MATH 361: NUMBER THEORY - SIXTH LECTURE

Let d be a positive integer. Consider a polynomial in d variables with integer coefficients,

$$
f \in \mathbb{Z}\left[X_{1}, \ldots, X_{d}\right] \stackrel{\text { call }}{=} \mathbb{Z}[X] .
$$

Consider also a succession of conditions, each stronger than the next:
(A) The equation $f(X)=0$ has solutions in \mathbb{Z}^{d}.
(B) For all $m \in \mathbb{Z}^{+}$, the congruence $f(X)=0 \bmod m$ has solutions.
(C) For all $p \in \mathcal{P}$ and $n \in \mathbb{Z}^{+}$, the congruence $f(X)=0 \bmod p^{n}$ has solutions.
(D) For each $p \in \mathcal{P}$ there exists some $n \in \mathbb{Z}^{+}$such that the congruence $f(X)=0 \bmod p^{n}$ has solutions.
Thus we have the three implications

$$
(\mathrm{A}) \Longrightarrow(\mathrm{B}) \Longrightarrow(\mathrm{C}) \Longrightarrow(\mathrm{D})
$$

and we naturally wonder about their converses. The converse implication (C) \Longrightarrow (B) follows from the Sun Ze Theorem. This lecture discusses the converse implication $(\mathrm{D}) \Longrightarrow(\mathrm{C})$. The main result is called Hensel's Lemma.

1. Hensel's Lemma

Recall the Newton-Raphson method of finding roots by sliding along tangents: Given a suitably smooth function $f(x)$, and given an initial guess x_{1}, iterate

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
$$

If x_{1} is close enough to a root x of f such that $f^{\prime}(x) \neq 0$, then the iteration converges to x.

Hensel's Lemma is closely analogous to the Newton-Raphson method. Fix a prime p, and work now with one variable rather than the d variables above. (With d variables we may always freeze all but one of them.) The idea is that

Small means congruent to zero modulo a high power of p.
Thus:

- To say that $f(x)$ is small is to say that $f(x)=0 \bmod p^{n}$ for some suitable n.
- To say that $f^{\prime}(x)$ is not so small is to say that $f^{\prime}(x) \neq 0 \bmod p^{k+1}$ for some suitable k.
- Given such x, n, and k, we would like to find some y close to x so that $f(y)$ is smaller than $f(x)$ but $f^{\prime}(y)$ is no smaller than $f^{\prime}(x)$. To say that y is close to x is to say that $y=x \bmod p^{m}$ for some suitable m.
- We generate y from x by essentially the Newton-Raphson method.

Theorem 1.1 (Hensel's Lemma). Let $f \in \mathbb{Z}[X]$ be a polynomial with integer coefficients. Suppose that we have $k, n \in \mathbb{Z}$ with $0 \leq 2 k<n$ and $x \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{c}
f(x)=0 \bmod p^{n} \\
f^{\prime}(x)=0 \bmod p^{k} \\
f^{\prime}(x) \neq 0 \bmod p^{k+1}
\end{array}\right\}
$$

Then there exists $y \in \mathbb{Z}$ such that

$$
\left\{\begin{aligned}
y & =x \bmod p^{n-k} \\
f(y) & =0 \bmod p^{n+1} \\
f^{\prime}(y) & =0 \bmod p^{k} \\
f^{\prime}(y) & \neq 0 \bmod p^{k+1}
\end{aligned}\right\} .
$$

Before the proof, it deserves mention that the easiest and most common case is $k=0$. In this case, if we have $x \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$such that

$$
f(x)=0 \bmod p^{n}, \quad f^{\prime}(x) \neq 0 \bmod p
$$

then we get y such that

$$
y=x \bmod p^{n}, \quad f(y)=0 \bmod p^{n+1}, \quad f^{\prime}(y) \neq 0 \bmod p
$$

The second most common case, $k=1$ and $n \geq 3$, arises naturally for $p=2$ when f is quadratic.

A second remark before the proof is that for any integer-coefficient polynomial $\varphi[X] \in \mathbb{Z}[X]$ and any integer a, we have (exercise, in which it suffices by linearity to take $\varphi(X)=X^{m}$, so that $\left.\varphi^{(n)}(a) / n!=\binom{m}{n} a^{m-n}\right)$

$$
\varphi(a+H)=\sum_{n=0}^{\operatorname{deg} \varphi} \frac{\varphi^{(n)}(a)}{n!} H^{n} \quad \text { in } \mathbb{Z}[H]
$$

For quick reference we call this result Taylor's theorem for polynomials.
Proof. Provisionally define

$$
y=x+z p^{n-k}, \quad z \text { to be determined. }
$$

Then $y=x \bmod p^{n-k}$ independently of z, and the first of the four desired conditions is established.

By Taylor's Theorem for polynomials with $\varphi=f$ and $a=x$ and $H=z p^{n-k}$,

$$
f(y)=f(x)+f^{\prime}(x) z p^{n-k} \bmod p^{2 n-2 k}
$$

and so, because $2 n-2 k \geq 2 n-(n-1)=n+1$, it follows that

$$
f(y)=f(x)+f^{\prime}(x) z p^{n-k} \bmod p^{n+1}
$$

But we are given that $f(x)=b p^{n}$ for some b, and that $f^{\prime}(x)=a p^{k}$ for some $a \neq 0 \bmod p$, so the previous display gives

$$
f(y)=(a z+b) p^{n} \bmod p^{n+1}, \quad a \neq 0 \bmod p
$$

Thus, setting $z=-a^{-1} b \bmod p$ gives $f(y)=0 \bmod p^{n+1}$, and the second of the four desired conditions is established. Note that finding z required only solving a congruence modulo p, independently of k and n, not modulo a higher power of p.

Again by Taylor's Theorem for polynomials, this time with $\varphi=f^{\prime}$ and $a=x$ and $H=z p^{n-k}$,

$$
f^{\prime}(y)=f^{\prime}(x) \bmod p^{n-k}
$$

and so, because $n-k \geq 2 k+1-k=k+1$, it follows that

$$
f^{\prime}(y)=f^{\prime}(x) \bmod p^{k+1}
$$

Thus $f^{\prime}(y)=f^{\prime}(x)=0 \bmod p^{k}$ and $f^{\prime}(y)=f^{\prime}(x) \neq 0 \bmod p^{k+1}$, and the third and fourth desired conditions are established. Incidentally the proof has shown that that the value $a^{-1} \bmod p$ in the congruence $z=-a^{-1} b \bmod p$ that determines $y=x+z p^{n-k}$ from x can be reused in setting the next x to y, iterating n, and repeating the procedure to get the next y, as many times as desired.

With Hensel's Lemma proved, we return to the analogy between it and the Newton-Raphson method. The proof of Hensel's Lemma took x and found a corresponding y such that

$$
f(x)+(y-x) f^{\prime}(x)=0 \quad \text { in } \mathbb{Z} / p^{n+1} \mathbb{Z}
$$

Meanwhile, the Newton-Raphson formula for the next iterate $y=x_{n+1}$ in terms of the current iterate $x=x_{n}$ is

$$
y=x-f(x) / f^{\prime}(x)
$$

or, almost identically to the formula from proving Hensel's Lemma,

$$
f(x)+(y-x) f^{\prime}(x)=0 \quad \text { in } \mathbb{R}
$$

The algebra of the two methods is very similar, but it is not quite identical. On the one hand, we can in some sense better quantify the difference $f(y)-f(x)-$ $f^{\prime}(x)(y-x)$ in the number-theoretic context than in the real number system setting, because we know that it vanishes up to a certain power of p. On the other hand, we can divide by $f^{\prime}(x)$ in the real number system but not in the integers, because \mathbb{R} is a field while \mathbb{Z} is only a ring. However, the number theoretic context actually has a certain advantage in this regard. In the Newton-Raphson method, we divide by $f^{\prime}\left(x_{1}\right)$ to get x_{2}, then by $f^{\prime}\left(x_{2}\right)$ to get x_{3}, and so on. In the number-theoretic context, closer inspection of the proof just given shows that to find x_{n+1} (y in the lemma) given x_{n} (x in the lemma), the only inverse that we really need is $a^{-1} \bmod p$ where $f^{\prime}\left(x_{1}\right)=a p^{k}$. The presence of x_{1} rather than x_{n} in the previous equality means that using Hensel's Lemma to generate a sequence $\left\{x_{n}\right\}$ requires only one inversion modulo p.

As mentioned earlier, usually we start with $n=1$ and $k=0$ in Hensel's Lemma, i.e., usually we start with some $x \in \mathbb{Z}$ such that $f(x)=0 \bmod p$ and $f^{\prime}(x) \neq$ $0 \bmod p$. The repeatedly applying Hensel's Lemma gives a sequence $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ in \mathbb{Z} such that

$$
\left\{\begin{array}{ll}
x_{1}=x & \\
f\left(x_{n}\right)=0 \bmod p^{n} & \text { for all } n \in \mathbb{Z}^{+} \\
x_{n+1}=x_{n} \bmod p^{n} & \text { for all } n \in \mathbb{Z}^{+}
\end{array}\right\}
$$

For example, if we let $f(X)=X^{2}+1$ and take $p=5$ and $x=2$ then the sequence is

To our eyes the sequence may not appear to be converging, but it is converging in the sense that

$$
\begin{aligned}
& \text { for all } n, m \geq 1, \quad x_{n}=x_{m} \bmod 5 \text { and } x_{n}^{2}=x_{m}^{2}=-1 \bmod 5, \\
& \text { for all } n, m \geq 2, \quad x_{n}=x_{m} \bmod 5^{2} \text { and } x_{n}^{2}=x_{m}^{2}=-1 \bmod 5^{2}, \\
& \text { for all } n, m \geq 3, \quad x_{n}=x_{m} \bmod 5^{3} \text { and } x_{n}^{2}=x_{m}^{2}=-1 \bmod 5^{3},
\end{aligned}
$$

and so on. The sequence is $\mathbf{5}$-adically Cauchy. However, the integers \mathbb{Z} are not complete with respect to 5 -adic convergence. The obvious remedy is to complete them. Thus

Definition 1.2. The ring of p-adic integers \mathbb{Z}_{p} is the completion of the ring of integers with respect to p-adic convergence. The field of \mathbf{p}-adic numbers \mathbb{Q}_{p} is the field of quotients of \mathbb{Z}_{p}.

The ring of p-adic integers is similar to the usual ring of integers in some regards but very different in others. The sequence $\{2,7,57, \ldots\}$ from above converges to a square root of -1 in \mathbb{Z}_{5}. The only prime of \mathbb{Z}_{p} is p. All \mathbb{Z}_{p}-sided triangles are isosceles. The exponential series does not converge everywhere, but the exponential series and the logarithm series do invert each other where they do converge.

The p-adic integers also have a construction as a limit,

$$
\mathbb{Z}_{p}=\lim _{n} \mathbb{Z} / p^{n} \mathbb{Z}=\lim \left(\cdots \longrightarrow \mathbb{Z} / p^{3} \mathbb{Z} \longrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \longrightarrow \mathbb{Z} / p \mathbb{Z}\right)
$$

The limit is a mathematical structure (a group and a compact topological space, with the group multiplication and inversion continuous under the topology) that maps to all the quotients $\mathbb{Z} / p^{n} \mathbb{Z}$ compatibly with how they map to one another.

Many texts on the p-adic numbers exist, e.g., the book by Koblitz. Chapter 1 of Number Theory by Borevich and Shafarevich proves the following result.

Theorem 1.3 (Hasse-Minkowski Principle). Consider a quadratic form with rational coefficients,

$$
f\left(X_{1}, \ldots, X_{d}\right)=\sum_{i \leq j} a_{i j} X_{i} X_{j}
$$

Then f has a nonzero root in \mathbb{Q}^{d} if and only if f has a nonzero root in \mathbb{Q}_{p}^{d} for each prime p and f has a nonzero root in \mathbb{R}^{d}.

The field \mathbb{Q}_{p} in the theorem is similar to the ring \mathbb{Z}_{p} except that it has been augmented by denominators. The virtue of the principle is that each \mathbb{Q}_{p} and \mathbb{R} is a complete field where it suffices to find an approximate solution and then iterateusing Hensel's Lemma in \mathbb{Q}_{p} and the Newton-Raphson method in \mathbb{R}.

The word quadratic in the theorem is crucial. Selmer showed that the equation

$$
3 X^{3}+4 Y^{3}+5 Z^{3}=0
$$

has nonzero solutions in each \mathbb{Q}_{p} and in \mathbb{R}, but not in \mathbb{Q}.
As an exercise with Hensel's Lemma 2-adically, let p be a $1 \bmod 8$ prime, and let q be an odd prime. Consider a function of one variable,

$$
f(X)=p X^{2}+q y^{2}-z^{2} \quad \text { where } y=0 \text { and } z=1 .
$$

That is, $f(X)=p X^{2}-1$. Set $x=1$, so that

$$
f(x)=p-1=0 \bmod 2^{3}, \quad f^{\prime}(x)=2 p=0 \bmod 2, \quad f^{\prime}(x)=2 p \neq 0 \bmod 2^{2} .
$$

Thus Hensel's Lemma with $(n, k)=(3,1)$ gives a 2 -adic root of the three-variable polynomial $F(X, Y, Z)=p X^{2}+q Y^{2}-Z^{2}$. Continuing in this vein, one can show that for distinct odd primes p and q, the equation

$$
p X^{2}+q Y^{2}=Z^{2}
$$

has a nonzero solution in \mathbb{Z}_{2}^{3} if at least one of p and q is $1 \bmod 4$. More elementary considerations, using the surjection $\mathbb{Z}_{p} \longrightarrow \mathbb{Z} / p^{e} \mathbb{Z}$ with $p=2$ and a well-chosen e, show that it doesn't have a nonzero solution in \mathbb{Z}_{2}^{3} if p and q are $3 \bmod 4$. Soon we will encounter the same condition on p and q,

Yes if at least one of p and q is $1 \bmod 4$, No if both are $3 \bmod 4$, in a context that seems entirely different. The connection is explained in a later writeup.

