Hensel’s Lemma may have been pleasing, but they have been
essentially unsurprising . By contrast, the quadratic reciprocity is surprising.

Thanks to the results mentioned in the previous paragraph, we have essentially
reduced the general congruence in one variable to the case of prime modulus

f(X) ≡ 0 mod p, p prime.

Here f is understood to be a polynomial with integer coefficients. If f has degree 1
then we have a fairly complete theory.

The next case is that f has degree 2, i.e., f is quadratic. Assuming that p is
odd (i.e., excluding p = 2), the general quadratic congruence modulo p reduces as
in high school algebra to

X2 ≡ a mod p.

So the question is, for a fixed odd prime p, whether for a given value of a, the
congruence has a solution. Clearly this depends only on a mod p, and so we may
treat a as an equivalence class modulo p. But a related question is, for a fixed
integer a, whether for a given odd prime p - a, the congruence has a solution. It
is not at all clear that this should be determined by a congruence condition on p,
but we will see that in fact it depends only on p mod 4a. This is one statement of
quadratic reciprocity.
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1. Initial definitions and results

Definition 1.1. A nonzero square in Z/pZ (i.e., a square in (Z/pZ)×) is called
a quadratic residue modulo p, or just a quadratic residue when p is clearly
understood.

Proposition 1.2. Half of the elements of (Z/pZ)× are quadratic residues.

Proof. One proof is to observe that there are at most (p− 1)/2 squares because

12 = (p− 1)2,

22 = (p− 2)2,

...(
p− 1

2

)2

=

(
p+ 1

2

)2

.

Furthermore, these squares are all distinct because for any a, b ∈ Z/pZ,

a2 = b2 =⇒ (a− b)(a+ b) = 0 =⇒ b = ±a.
This completes the argument.

For a second proof, the map (Z/pZ)× −→ (Z/pZ)× given by x 7→ x2 is an abelian
group homomorphism, and its kernel is {1, p− 1} because the polynomial equation
X2 = 1 can’t have more than two roots over the field Z/pZ. The subgroup S of
squares in (Z/pZ)× is the image of the map, isomorphic to the domain modulo the
kernel, and therefore it comprises half of (Z/pZ)× as claimed. Further, let T denote
the other coset of S in (Z/pZ)×. Because {S, T} is the quotient group (Z/pZ)×/S,
we see that

• the product of two quadratic residues is again a quadratic residue,
• the product of two quadratic nonresidues is a quadratic residue,
• and the product of a quadratic residue and a quadratic nonresidue is a

quadratic nonresidue.

A third proof is to recall that (Z/pZ)× is cyclic,

(Z/pZ)× = {g0, g1, g2, . . . , gp−2},
so that (omitting some details) the squares are precisely the even powers of the
generator g. This third argument again gives the three bullets in the previous
paragraph. �

It perhaps deserves note that in the multiplicative groups

R×+ = {positive real numbers}
and

C× = {nonzero complex numbers}
all elements are squares, while in the multiplicative group

(Z/8Z)× = {1, 3, 5, 7}
only 1 is a square. The circumstance of half the elements being squares is not
general. In any case, the obvious question now is

Which values a ∈ (Z/pZ)× are the quadratic residues?
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2. Some results proved by multiplying things together

From now on, p always denotes an odd prime.
The proof of Fermat’s Little Theorem proceeds as follows. For any a ∈ (Z/pZ)×,

observe the equality of sets (with no reference to the order in which the elements
appear)

{1, 2, 3, . . . , p− 1} = {a, 2a, 3a, . . . , (p− 1)a}.
This is because of the cancellation law in (Z/pZ)× (if xa = ya then x = y) and the
fact that (Z/pZ)× is finite. From the set equality it follows that

1 · 2 · 3 · · · (p− 1) = a · 2a · 3a · · · (p− 1)a,

which is to say,

1 · 2 · 3 · · · (p− 1) = ap−11 · 2 · 3 · · · (p− 1).

Cancel the nonzero element 1 · 2 · 3 · · · (p− 1) to get the desired result,

ap−1 = 1.

The proof of Wilson’s Theorem is very similar. Again working in (Z/pZ)×, the
product

1 · 2 · 3 · · · (p− 1)

consists of pairwise products of elements and their (multiplicative) inverses except
that each of 1 and p− 1 is its own inverse. Thus the product is p− 1, i.e., it is −1
because we are working modulo p.

The proof of Euler’s Theorem is virtually identical to the proof of Fermat’s
Theorem. Let n be any positive integer, and let a be any element of (Z/nZ)×.
From the set-equality

{b ∈ (Z/nZ)×} = {ab : b ∈ (Z/nZ)×}
we have the equality of products (recalling that ϕ(n) is by definition the number
of elements of (Z/nZ)×)∏

b∈(Z/nZ)×
b =

∏
b∈(Z/nZ)×

ab = aϕ(n)
∏

b∈(Z/nZ)×
b,

and we may cancel the product
∏
b∈(Z/nZ)× b to get

aϕ(n) = 1.

In the next section we will continue to use the idea of the three proofs reviewed
here.

3. The Legendre symbol, Euler’s lemma, and Gauss’s lemma

Let a be any integer, and let p be an odd prime. Define the Legendre symbol (a/p)
as follows: (

a

p

)
=


0 if p | a,
1 if p - a and a is a square modulo p,

−1 if p - a and a is not a square modulo p.

That is, (
a

p

)
= (the number of solutions of X2 ≡ a mod p) minus one.
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Determining the number of solutions of the congruence X2 ≡ a mod p is equivalent
to evaluating the Legendre symbol (a/p).

The definition of (a/p) instantly connotes that

As a function of its numerator, (a/p) depends only on a mod p.

Also (see the end of the proof of Proposition 1.2), the cyclic structure of (Z/pZ)×

does most of the work of showing that

As a function of its numerator, (a/p) is multiplicative.

That is, (
ab

p

)
=

(
a

p

)(
b

p

)
.

What is not at all obvious is that also, for positive a,

As a function of its denominator, (a/p) depends only on p mod 4a.

Later we will see that this is one statement of (most of) quadratic reciprocity.
Euler’s Lemma provides a formula for the Legendre symbol.

Lemma 3.1 (Euler’s Lemma). Let p be an odd prime, and let a ∈ (Z/pZ)×. Then,(
a

p

)
= a(p−1)/2.

Here we are working modulo p, i.e., we blur the distinction between the true integer
(a/p) = ±1 and the element a(p−1)/2 = ±1 + pZ of (Z/pZ)×.

Proof. Consider the polynomial factorization (in (Z/pZ)[X])

Xp−1 − 1 = (X(p−1)/2 − 1)(X(p−1)/2 + 1).

Because the left side has p − 1 roots in Z/pZ, so does the right side, and because
Z/pZ is a field, each factor of the right side has at most (p − 1)/2 roots, so each
factor on the right side has exactly (p−1)/2 roots. The (p−1)/2 squares in (Z/pZ)×

satisfy the first factor in the right side because for any square a = b2, by Fermat’s
Little Theorem,

a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1.

Therefore the (p − 1)/2 nonsquares satisfy the second factor in the right side. In
sum, for any a ∈ (Z/pZ)×,

a(p−1)/2 =

{
1 if a is a residue,

−1 if a is a nonresidue

=

(
a

p

)
.

�

Euler’s Lemma already suffices to compute the Legendre Symbol (a/p) in any
specific case, especially because we have a fast raise-to-power algorithm. For ex-
ample, for any odd prime p,(

−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.
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But Euler’s Lemma doesn’t provide structural insight to the behavior of the
Legendre symbol. A first step in that direction is provided by Gauss’s Lemma.

Lemma 3.2 (Gauss’s Lemma). Let p be an odd prime, and let a ∈ (Z/pZ)×.
Identify (Z/pZ)× with its set of representatives {1, 2, . . . , p− 1}. Consider the set

T = {a, 2a, . . . , (p−12 )a}.
Let ν be the number of elements of T that lie in {(p+ 1)/2, . . . , p− 1}. Then(

a

p

)
= (−1)ν .

Proof. No two elements of the set {1, . . . , (p−1)/2} are equal or additively opposite
in Z/pZ. Consequently, the observation that for any b, c ∈ Z/pZ,

ba = ±ca =⇒ b = ±c,
shows that also no two elements of T are equal or additively opposite in Z/pZ. Let

x1, . . . , xµ

be the elements of T that lie in {1, . . . , (p− 1)/2}, and let

x′1, . . . , x
′
ν

be the elements of T that lie in {(p + 1)/2, . . . , p − 1}. Then because no two
elements of T are equal or additively opposite in Z/pZ, we have the set equality

{x1, . . . , xµ, p− x′1, . . . , p− x′ν} = {1, 2, 3, . . . , (p− 1)/2}.
Now, in the spirit of the proofs of Fermat’s Little Theorem, Wilson’s Theorem, and
Euler’s Theorem, multiply all the elements of T to compute that

a · 2a · 3a · · · p−12 a = x1 · · ·xµ · x′1 · · ·x′ν
= (−1)νx1 · · ·xµ · (p− x′1) · · · (p− x′ν)

= (−1)ν1 · 2 · 3 · · · p−12 .

That is,

a(p−1)/2
(
p−1
2

)
! = (−1)ν

(
p−1
2

)
!.

Because the factorial is invertible, it cancels,

a(p−1)/2 = (−1)ν ,

and we are done by Euler’s Lemma. �

As an example of using Gauss’s Lemma, we compute the Legendre symbol(
−5

p

)
, p an odd prime.

That is, the a in Gauss’s Lemma is now −5, and we need to study the set

T = {−5, 2 · (−5), 3 · (−5), . . . , p−1
2 · (−5)}.

The most negative of these is less negative than −5p/2, and so to count the relevant
elements we need to intersect T with the first three “right halves” as Z/pZ repeats
ever leftward in Z. That is, we need to count the number of T -elements that fall
into the union of intervals

(−5p/2,−2p) ∪ (−3p/2,−p) ∪ (−p/2, 0).
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Using the Division Theorem, write the arbitrary prime p as

p = 20q + r, r ∈ {1, 3, 7, 9, 11, 13, 17, 19}.
(Wait, what th-?!. . . Why twenty? ) The T -elements that fall into (−p/2, 0), into
(−3p/2,−p), or into (−5p/2,−2p) take the form −5k where

0 < 5k < p/2,

p < 5k < 3p/2,

2p < 5k < 5p/2.

Multiply through by 2 to clear the denominators, and these conditions are

0 < 10k < 20q + r,

40q + 2r < 10k < 60q + 3r,

80q + 4r < 10k < 100q + 5r.

In counting the number of multiples of 10 in an interval, we may freely shift the
interval by any multiple of 10, and so the conditions simplify to

0 < 10k < 20q + r,

2r < 10k < 20q + 3r,

4r < 10k < 20q + 5r.

These conditions are

0 < 10k < r or r ≤ 10k < 20q + r,

2r < 10k < 3r or 3r ≤ 10k < 20q + 3r,

4r < 10k < 5r or 5r ≤ 10k < 20q + 5r.

We need only to count the total number ν of appropriate k-values modulo 2. And
each of the intervals [r, 20q+r), [3r, 20q+3r), [5r, 20q+5r) contains two values 10k.
And so altogether it suffices to count the k-values such that

10k ∈ (0, r) ∪ (2r, 3r) ∪ (4r, 5r).

(This is why we took p = 20q + r: in the previous display q is gone and only r
remains, so taking p = 20q + r lets us simultaneously calculate (−5/p) for all p
rather than for one p at a time. For general (a/p) we take p = 4|a|q + r, as will be
explained just below.) Now we can make a table of the possibilities as p mod 20
varies through all possibilities:

r Conditions ν (−5/p)
1 10k ∈ (0, 1) ∪ (2, 3) ∪ (4, 5) 0 1
3 10k ∈ (0, 3) ∪ (6, 9) ∪ (12, 15) 0 1
7 10k ∈ (0, 7) ∪ (14, 21) ∪ (28, 35) 2 1
9 10k ∈ (0, 9) ∪ (18, 27) ∪ (36, 45) 2 1
11 10k ∈ (0, 11) ∪ (22, 33) ∪ (44, 55) 3 −1
13 10k ∈ (0, 13) ∪ (26, 39) ∪ (52, 65) 3 −1
17 10k ∈ (0, 17) ∪ (34, 51) ∪ (68, 85) 5 −1
19 10k ∈ (0, 19) ∪ (38, 57) ∪ (76, 95) 5 −1

That is, for any odd prime p,(
−5

p

)
=

{
1 if p ≡ 1, 3, 7, 9 mod 20,

−1 if p ≡ 11, 13, 17, 19 mod 20.
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As an exercise, you should show using Gauss’s Lemma that for any odd prime p,(
2

p

)
=

{
1 if p ≡ 1, 7 mod 8,

−1 if p ≡ 3, 5 mod 8,

and then show by an elementary argument that a convenient formula encapsulating
this result is (

2

p

)
= (−1)(p

2−1)/8.

As the examples (−5/p) and (2/p) illustrate, Gauss’s Lemma is a reduce to finite
result, showing in general that the Legendre symbol (a/p) for fixed a, as p varies
through all the primes, depends only on the congruence class p + 4aZ. We prove
this next.

4. Proof that (a/p) depends only on p mod 4a

Let p be an odd prime, and let a ∈ Z be coprime to p. Consider the integer
multiples ka ∈ {a, 2a, . . . , p−12 a} of a that lie in a right half modulo p, meaning
that for some integer m,

(m− 1
2 )p < ka < mp.

Because 1 ≤ k ≤ p−1
2 , the previous display is possible only for finitely many values

of m. Because p±1
2 a = ap2 ±

a
2 , our last multiple of a and the next multiple of a

straddle an integer multiple of p/2, and so the multiples {a, 2a, . . . , p−12 a} of a can’t
stop in the middle of a right half. Thus it suffices to show that for any fixed m
out of finitely many possibilities, the parity of the number of all positive integers k
such that ka lies in the mth right half modulo p depends only on p+ 4aZ; we don’t
need to worry about the condition k ≤ p−1

2 . Write p = q4|a|+ r with 0 ≤ r < 4|a|.
The previous display, but now for one particular m, becomes

(m− 1
2 )q4|a|+ (m− 1

2 )r < ka < mq4|a|+mr,

or, letting k′ = k − (m− 1
2 )q4 sgn(a),

(m− 1
2 )r < k′a < q2|a|+mr.

Because either k′a < mr or mr ≤ k′a, this is

(m− 1
2 )r < k′a < mr or mr ≤ k′a < q2|a|+mr.

But the interval
[
mr, q2|a| + mr

)
contains 2q multiples of a, an even number of

them, and so we need only to count the parity of the number of integers k′ such
that (m− 1

2 )r < k′a < mr. This depends on r but is independent of q, as desired.

5. Two motivating examples

For our first example, consider the ring R = Z[i] of Gaussian integers. Which
primes p in the ring Z of rational integers factor further in the larger ring R? One
can verify that

2 = −i(1 + i)2,

3 doesn’t factor,

5 = (2 + i)(2− i),
7 doesn’t factor,

11 doesn’t factor,
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13 = (3 + 2i)(3− 2i),

17 = (4 + i)(4− i),
19 doesn’t factor,

23 doesn’t factor,

29 = (5 + 2i)(5− 2i),

31 doesn’t factor,

37 = (6 + i)(6− i).
Ignoring the prime 2, which is somehow behaving differently from the others, the
pattern is:

The 1 (mod 4) primes factor and the 3 (mod 4) primes do not.

That is, by our calculation immediately after Euler’s Lemma:

The Legendre symbol

(
−1

p

)
indicates how p behaves in Z[

√
−1].

For our second example, consider the ringR = Z[
√
−5], a nonunique factorization

domain. In this ring it is the ideals that factor uniquely. In particular, each rational
prime p determines an ideal pR in the ring. One can verify the factorizations, and
later we will show the non-factorizations, in the assertions that

2R = (2, (1 +
√
−5))2,

3R = (3, (1 +
√
−5)) · (3, (1−

√
−5)),

5R = (
√
−5)2,

7R = (7, (3 +
√
−5)) · (7, (3−

√
−5)),

11R doesn’t factor,

13R doesn’t factor,

17R doesn’t factor,

19R doesn’t factor,

23R = (23, (15 +
√
−5)) · (23, (15−

√
−5)),

29R = (29, (13 +
√
−5)) · (29, (13−

√
−5)),

31R doesn’t factor,

37R doesn’t factor.

This time the primes 2 and 5 are different from the others, but otherwise, it turns
out that the pattern is:

The 1, 3, 7, 9 (mod 20) primes factor, the 11, 13, 17, 19 (mod 20) primes do not.

That is, by our calculation immediately after Gauss’s Lemma:

The Legendre symbol

(
−5

p

)
indicates how p behaves in Z[

√
−5].

Recall that the definition of (a/p) instantly connotes that for a fixed odd prime p,

As a function of its numerator, (a/p) depends only on a mod p.
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Also, the cyclic structure of (Z/pZ)× does most of the work of showing that

As a function of its numerator, (a/p) is multiplicative.

That is, (ab/p) = (a/p)(b/p). But what the previous two examples have shown is
that for a fixed a,

We are interested in (a/p) as a function of its denominator.

Thus:

We want a relation between the Legendre symbol as a function of
its numerator (a function that we understand), and the Legendre
symbol as a function of its denominator (a function that we care
about).

6. Statements of quadratic reciprocity

From now on, p and q denote distinct odd primes.
Euler conjectured the already-mentioned condition that for positive a,

As a function of its denominator, (a/p) depends only on p mod 4a.

More specifically, Euler conjectured that(
q

p

)
= 1 ⇐⇒ p = ±x2 mod 4q for some x.

Here the right side gives p = ±x2 mod 4, showing that x must be odd and that
the “±” must be “+” when p = 1 mod 4 and “−” when p = 3 mod 4. So Euler’s
conjecture is

(1)

(
q

p

)
= 1 ⇐⇒

{
p = x2 mod 4q for some x if p = 1 mod 4,

p = −x2 mod 4q for some x if p = 3 mod 4.

This is one statement of (most of) quadratic reciprocity. Another statement, due
to Legendre, is that for all distinct odd primes p and q,

(2)

(
p

q

)(
q

p

)
= (−1)(p−1)/2 · (q−1)/2

or, equivalently,(
p

q

)(
q

p

)
=

{
1 if at least one of p and q is 1 modulo 4,

−1 if both p and q are 3 modulo 4.

This form of quadratic reciprocity is pleasingly symmetric in p and q.

Proposition 6.1. Euler’s conjecture (1) and Legendre’s formulation (2) are equiv-
alent.

(Note: The proposition doesn’t assert that either formulation of quadratic reci-
procity is true, only that the truth of either implies the truth of the other.)
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Proof. Introduce the quantity

p∗ = (−1)(p−1)/2p =

{
p if p ≡ 1 mod 4,

−p if p ≡ 3 mod 4.

That is,

p∗ = whichever of ±p equals 1 mod 4.

With p∗ introduced, Euler’s conjecture (1) of quadratic reciprocity is(
q

p

)
= 1 ⇐⇒ p∗ ≡ x2 mod 4q for some x.

This equivalence is(
q

p

)
= 1 ⇐⇒

{
p∗ ≡ x2 mod q
p∗ ≡ x2 mod 4

}
for some x.

The congruence modulo 4 requires x to be odd, and then both p∗ and x2 equal
1 mod 4, so the equivalence simplifies to(

q

p

)
= 1 ⇐⇒ p∗ ≡ x2 mod q for some odd x.

But if p∗ ≡ x2 mod q some for some even x then also p∗ ≡ (x+ q)2 mod q and x+ q
is odd, so in fact the equivalence is(

q

p

)
= 1 ⇐⇒ p∗ ≡ x2 mod q for some x.

Thus Euler’s formulation of quadratic reciprocity rephrases as(
q

p

)
= 1 ⇐⇒

(
p∗

q

)
= 1.

This equivalence is an equality condition,(
p∗

q

)(
q

p

)
= 1,

which, recalling that p∗ = (−1)(p−1)/2p, is(
−1

q

)(p−1)/2(
p

q

)(
q

p

)
= 1,

or, by the established formula (−1/q) = (−1)(q−1)/2, so that (−1/q)(p−1)/2 =
(−1)(p−1)/2·(q−1)/2, (

p

q

)(
q

p

)
= (−1)(p−1)/2·(q−1)/2.

This is Legendre’s formulation (2) of quadratic reciprocity. �
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7. Lattice point counting proof of quadratic reciprocity

Proposition 7.1. Gauss’s Lemma implies Legendre’s formulation (2) of quadratic
reciprocity.

Proof. Recall the set

T = {q, 2q, . . . ,
(
p−1
2

)
q} = {qi : 1 ≤ i ≤ p−1

2 }.

Recall that the elements of T ∩{0, . . . , (p−1)/2} are denoted x1 through xµ, while
the elements of T ∩ {(p + 1)/2, . . . , p − 1} are denoted x′1 through x′ν , and that
Gauss’s Lemma asserts that (

q

p

)
= (−1)ν .

Write each element of T as

qi =

⌊
qi

p

⌋
p+ ri, 0 < ri < p.

If 1 ≤ ri ≤ (p − 1)/2 then ri = xj for some j, but if (p + 1)/2 ≤ ri ≤ p − 1 then
ri = x′j for some j. To prove the proposition, we compute the parity of the sum

(p−1)/2∑
i=1

qi

in two different ways. First,

(p−1)/2∑
i=1

qi = q

(p−1)/2∑
i=1

i = q

 µ∑
j=1

xj +

ν∑
j=1

(p− x′j)


≡

 µ∑
j=1

xj + ν +

ν∑
j=1

x′j

 mod 2.

Second, the sum is also

(p−1)/2∑
i=1

qi =

(p−1)/2∑
i=1

⌊
qi

p

⌋
p+ ri

= p

(p−1)/2∑
i=1

⌊
qi

p

⌋
+

µ∑
j=1

xj +

ν∑
j=1

x′j

≡

(p−1)/2∑
i=1

⌊
qi

p

⌋
+

µ∑
j=1

xj +

ν∑
j=1

x′j

 mod 2.

The previous two displays combine to give

ν ≡ S(q, p) mod 2 where S(q, p) =

(p−1)/2∑
i=1

⌊
qi

p

⌋
,

and thus (
q

p

)
= (−1)S(q,p).
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Exchanging the roles of p and q in the argument now gives(
p

q

)(
q

p

)
= (−1)S(p,q)+S(q,p).

But S(p, q) + S(q, p) is the number of lattice points in the box with lower left
corner (1, 1) and upper right corner (p−12 , q−12 ) (see figure 1). That is,(

p

q

)(
q

p

)
= (−1)(p−1)/2·(q−1)/2.

This is Legendre’s formulation (2) of quadratic reciprocity. �

0 p

q

1 pmot

1

qmot

Figure 1. Lattice points

8. First version of the algorithm

Algorithmically, the useful form of the quadratic reciprocity law is that for all
distinct odd primes p and q,(

p

q

)
= (−1)(p−1)/2 · (q−1)/2

(
q

p

)
In practice we do not compute the power of −1 each time we use the formula but
rather, (

p

q

)
=


(
q
p

)
if either of p, q is 1 mod 4

−
(
q
p

)
if both of p, q are 3 mod

The utility of this is that for the left side we may assume that p < q, but then on
the right side we may replace q by q mod p. And so evaluating the right side is a
strictly smaller problem, and this process can be iterated until p and q get small
quickly. There are also two auxiliary quadratic reciprocity results, which we have
already proved: For all odd prime p,(

−1

p

)
= (−1)(p−1)/2 and

(
2

p

)
= (−1)(p

2−1)/8
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Again, we do not repeatedly work out the powers of −1, but rather(
−1

p

)
=

{
1 if p = 1 mod 4

−1 if p = 3 mod 4

and (
2

p

)
=

{
1 if p = 1, 7 mod 8

−1 if p = 3, 5 mod 8

For an example,(
2017

5003

)
=

(
5003

2017

)
=

(
969

2017

)
=

(
3 · 17 · 19

2017

)
=

(
3

2017

)(
17

2017

)(
19

2017

)
=

(
2017

3

)(
2017

17

)(
2017

19

)
=

(
1

3

)(
11

17

)(
3

19

)
= −

(
17

11

)(
19

3

)
= −

(
6

11

)(
1

3

)
= −

(
2

11

)(
3

11

)
=

(
2

11

)(
11

3

)
=

(
2

11

)(
2

3

)
= (−1) · (−1) = 1 .

This calculation tells us that 2017 is a square modulo 5003 without finding the
square roots. (In fact they are 606 and 4397.)

9. Speeding up the algorithm: the Jacobi symbol

For any integer a and any positive odd integer P the Jacobi symbol (a/P ) is
defined as follows: ( a

P

)
=
∏
i

(
a

pi

)ei
where P =

∏
i

peii .

When P is an odd prime (understood to be positive), the Jacobi symbol is the
Legendre symbol. However, for nonprime P , the condition (a/P ) = 1 doesn’t
necessarily imply that a is a square modulo P , even though the condition (a/P ) =
−1 does imply that a is not a square modulo P .

The empty product case of the previous display says that (a/1) = 1 for all a.
In a moment we will prove that the quadratic reciprocity rules extend to the

Jacobi symbol. That is, for all odd positive coprime P and Q,(
P

Q

)
= (−1)(P−1)/2 · (Q−1)/2

(
Q

P

)
and for all odd positive P ,(

−1

P

)
= (−1)(P−1)/2 and

(
2

P

)
= (−1)(P

2−1)/8

As above, we don’t actually compute the powers of −1 but remember what they are
in terms of P,Q mod 4 or P mod 4 or P mod 8. The Jacobi symbol rules further
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speed Legendre symbol calculations because now we can use Jacobi symbols en
route. For example,(

2017

5003

)
=

(
5003

2017

)
=

(
969

2017

)
=

(
2017

969

)
=

(
79

969

)
=

(
969

79

)
=

(
21

79

)
=

(
79

21

)
=

(
16

21

)
= 1 .

This example demonstrates that Jacobi symbol calculations proceed as quickly as
the Euclidean algorithm. Determining whether a quadratic congruence has solu-
tions is as fast as solving a linear congruence.

The following result helps to prove that the quadratic reciprocity rules extend
to the Jacobi symbol.

Lemma 9.1. Let p1, . . . , pk be odd primes, not necessarily distinct, and consider
their product P =

∏
i pi. Then

P − 1

2
≡
∑
i

pi − 1

2
mod 2 and

P 2 − 1

8
=
∑
i

p2i − 1

8
mod 2.

Proof. For the first congruence, compute that

P =
∏
i

(1 + (pi − 1)) = 1 +
∑
i

(pi − 1) +
∑
i<j

(pi − 1)(pj − 1) + · · ·

≡ 1 +
∑
i

(pi − 1) mod 4,

and so
P − 1

2
≡
∑
i

pi − 1

2
mod 2.

Similarly for the second congruence,

P 2 =
∏
i

(1 + (p2i − 1)) = 1 +
∑
i

(p2i − 1) +
∑
i<j

(p2i − 1)(p2j − 1) + · · ·

≡ 1 +
∑
i

(p2i − 1) mod 16,

and so
P 2 − 1

8
≡
∑
i

p2i − 1

8
mod 2.

In fact the last two congruences hold modulo 64 and 8 respectively, but that is
more than we need. �

It follows from the lemma that for any positive odd P =
∏
i pi and any positive

odd Q =
∏
j qj coprime to P ,(
P

Q

)(
Q

P

)
=
∏
i,j

(
pi
qj

)
·
∏
i,j

(
qj
pi

)
=
∏
i,j

(
pi
qj

)(
qj
pi

)
=
∏
i,j

(−1)(pi−1)/2·(qj−1)/2 = (−1)
∑

i,j(pi−1)/2·(qj−1)/2

= (−1)
∑

i(pi−1)/2·
∑

j(qj−1)/2

= (−1)(P−1)/2·(Q−1)/2,
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and (
−1

P

)
=
∏
i

(
−1

pi

)
=
∏
i

(−1)(pi−1)/2 = (−1)
∑

i(pi−1)/2

= (−1)(P−1)/2,

and (
2

P

)
=
∏
i

(
2

pi

)
=
∏
i

(−1)(p
2
i−1)/8 = (−1)

∑
i(p

2
i−1)/8

= (−1)(P
2−1)/8.

10. The Kronecker symbol

The Kronecker symbol further generalizes of the Legendre–Jacobi symbol. For
denominator 2,

(a
2

)
=


1 if a = 1, 7 mod 8,

−1 if a = 3, 5 mod 8,

0 if a = 0 mod 2.

Thus (a/2) depends on a mod 8, so that the property that (a/p) depends only
on a mod p is lost for p = 2. Also, (p/2) = (2/p) for odd primes p. For denomina-
tor −1,

(
a

−1

)
= sgn(a) =


1 if a > 0,

0 if a = 0,

−1 if a < 0.

The general Legendre–Jacobi–Kronecker symbol incorporates these two new con-
ventions multiplicatively,( a

P

)
=

(
a

sgn(P )

)∏
i

(
a

pi

)
where P = sgn(P )

∏
i

pi.

Here the primes pi can repeat. If P is negative, then (a/P ) is not periodic in a,
and if P is positive but even, then (a/P ) need not be a function of a mod P . The
Kronecker symbol quadratic reciprocity law is as follows.

Theorem 10.1. Let P and Q be nonzero coprime integers,

P = 2e2P ′ where P ′ = sgn(P )
∏
p odd

pep

and

Q = 2f2Q′ where Q′ = sgn(Q)
∏
p odd

pfp ,

where min{ep, fp} = 0 for all p. Then(
P

Q

)(
Q

P

)
= (−1)(P

′−1)/2·(Q′−1)/2(−1)(sgn(P )−1)/2·(sgn(Q)−1)/2.
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The theorem does not decompose P as sgn(P )2ePo, but rather P ′ has the same
sign as P (and similarly for Q, of course). The factor (−1)(sgn(P )−1)/2·(sgn(Q)−1)/2

in the reciprocity law is 1 if at least one of P and Q is positive, −1 if both P and Q
are negative.

Proof. Abbreviate sgn(P ) to sP and similarly for sQ. With P = sP2e2Po and Q =
sQQo (noting that 2 can’t divide both P and Q), compute, noting that (2/sQ) = 1
and (Po/sQ) = 1, (

P

Q

)
=

(
sP

sQ

)(
sP

Qo

)(
2

Qo

)e(
Po
Qo

)
and similarly, noting that (Qo/sP ) = 1 and (sQ/2) = 1,(

Q

P

)
=

(
sQ

sP

)(
sQ

Po

)(
Qo
2

)e(
Qo
Po

)
.

So their product is(
P

Q

)(
Q

P

)
=

(
sP

sQ

)(
sQ

sP

)(
sP

Qo

)(
sQ

Po

)(
2

Qo

)e(
Qo
2

)e(
Po
Qo

)(
Qo
Po

)
,

and because (sP/sQ)(sQ/sP ) = 1 and (2/Qo)(Qo/2) = 1 this reduces to(
P

Q

)(
Q

P

)
=

(
sP

Qo

)(
sQ

Po

)(
Po
Qo

)(
Qo
Po

)
,

in which the possible power of 2 in P plays no role. By the results stated as
consequences of Lemma 9.1, this is(

P

Q

)(
Q

P

)
= (sP )(Qo−1)/2(sQ)(Po−1)/2(−1)(Po−1)/2·(Qo−1)/2.

If sP = sQ = 1 then Po = P ′ and Qo = Q′, and so this is the desired result,(
P

Q

)(
Q

P

)
= (−1)(P

′−1)/2·(Q′−1)/2.

If sP = 1 and sQ = −1 then Po = P ′ and Qo = −Q′, and so it is again the desired
result, (

P

Q

)(
Q

P

)
= (−1)(P

′−1)/2(−1)(P
′−1)/2·(−Q′−1)/2

= (−1)(P
′−1)/2·(−Q′+1)/2

= (−1)(P
′−1)/2·(Q′−1)/2,

and similarly if sP = −1 and sQ = 1. Finally, if sP = sQ = −1 then Po = −P ′
and Qo = −Q′, and so it is(

P

Q

)(
Q

P

)
= (−1)(−P

′−1)/2(−1)(−Q
′−1)/2(−1)(−P

′−1)/2·(−Q′−1)/2

= −(−1)(−P
′+1)/2(−1)(−P

′+1)/2·(−Q′−1)/2

= −(−1)(−P
′+1)/2·(−Q′+1)/2

= −(−1)(P
′−1)/2·(Q′−1)/2,

as desired in the last case. �
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We end with three comments.
First, a full set of primes for Z should be extended to include one so-called

Archimedean prime, and some authors (such as Conway–Sloane in Sphere Pack-
ings, Lattices and Groups) identify this prime with −1. Under the convention
that −1 is prime, P and Q are not coprime if both are negative, and so the factor
(−1)(sgn(P )−1)/2·(sgn(Q)−1)/2 is unnecessary. That is, it is arguably natural to tidy
the reciprocity law by excluding the case that P and Q are both negative.

Second, another convention is to define (a/−1) = 1 for all nonzero a, making
the Jacobi symbol depend only on the absolute value of its denominator. Under
this convention the boxed reciprocity law in the theorem is unchanged, because
(sgnP/sgnQ)(sgnQ/sgnP ) = 1 for all nonzero P and Q either way.

Third, an equivalent version of the reciprocity law, sometimes more convenient
to use, is that for P and Q as in the theorem,(

P

Q

)(
Q

|P |

)
= (−1)(P

′−1)/2·(Q′−1)/2.

Indeed, if either of P , Q is positive then (Q/|P |) = (Q/P ), while if both are neg-
ative then (Q/|P |) = −(Q/P ). However, this last equality does use the definition
(a/−1) = sgn(a) for nonzero a rather than (a/−1) = 1.


