MATH 361: NUMBER THEORY - SEVENTH LECTURE

1. The Unit Group of $\mathbb{Z} / n \mathbb{Z}$

Consider a nonunit positive integer,

$$
n=\prod p^{e_{p}}>1
$$

The Sun Ze Theorem gives a ring isomorphism,

$$
\mathbb{Z} / n \mathbb{Z} \cong \prod \mathbb{Z} / p^{e_{p}} \mathbb{Z}
$$

The right side is the cartesian product of the rings $\mathbb{Z} / p^{e_{p}} \mathbb{Z}$, meaning that addition and multiplication are carried out componentwise. It follows that the corresponding unit group is

$$
(\mathbb{Z} / n \mathbb{Z})^{\times} \cong \prod\left(\mathbb{Z} / p^{e_{p}} \mathbb{Z}\right)^{\times}
$$

Thus to study the unit group $(\mathbb{Z} / n \mathbb{Z})^{\times}$it suffices to consider $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$where p is prime and $e>0$. Recall that in general,

$$
\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\varphi(n)
$$

so that for prime powers,

$$
\left|\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}\right|=\varphi\left(p^{e}\right)=p^{e-1}(p-1)
$$

and especially for primes,

$$
\left|(\mathbb{Z} / p \mathbb{Z})^{\times}\right|=p-1
$$

Here are some examples of unit groups modulo prime powers, most but not quite all cyclic.

$$
\begin{aligned}
(\mathbb{Z} / 2 \mathbb{Z})^{\times}= & (\{1\}, \cdot)=\left(\left\{2^{0}\right\}, \cdot\right) \cong(\{0\},+)=\mathbb{Z} / \mathbb{Z} \\
(\mathbb{Z} / 3 \mathbb{Z})^{\times}= & (\{1,2\}, \cdot)=\left(\left\{2^{0}, 2^{1}\right\}, \cdot\right) \cong(\{0,1\},+)=\mathbb{Z} / 2 \mathbb{Z}, \\
(\mathbb{Z} / 4 \mathbb{Z})^{\times}= & (\{1,3\}, \cdot)=\left(\left\{3^{0}, 3^{1}\right\}, \cdot\right) \cong(\{0,1\},+)=\mathbb{Z} / 2 \mathbb{Z}, \\
(\mathbb{Z} / 5 \mathbb{Z})^{\times}= & (\{1,2,3,4\}, \cdot)=\left(\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}\right\}, \cdot\right) \\
& \cong(\{0,1,2,3\},+)=\mathbb{Z} / 4 \mathbb{Z} \\
(\mathbb{Z} / 7 \mathbb{Z})^{\times}= & (\{1,2,3,4,5,6\}, \cdot)=\left(\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}, \cdot\right) \\
& \cong(\{0,1,2,3,4,5\},+)=\mathbb{Z} / 6 \mathbb{Z} \\
(\mathbb{Z} / 8 \mathbb{Z})^{\times}= & (\{1,3,5,7\}, \cdot)=\left(\left\{3^{0} 5^{0}, 3^{1} 5^{0}, 3^{0} 5^{1}, 3^{1} 5^{1}\right\}, \cdot\right) \\
& \cong(\{0,1\} \times\{0,1\},+)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \\
(\mathbb{Z} / 9 \mathbb{Z})^{\times}= & (\{1,2,4,5,7,8\}, \cdot)=\left(\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}, \cdot\right) \\
& \cong(\{0,1,2,3,4,5\},+)=\mathbb{Z} / 6 \mathbb{Z} .
\end{aligned}
$$

2. Prime Unit Group Structure: Abelian Group Theory Argument

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,

$$
(\mathbb{Z} / p \mathbb{Z})^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z}
$$

That is, there is a generator $g \bmod p$ such that

$$
(\mathbb{Z} / p \mathbb{Z})^{\times}=\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}
$$

Proof. We may assume that G is not trivial. By the structure theorem for finitely generated abelian groups,

$$
(G, \cdot) \cong\left(\mathbb{Z} / d_{1} \mathbb{Z} \times \mathbb{Z} / d_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / d_{t} \mathbb{Z},+\right), \quad t \geq 1,1<d_{1}\left|d_{2} \cdots\right| d_{t}
$$

Thus the polynomial equation $X^{d_{t}}=1$, whose additive counterpart is $d_{t} X=0$, is satisfied by each of the $d_{1} d_{2} \cdots d_{t}$ elements of G; but also, the polynomial has at most as many roots as its degree d_{t}. Thus $t=1$ and G is cyclic.

The proof tacitly relies on a fact from basic algebra:
Lemma 2.2. Let k be a field. Let $f \in k[X]$ be a nonzero polynomial, and let d denote its degree (thus $d \geq 0)$. Then f has at most d roots in k.
Proof. If f has no roots then we are done. Otherwise let $a \in k$ be a root. Write

$$
f(X)=q(X)(X-a)+r(X), \quad \operatorname{deg}(r)<1 \text { or } r=0
$$

Thus $r(X)$ is a constant. Substitute a for X to see that in fact $r=0$, and so $f(X)=q(X)(X-a)$. Because we are working over a field, any root of f is a or is a root of q, and by induction q has at most $d-1$ roots in k, so we are done.

The lemma does require that k be a field, not merely a ring. For example, the polynomial $X^{2}-1$ over the ring $\mathbb{Z} / 24 \mathbb{Z}$ has for its roots

$$
\{1,5,7,11,13,17,19,23\}=(\mathbb{Z} / 24 \mathbb{Z})^{\times}
$$

To count the generators of $(\mathbb{Z} / p \mathbb{Z})^{\times}$, we establish a handy result that is slightly more general.

Proposition 2.3. Let n be a positive integer, and let e be an integer. Let $\gamma=$ $\operatorname{gcd}(e, n)$. The map

$$
\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}, \quad x \longmapsto e x
$$

has

$$
\begin{aligned}
& \text { image }\langle\gamma+n \mathbb{Z}\rangle \text {, of order } n / \gamma \text {, } \\
& \text { kernel }\langle n / \gamma+n \mathbb{Z}\rangle \text {, of order } \gamma \text {. }
\end{aligned}
$$

Especially, each $e+n \mathbb{Z}$ where e is coprime to n generates $\mathbb{Z} / n \mathbb{Z}$, which therefore has $\varphi(n)$ generators.

Indeed, the image is $\{e x+n \mathbb{Z}: x \in \mathbb{Z}\}=\{e x+n y+n \mathbb{Z}: x, y \in \mathbb{Z}\}=\langle\gamma+n \mathbb{Z}\rangle$. The rest of the proposition follows, or we can see the kernel directly by noting that $n \mid e x$ if and only if $n / \gamma \mid(e / \gamma) x$, which by Euclid's Lemma holds if and only if $n / \gamma \mid x$.

Because $(\mathbb{Z} / p \mathbb{Z})^{\times}$is isomorphic to $\mathbb{Z} /(p-1) \mathbb{Z}$, the proposition shows that if g is a generator then all the generators are the $\varphi(p-1)$ powers g^{e} where $\operatorname{gcd}(e, p-1)=1$.

3. Prime Unit Group Structure: Elementary Argument

From above, a nonzero polynomial over $\mathbb{Z} / p \mathbb{Z}$ cannot have more roots than its degree. On the other hand, Fermat's Little Theorem says that the polynomial

$$
f(X)=X^{p-1}-1 \in(\mathbb{Z} / p \mathbb{Z})[X]
$$

has a full contingent of $p-1$ roots in $\mathbb{Z} / p \mathbb{Z}$.
For any divisor d of $p-1$, consider the factorization (in consequence of the finite geometric sum formula)

$$
f(X)=X^{p-1}-1=\left(X^{d}-1\right) \sum_{i=0}^{\frac{p-1}{d}-1} X^{i d} \stackrel{\text { call }}{=} g(X) h(X)
$$

We know that

- f has $p-1$ roots in $\mathbb{Z} / p \mathbb{Z}$,
- g has at most d roots in $\mathbb{Z} / p \mathbb{Z}$,
- h has at most $p-1-d$ roots in $\mathbb{Z} / p \mathbb{Z}$.

It follows that $g(X)=X^{d}-1$ where $d \mid p-1$ has d roots in $\mathbb{Z} / p \mathbb{Z}$.
Now factor $p-1$,

$$
p-1=\prod q^{e_{q}}
$$

For each factor q^{e} of $p-1$,

$$
\begin{array}{ll}
X^{q^{e}}-1 & \text { has } q^{e} \text { roots in } \mathbb{Z} / p \mathbb{Z} \\
X^{q^{e-1}}-1 & \text { has } q^{e-1} \text { roots in } \mathbb{Z} / p \mathbb{Z}
\end{array}
$$

and so $(\mathbb{Z} / p \mathbb{Z})^{\times}$contains $q^{e}-q^{e-1}=\varphi\left(q^{e}\right)$ elements x_{q} of order q^{e}. (The order of an element is the smallest positive number of times that the element is multiplied by itself to give 1.) Plausibly,

$$
\text { any product } \quad \prod_{q} x_{q} \quad \text { has order } \quad \prod_{q} q^{e_{q}}=p-1
$$

and certainly there are $\varphi(p-1)$ such products. In sum, we have done most of the work of showing

Proposition 3.1. Let p be prime. Then $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic, with $\varphi(p-1)$ generators.
The loose end is as follows.
Lemma 3.2. In a commutative group, consider two elements whose orders are coprime. Then the order of their product is the product of their orders.

Proof. Let e and f denote the orders of a and b, and let g denote the order of $a b$. Compute,

$$
(a b)^{e f}=\left(a^{e}\right)^{f}\left(b^{f}\right)^{e}=1^{f} 1^{e}=1
$$

Thus $g \mid e f$. Also, using the condition $(e, f)=1$ for the third implication to follow,

$$
(a b)^{g}=1 \Longrightarrow 1=\left((a b)^{g}\right)^{f}=\left(a^{f} b^{f}\right)^{g}=a^{f g} \Longrightarrow e|f g \Longrightarrow e| g
$$

and symmetrically $f \mid g$. Thus $e f \mid g$, again because $(e, f)=1$. Altogether $g=e f$ as claimed.

4. Odd Prime Power Unit Group Structure: p-Adic Argument

Proposition 4.1. Let p be an odd prime, and let e be any positive integer. The multiplicative group modulo p^{e} is cyclic. That is, $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / p^{e-1}(p-1) \mathbb{Z}$.
Proof. (Sketch.) We have the result for $e=1$, so take $e \geq 2$. Because $\varphi\left(p^{e}\right)=$ $p^{e-1}(p-1)$, the structure theorem for finitely generated abelian groups and then the Sun Ze theorem combine to show that $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$takes the form (letting A_{n} denote an abelian group of order n)

$$
\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}=A_{p^{e-1}} \times A_{p-1}
$$

By the Sun Ze Theorem, it suffices to show that each of $A_{p^{e-1}}$ and A_{p-1} is cyclic.
The natural epimorphism $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times} \longrightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$maps $A_{p^{e-1}}$ to 1 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$, because the orders of the two groups are coprime but the image is a quotient of the first and a subgroup of the second. Consequently the restriction of the natural epimorphism to A_{p-1} must be an isomorphism, making A_{p-1} cyclic because $(\mathbb{Z} / p \mathbb{Z})^{\times}$ is. Further, this discussion has shown that $A_{p^{e-1}}$ is the natural epimorphism's kernel,

$$
A_{p^{e-1}}=\left\{a+p^{e} \mathbb{Z} \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}: a=1 \bmod p\right\}
$$

Working p-adically, we have additive-to-multiplicative group isomorphisms

$$
\exp : p^{f} \mathbb{Z}_{p} \longrightarrow 1+p^{f} \mathbb{Z}_{p}, \quad f \geq 1
$$

because $\exp \left(a p^{f}\right)$ for any $a \in \mathbb{Z}_{p}$ begins with $1+a p^{f}$, and then for $n \geq 2$,

$$
\nu_{p}\left(\frac{\left(a p^{f}\right)^{n}}{n!}\right) \geq n\left(f-\frac{1}{p-1}\right) \geq 2\left(f-\frac{1}{2}\right)=2 f-1 \geq f
$$

Especially, we have the isomorphisms for $f=1$ and for $f=e$. Thus the surjective composition $p \mathbb{Z}_{p} \xrightarrow{\text { exp }} 1+p \mathbb{Z}_{p} \longrightarrow A_{p^{e-1}}$, where the second map is the restriction of the ring map $\mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p} / p^{e} \mathbb{Z}_{p} \approx \mathbb{Z} / p^{e} \mathbb{Z}$ to the multiplicative group map $1+p \mathbb{Z}_{p} \longrightarrow$ $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$, factors through the quotient of its domain $p \mathbb{Z}_{p}$ by $p^{e} \mathbb{Z}_{p}$,

Further, $p \mathbb{Z}_{p} / p^{e} \mathbb{Z}_{p} \approx p \mathbb{Z} / p^{e} \mathbb{Z} \approx \mathbb{Z} / p^{e-1} \mathbb{Z}$. So the surjection $p \mathbb{Z}_{p} / p^{e} \mathbb{Z}_{p} \longrightarrow A_{p^{e-1}}$ is an isomorphism because the two finite groups have the same order, and then $A_{p^{e-1}}$ is cyclic because $\mathbb{Z} / p^{e-1} \mathbb{Z}$ is. This completes the proof.

The condition $-1 /(p-1) \geq-1 / 2$ in the proof fails for $p=2$, but a modification of the argument shows that $\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times}$has a cyclic subgroup of index 2 .

Once one is aware that the truncated exponential series gives an isomorphism $p \mathbb{Z} / p^{e} \mathbb{Z} \xrightarrow{\sim} A_{p^{e-1}}$, the isomorphism can be confirmed without direct reference to the p-adic exponential. For example with $e=3$, any $p x+p^{3} \mathbb{Z}$ has image $1+p x+\frac{1}{2} p^{2} x^{2}+p^{3} \mathbb{Z}$, and similarly $p y+p^{3} \mathbb{Z}$ has image $1+p y+\frac{1}{2} p^{2} y^{2}+p^{3} \mathbb{Z}$; their sum $p(x+y)+p^{3} \mathbb{Z}$ maps to $1+p(x+y)+\frac{1}{2} p^{2}\left(x^{2}+2 x y+y^{2}\right)+p^{3} \mathbb{Z}$, which is also the product of the images, even though $1+p(x+y)+\frac{1}{2} p^{2}\left(x^{2}+2 x y+y^{2}\right)$ is not the product of $1+p x+\frac{1}{2} p^{2} x^{2}$ and $1+p y+\frac{1}{2} p^{2} y^{2}$. This idea underlies the elementary argument to be given next.

5. Odd Prime Power Unit Group Structure: Elementary Argument

Again we show that for any odd prime p and any positive e, the group $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$ is cyclic. Here the argument is elementary.

Proof. Let g generate $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Because the binomial theorem gives

$$
(g+p)^{p-1}=g^{p-1}+(p-1) g^{p-2} p \bmod p^{2}
$$

we have $(g+p)^{p-1} \neq g^{p-1} \bmod p^{2}$, so in particular

$$
g^{p-1} \neq 1 \bmod p^{2} \quad \text { or } \quad(g+p)^{p-1} \neq 1 \bmod p^{2}
$$

After replacing g with $g+p$ if necessary, we may assume that $g^{p-1} \neq 1 \bmod p^{2}$. Thus we know that

$$
g^{p-1}=1+k_{1} p, \quad p \nmid k_{1} .
$$

Again using the binomial theorem,

$$
\begin{aligned}
g^{p(p-1)} & =\left(1+k_{1} p\right)^{p}=1+p k_{1} p+\sum_{j=2}^{p-1}\binom{p}{j} k_{1}^{j} p^{j}+k_{1}^{p} p^{p} \\
& =1+k_{2} p^{2}, \quad p \nmid k_{2} .
\end{aligned}
$$

The last equality holds because the terms in the sum and the term $k_{1}^{p} p^{p}$ are multiples of p^{3}. (Here it is relevant that $p>2$. The assertion fails for $p=2, g=3$ because of the last term. That is, $3^{2-1}=1+1 \cdot 2$ so that $k_{1}=1$ is not divisible by $p=2$, but then $3^{2(2-1)}=9=1+2 \cdot 2^{2}$ so that $k_{2}=2$ is.) Once more by the binomial theorem,

$$
\begin{aligned}
g^{p^{2}(p-1)} & =\left(1+k_{2} p^{2}\right)^{p}=1+p k_{2} p^{2}+\sum_{j=2}^{p}\binom{p}{j} k_{2}^{j} p^{2 j} \\
& =1+k_{3} p^{3}, \quad p \nmid k_{3}
\end{aligned}
$$

because the terms in the sum are multiples of p^{4}. Similarly

$$
g^{p^{3}(p-1)}=1+k_{4} p^{4}, \quad p \nmid k_{4}
$$

and so on, up to

$$
g^{p^{e-2}(p-1)}=1+k_{e-1} p^{e-1}, \quad p \nmid k_{e-1} .
$$

That is,

$$
g^{p^{e-2}(p-1)} \neq 1 \bmod p^{e}
$$

The order of g in $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$must divide $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$. If the order takes the form $p^{\varepsilon} d$ where $\varepsilon \leq e-1$ and d is a proper divisor of $p-1$ then Fermat's Little Theorem $\left(g^{p}=g \bmod p\right)$ shows that the relation

$$
g^{p^{\varepsilon} d}=1 \bmod p^{e}
$$

reduces modulo p to

$$
g^{d}=1 \bmod p
$$

But this contradicts the fact that g is a generator modulo p. Thus the order of g in $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$takes the form $p^{\varepsilon}(p-1)$ where $\varepsilon \leq e-1$. The calculation above has shown that $\varepsilon=e-1$, and the proof is complete.

For example, 2 generates $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$, and $2^{5-1}=16 \neq 1 \bmod 5^{2}$, so in fact 2 generates $\left(\mathbb{Z} / 5^{e} \mathbb{Z}\right)^{\times}$for all $e \geq 1$.

A small consequence of the proposition is that because $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$is cyclic for odd p, and because $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$ is even, the equation

$$
x^{2}=1 \bmod p^{e}
$$

has two solutions: 1 and $g^{\varphi\left(p^{e}\right) / 2}$.

6. Powers of 2 Unit Group Structure

Proposition 6.1. The structure of the unit group $\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times}$is

$$
\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times} \cong \begin{cases}\mathbb{Z} / \mathbb{Z} & \text { if } e=1 \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } e=2 \\ (\mathbb{Z} / 2 \mathbb{Z}) \times\left(\mathbb{Z} / 2^{e-2} \mathbb{Z}\right) & \text { if } e \geq 3\end{cases}
$$

Specifically, $(\mathbb{Z} / 2 \mathbb{Z})^{\times}=\{1\},(\mathbb{Z} / 4 \mathbb{Z})^{\times}=\{1,3\}$, and for $e \geq 3$,

$$
\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times\left\{1,5,5^{2}, \ldots, 5^{2^{e-2}-1}\right\}
$$

Proof. The results for $(\mathbb{Z} / 2 \mathbb{Z})^{\times}$and for $(\mathbb{Z} / 4 \mathbb{Z})^{\times}$are readily observable, and so we take $e \geq 3$.

Because $\left|\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times}\right|=\varphi\left(2^{e}\right)=2^{e-1}$, we need to show that

$$
5^{2^{e-3}} \neq 1 \bmod 2^{e}, \quad 5^{2^{e-2}}=1 \bmod 2^{e}
$$

Similarly, to the previous argument, start from

$$
5^{2^{0}}=5=1+k_{2} 2^{2}, \quad 2 \nmid k_{2},
$$

and thus

$$
5^{2^{1}}=5^{2}=1+2 k_{2} 2^{2}+k_{2}^{2} 2^{4}=1+k_{3} 2^{3}, \quad 2 \nmid k_{3},
$$

and then

$$
5^{2^{2}}=5^{4}=1+2 k_{3} 2^{3}+k_{3}^{2} 2^{6}=1+k_{4} 2^{4}, \quad 2 \nmid k_{4},
$$

and so on up to

$$
5^{2^{e-3}}=1+k_{e-1} 2^{e-1}, \quad 2 \nmid k_{e-1}
$$

and finally

$$
5^{2^{e-2}}=1+k_{e} 2^{e}, \quad 2 \nmid k_{e} .
$$

The last two displays show that

$$
5^{2^{e-3}} \neq 1 \bmod 2^{e}, \quad 5^{2^{e-2}}=1 \bmod 2^{e}
$$

That is, 5 generates half of $\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times}$. To show that the full group is

$$
\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times\left\{1,5,5^{2}, \ldots, 5^{2^{e-2}-1}\right\}
$$

suppose that

$$
(-1)^{a} 5^{b}=(-1)^{c} 5^{d} \bmod 2^{e}, \quad a, c \in\{0,1\}, b, d \in\left\{0, \cdots, 2^{e-2}-1\right\}
$$

Inspect modulo 4 to see that $c=a$. So now $5^{b}=5^{d} \bmod 2^{e}$, and the restrictions on b and d show that $d=b$ as well.

The group $\left(\mathbb{Z} / 2^{e} \mathbb{Z}\right)^{\times}$is not cyclic for $e \geq 3$ because all of its elements have order dividing 2^{e-2}.

The equation

$$
x^{2}=1 \bmod 2^{e}
$$

has one solution if $e=1$, two solutions if $e=2$, and four solutions if $e \geq 3$,

$$
(1,1), \quad(-1,1), \quad\left(1,5^{2^{e-3}}\right), \quad\left(-1,5^{2^{e-3}}\right)
$$

With this information in hand, the Sun Ze Theorem shows that the number of solutions of the equation

$$
x^{2}=1 \bmod n, \quad\left(\text { where } n=2^{e} \prod_{i=1}^{g} p_{i}^{e_{i}}\right)
$$

is

$$
\begin{cases}2^{g} & \text { if } e=0,1 \\ 2 \cdot 2^{g} & \text { if } e=2 \\ 4 \cdot 2^{g} & \text { if } e \geq 3\end{cases}
$$

For example, if $n=120=2^{3} \cdot 3 \cdot 5$ then the number of solutions is 16 .
Especially, the fact that for odd $n=\prod_{i=1}^{g} p_{i}^{e_{i}}$ there are $2^{g}-1$ proper square roots of 1 modulo n has to do with the effectiveness of the Miller-Rabin primality test. Recall that the test makes use of a diagnostic base $b \in\{1, \ldots, n-1\}$ and of the factorization $n-1=2^{s} m$, computing (everything modulo n)

$$
b^{m}, \quad\left(b^{m}\right)^{2}, \quad\left(\left(b^{m}\right)^{2}\right)^{2}, \quad \ldots, \quad\left(b^{m 2^{s-2}}\right)^{2}=b^{n-1}
$$

Of course, if $b^{m}=1$ then all the squaring is doing nothing, while if $b^{n-1} \neq 1$ then n is not prime by Fermat's Little Theorem. The interesting case is when $b^{m} \neq 1$ but $b^{n-1}=1$, so that repeatedly squaring b^{m} does give 1 : in this case, squaring b^{m} one fewer time gives a proper square root of 1 . If n has g distinct prime factors then we expect this square root to be -1 only $1 /\left(2^{g}-1\right)$ of the time. Thus, if the process turns up the square root -1 for many values of b then almost certainly $g=1$, i.e., n is a prime power. Of course, if n is a prime power but not prime then we hope that it isn't a Fermat pseudoprime base b for many bases b, and the Miller-Rabin will diagnose this.

7. Cyclic Unit Groups $(\mathbb{Z} / n \mathbb{Z})^{\times}$

Consider a positive nonunit integer

$$
n=\prod_{i} p_{i}^{e_{i}}
$$

Recall the multiplicative component of the Sun Ze Theorem,

$$
(\mathbb{Z} / n \mathbb{Z})^{\times} \xrightarrow{\sim} \prod\left(\mathbb{Z} / p^{e_{p}} \mathbb{Z}\right)^{\times}, \quad a \bmod n \longmapsto\left(a \bmod p_{1}^{e_{1}}, \cdots, a \bmod p_{k}^{e_{k}}\right)
$$

Consequently, the order of a divides the least common multiple of the orders of the multiplicand-groups,

$$
\operatorname{lcm}\left\{\varphi\left(p_{1}^{e_{1}}\right), \cdots, \varphi\left(p_{k}^{e_{k}}\right)\right\}
$$

and thus a cannot conceivably have order $\varphi(n)$ unless all of the $\varphi\left(p_{i}^{e_{i}}\right)$ are coprime.

For each odd p, the totient $\varphi\left(p^{e}\right)$ is even for all $e \geq 1$. So for $(\mathbb{Z} / n \mathbb{Z})^{\times}$to be cyclic, n can have at most one odd prime divisor. Also, $2 \mid \varphi\left(2^{e}\right)$ for all $e \geq 2$. So the possible unit groups $(\mathbb{Z} / n \mathbb{Z})^{\times}$that could be cyclic are

$$
(\mathbb{Z} / 2 \mathbb{Z})^{\times}, \quad(\mathbb{Z} / 4 \mathbb{Z})^{\times}, \quad\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}, \quad\left(\mathbb{Z} / 2 p^{e} \mathbb{Z}\right)^{\times} .
$$

We know that the first three groups in fact are cyclic. For $n=2 p^{e}$, the Sun Ze Theorem gives

$$
\left(\mathbb{Z} / 2 p^{e} \mathbb{Z}\right)^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{\times} \times\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times} \cong\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}
$$

showing that the fourth group is cyclic as well. If g generates $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$then whichever of g and $g+p^{e}$ is odd generates $\left(\mathbb{Z} / 2 p^{e} \mathbb{Z}\right)^{\times}$.

