
MATH 361: NUMBER THEORY — SEVENTH LECTURE

1. The Unit Group of Z/nZ

Consider a nonunit positive integer,

n =
∏

pep > 1.

The Sun Ze Theorem gives a ring isomorphism,

Z/nZ ∼=
∏

Z/pepZ.

The right side is the cartesian product of the rings Z/pepZ, meaning that addition
and multiplication are carried out componentwise. It follows that the corresponding
unit group is

(Z/nZ)× ∼=
∏

(Z/pepZ)×.

Thus to study the unit group (Z/nZ)× it suffices to consider (Z/peZ)× where p is
prime and e > 0. Recall that in general,

|(Z/nZ)×| = ϕ(n),

so that for prime powers,

|(Z/peZ)×| = ϕ(pe) = pe−1(p− 1),

and especially for primes,

|(Z/pZ)×| = p− 1.

Here are some examples of unit groups modulo prime powers, most but not quite
all cyclic.

(Z/2Z)× = ({1}, ·) = ({20}, ·) ∼= ({0},+) = Z/Z,
(Z/3Z)× = ({1, 2}, ·) = ({20, 21}, ·) ∼= ({0, 1},+) = Z/2Z,
(Z/4Z)× = ({1, 3}, ·) = ({30, 31}, ·) ∼= ({0, 1},+) = Z/2Z,
(Z/5Z)× = ({1, 2, 3, 4}, ·) = ({20, 21, 22, 23}, ·)

∼= ({0, 1, 2, 3},+) = Z/4Z,
(Z/7Z)× = ({1, 2, 3, 4, 5, 6}, ·) = ({30, 31, 32, 33, 34, 35}, ·)

∼= ({0, 1, 2, 3, 4, 5},+) = Z/6Z,
(Z/8Z)× = ({1, 3, 5, 7}, ·) = ({3050, 3150, 3051, 3151}, ·)

∼= ({0, 1} × {0, 1},+) = Z/2Z× Z/2Z,
(Z/9Z)× = ({1, 2, 4, 5, 7, 8}, ·) = ({20, 21, 22, 23, 24, 25}, ·)

∼= ({0, 1, 2, 3, 4, 5},+) = Z/6Z.
1
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2. Prime Unit Group Structure: Abelian Group Theory Argument

Proposition 2.1. Let G be any finite subgroup of the unit group of any field. Then
G is cyclic. In particular, the multiplicative group modulo any prime p is cyclic,

(Z/pZ)× ∼= Z/(p− 1)Z.

That is, there is a generator g mod p such that

(Z/pZ)× = {1, g, g2, . . . , gp−2}.

Proof. We may assume that G is not trivial. By the structure theorem for finitely
generated abelian groups,

(G, ·) ∼= (Z/d1Z× Z/d2Z× · · · × Z/dtZ,+), t ≥ 1, 1 < d1 | d2 · · · | dt.
Thus the polynomial equation Xdt = 1, whose additive counterpart is dtX = 0, is
satisfied by each of the d1d2 · · · dt elements of G; but also, the polynomial has at
most as many roots as its degree dt. Thus t = 1 and G is cyclic. �

The proof tacitly relies on a fact from basic algebra:

Lemma 2.2. Let k be a field. Let f ∈ k[X] be a nonzero polynomial, and let d
denote its degree (thus d ≥ 0). Then f has at most d roots in k.

Proof. If f has no roots then we are done. Otherwise let a ∈ k be a root. Write

f(X) = q(X)(X − a) + r(X), deg(r) < 1 or r = 0.

Thus r(X) is a constant. Substitute a for X to see that in fact r = 0, and so
f(X) = q(X)(X − a). Because we are working over a field, any root of f is a or is
a root of q, and by induction q has at most d− 1 roots in k, so we are done. �

The lemma does require that k be a field, not merely a ring. For example, the
polynomial X2 − 1 over the ring Z/24Z has for its roots

{1, 5, 7, 11, 13, 17, 19, 23} = (Z/24Z)×.

To count the generators of (Z/pZ)×, we establish a handy result that is slightly
more general.

Proposition 2.3. Let n be a positive integer, and let e be an integer. Let γ =
gcd(e, n). The map

Z/nZ −→ Z/nZ, x 7−→ ex

has

image 〈γ + nZ〉, of order n/γ,

kernel 〈n/γ + nZ〉, of order γ.

Especially, each e + nZ where e is coprime to n generates Z/nZ, which therefore
has ϕ(n) generators.

Indeed, the image is {ex+ nZ : x ∈ Z} = {ex+ ny + nZ : x, y ∈ Z} = 〈γ + nZ〉.
The rest of the proposition follows, or we can see the kernel directly by noting that
n | ex if and only if n/γ | (e/γ)x, which by Euclid’s Lemma holds if and only if
n/γ | x.

Because (Z/pZ)× is isomorphic to Z/(p−1)Z, the proposition shows that if g is a
generator then all the generators are the ϕ(p−1) powers ge where gcd(e, p−1) = 1.
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3. Prime Unit Group Structure: Elementary Argument

From above, a nonzero polynomial over Z/pZ cannot have more roots than its
degree. On the other hand, Fermat’s Little Theorem says that the polynomial

f(X) = Xp−1 − 1 ∈ (Z/pZ)[X]

has a full contingent of p− 1 roots in Z/pZ.
For any divisor d of p−1, consider the factorization (in consequence of the finite

geometric sum formula)

f(X) = Xp−1 − 1 = (Xd − 1)

p−1
d −1∑
i=0

Xid call
= g(X)h(X).

We know that

• f has p− 1 roots in Z/pZ,
• g has at most d roots in Z/pZ,
• h has at most p− 1− d roots in Z/pZ.

It follows that g(X) = Xd − 1 where d | p− 1 has d roots in Z/pZ.
Now factor p− 1,

p− 1 =
∏

qeq .

For each factor qe of p− 1,

Xqe − 1 has qe roots in Z/pZ,

Xqe−1

− 1 has qe−1 roots in Z/pZ,

and so (Z/pZ)× contains qe − qe−1 = ϕ(qe) elements xq of order qe. (The order of
an element is the smallest positive number of times that the element is multiplied
by itself to give 1.) Plausibly,

any product
∏
q

xq has order
∏
q

qeq = p− 1,

and certainly there are ϕ(p− 1) such products. In sum, we have done most of the
work of showing

Proposition 3.1. Let p be prime. Then (Z/pZ)× is cyclic, with ϕ(p−1) generators.

The loose end is as follows.

Lemma 3.2. In a commutative group, consider two elements whose orders are
coprime. Then the order of their product is the product of their orders.

Proof. Let e and f denote the orders of a and b, and let g denote the order of ab.
Compute,

(ab)ef = (ae)f (bf )e = 1f1e = 1.

Thus g | ef . Also, using the condition (e, f) = 1 for the third implication to follow,

(ab)g = 1 =⇒ 1 =
(
(ab)g

)f
= (afbf )g = afg =⇒ e | fg =⇒ e | g,

and symmetrically f | g. Thus ef | g, again because (e, f) = 1. Altogether g = ef
as claimed. �
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4. Odd Prime Power Unit Group Structure: p-Adic Argument

Proposition 4.1. Let p be an odd prime, and let e be any positive integer. The
multiplicative group modulo pe is cyclic. That is, (Z/peZ)× ∼= Z/pe−1(p− 1)Z.

Proof. (Sketch.) We have the result for e = 1, so take e ≥ 2. Because ϕ(pe) =
pe−1(p − 1), the structure theorem for finitely generated abelian groups and then
the Sun Ze theorem combine to show that (Z/peZ)× takes the form (letting An

denote an abelian group of order n)

(Z/peZ)× = Ape−1 ×Ap−1.

By the Sun Ze Theorem, it suffices to show that each of Ape−1 and Ap−1 is cyclic.
The natural epimorphism (Z/peZ)× −→ (Z/pZ)× maps Ape−1 to 1 in (Z/pZ)×,

because the orders of the two groups are coprime but the image is a quotient of the
first and a subgroup of the second. Consequently the restriction of the natural epi-
morphism to Ap−1 must be an isomorphism, making Ap−1 cyclic because (Z/pZ)×

is. Further, this discussion has shown that Ape−1 is the natural epimorphism’s
kernel,

Ape−1 = {a+ peZ ∈ (Z/peZ)× : a = 1 mod p}.
Working p-adically, we have additive-to-multiplicative group isomorphisms

exp : pfZp −→ 1 + pfZp, f ≥ 1,

because exp(apf ) for any a ∈ Zp begins with 1 + apf , and then for n ≥ 2,

νp

(
(apf )n

n!

)
≥ n

(
f − 1

p− 1

)
≥ 2
(
f − 1

2

)
= 2f − 1 ≥ f.

Especially, we have the isomorphisms for f = 1 and for f = e. Thus the surjective

composition pZp
exp−→ 1 + pZp −→ Ape−1 , where the second map is the restriction of

the ring map Zp −→ Zp/p
eZp ≈ Z/peZ to the multiplicative group map 1+pZp −→

(Z/peZ)×, factors through the quotient of its domain pZp by peZp,

pZp

��

exp

∼ // 1 + pZp

����

pZp/p
eZp

// // Ape−1

Further, pZp/p
eZp ≈ pZ/peZ ≈ Z/pe−1Z. So the surjection pZp/p

eZp −→ Ape−1 is
an isomorphism because the two finite groups have the same order, and then Ape−1

is cyclic because Z/pe−1Z is. This completes the proof. �

The condition −1/(p− 1) ≥ −1/2 in the proof fails for p = 2, but a modification
of the argument shows that (Z/2eZ)× has a cyclic subgroup of index 2.

Once one is aware that the truncated exponential series gives an isomorphism
pZ/peZ ∼−→ Ape−1 , the isomorphism can be confirmed without direct reference
to the p-adic exponential. For example with e = 3, any px + p3Z has image
1 + px+ 1

2p
2x2 + p3Z, and similarly py+ p3Z has image 1 + py+ 1

2p
2y2 + p3Z; their

sum p(x+ y) + p3Z maps to 1 + p(x+ y) + 1
2p

2(x2 + 2xy+ y2) + p3Z, which is also

the product of the images, even though 1 + p(x+ y) + 1
2p

2(x2 + 2xy+ y2) is not the

product of 1 + px+ 1
2p

2x2 and 1 + py + 1
2p

2y2. This idea underlies the elementary
argument to be given next.
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5. Odd Prime Power Unit Group Structure: Elementary Argument

Again we show that for any odd prime p and any positive e, the group (Z/peZ)×

is cyclic. Here the argument is elementary.

Proof. Let g generate (Z/pZ)×. Because the binomial theorem gives

(g + p)p−1 = gp−1 + (p− 1)gp−2p mod p2,

we have (g + p)p−1 6= gp−1 mod p2, so in particular

gp−1 6= 1 mod p2 or (g + p)p−1 6= 1 mod p2.

After replacing g with g + p if necessary, we may assume that gp−1 6= 1 mod p2.
Thus we know that

gp−1 = 1 + k1p, p - k1.
Again using the binomial theorem,

gp(p−1) = (1 + k1p)
p = 1 + pk1p+

p−1∑
j=2

(
p

j

)
kj1p

j + kp1p
p

= 1 + k2p
2, p - k2.

The last equality holds because the terms in the sum and the term kp1p
p are multiples

of p3. (Here it is relevant that p > 2. The assertion fails for p = 2, g = 3 because
of the last term. That is, 32−1 = 1 + 1 · 2 so that k1 = 1 is not divisible by p = 2,
but then 32(2−1) = 9 = 1 + 2 · 22 so that k2 = 2 is.) Once more by the binomial
theorem,

gp
2(p−1) = (1 + k2p

2)p = 1 + pk2p
2 +

p∑
j=2

(
p

j

)
kj2p

2j

= 1 + k3p
3, p - k3,

because the terms in the sum are multiples of p4. Similarly

gp
3(p−1) = 1 + k4p

4, p - k4,

and so on, up to

gp
e−2(p−1) = 1 + ke−1p

e−1, p - ke−1.

That is,

gp
e−2(p−1) 6= 1 mod pe.

The order of g in (Z/peZ)× must divide ϕ(pe) = pe−1(p− 1). If the order takes
the form pεd where ε ≤ e− 1 and d is a proper divisor of p− 1 then Fermat’s Little
Theorem (gp = g mod p) shows that the relation

gp
εd = 1 mod pe

reduces modulo p to

gd = 1 mod p.

But this contradicts the fact that g is a generator modulo p. Thus the order of g
in (Z/peZ)× takes the form pε(p − 1) where ε ≤ e − 1. The calculation above has
shown that ε = e− 1, and the proof is complete. �
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For example, 2 generates (Z/5Z)×, and 25−1 = 16 6= 1 mod 52, so in fact 2
generates (Z/5eZ)× for all e ≥ 1.

A small consequence of the proposition is that because (Z/peZ)× is cyclic for
odd p, and because ϕ(pe) = pe−1(p− 1) is even, the equation

x2 = 1 mod pe

has two solutions: 1 and gϕ(pe)/2.

6. Powers of 2 Unit Group Structure

Proposition 6.1. The structure of the unit group (Z/2eZ)× is

(Z/2eZ)× ∼=


Z/Z if e = 1,

Z/2Z if e = 2,

(Z/2Z)× (Z/2e−2Z) if e ≥ 3.

Specifically, (Z/2Z)× = {1}, (Z/4Z)× = {1, 3}, and for e ≥ 3,

(Z/2eZ)× ∼= {±1} × {1, 5, 52, . . . , 52
e−2−1}.

Proof. The results for (Z/2Z)× and for (Z/4Z)× are readily observable, and so we
take e ≥ 3.

Because |(Z/2eZ)×| = ϕ(2e) = 2e−1, we need to show that

52
e−3

6= 1 mod 2e, 52
e−2

= 1 mod 2e,

Similarly, to the previous argument, start from

52
0

= 5 = 1 + k222, 2 - k2,

and thus

52
1

= 52 = 1 + 2k222 + k2224 = 1 + k323, 2 - k3,
and then

52
2

= 54 = 1 + 2k323 + k2326 = 1 + k424, 2 - k4,
and so on up to

52
e−3

= 1 + ke−12e−1, 2 - ke−1,

and finally

52
e−2

= 1 + ke2
e, 2 - ke.

The last two displays show that

52
e−3

6= 1 mod 2e, 52
e−2

= 1 mod 2e.

That is, 5 generates half of (Z/2eZ)×. To show that the full group is

(Z/2eZ)× ∼= {±1} × {1, 5, 52, . . . , 52
e−2−1},

suppose that

(−1)a5b = (−1)c5d mod 2e, a, c ∈ {0, 1}, b, d ∈ {0, · · · , 2e−2 − 1}.

Inspect modulo 4 to see that c = a. So now 5b = 5d mod 2e, and the restrictions
on b and d show that d = b as well. �
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The group (Z/2eZ)× is not cyclic for e ≥ 3 because all of its elements have order
dividing 2e−2.

The equation

x2 = 1 mod 2e

has one solution if e = 1, two solutions if e = 2, and four solutions if e ≥ 3,

(1, 1), (−1, 1), (1, 52
e−3

), (−1, 52
e−3

).

With this information in hand, the Sun Ze Theorem shows that the number of
solutions of the equation

x2 = 1 mod n, (where n = 2e
g∏

i=1

peii )

is 
2g if e = 0, 1,

2 · 2g if e = 2,

4 · 2g if e ≥ 3.

For example, if n = 120 = 23 · 3 · 5 then the number of solutions is 16.
Especially, the fact that for odd n =

∏g
i=1 p

ei
i there are 2g − 1 proper square

roots of 1 modulo n has to do with the effectiveness of the Miller–Rabin primality
test. Recall that the test makes use of a diagnostic base b ∈ {1, . . . , n − 1} and of
the factorization n− 1 = 2sm, computing (everything modulo n)

bm, (bm)2, ((bm)2)2, . . . , (bm2s−2

)2 = bn−1.

Of course, if bm = 1 then all the squaring is doing nothing, while if bn−1 6= 1 then
n is not prime by Fermat’s Little Theorem. The interesting case is when bm 6= 1
but bn−1 = 1, so that repeatedly squaring bm does give 1: in this case, squaring bm

one fewer time gives a proper square root of 1. If n has g distinct prime factors
then we expect this square root to be −1 only 1/(2g − 1) of the time. Thus, if
the process turns up the square root −1 for many values of b then almost certainly
g = 1, i.e., n is a prime power. Of course, if n is a prime power but not prime
then we hope that it isn’t a Fermat pseudoprime base b for many bases b, and the
Miller–Rabin will diagnose this.

7. Cyclic Unit Groups (Z/nZ)×

Consider a positive nonunit integer

n =
∏
i

peii .

Recall the multiplicative component of the Sun Ze Theorem,

(Z/nZ)×
∼−→
∏

(Z/pepZ)×, a mod n 7−→ (a mod pe11 , · · · , a mod pekk ).

Consequently, the order of a divides the least common multiple of the orders of the
multiplicand-groups,

lcm{ϕ(pe11 ), · · · , ϕ(pekk )},
and thus a cannot conceivably have order ϕ(n) unless all of the ϕ(peii ) are coprime.
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For each odd p, the totient ϕ(pe) is even for all e ≥ 1. So for (Z/nZ)× to be
cyclic, n can have at most one odd prime divisor. Also, 2 | ϕ(2e) for all e ≥ 2. So
the possible unit groups (Z/nZ)× that could be cyclic are

(Z/2Z)×, (Z/4Z)×, (Z/peZ)×, (Z/2peZ)×.

We know that the first three groups in fact are cyclic. For n = 2pe, the Sun Ze
Theorem gives

(Z/2peZ)× ∼= (Z/2Z)× × (Z/peZ)× ∼= (Z/peZ)×,

showing that the fourth group is cyclic as well. If g generates (Z/peZ)× then
whichever of g and g + pe is odd generates (Z/2peZ)×.


