MATH 361: NUMBER THEORY - FIFTH LECTURE

1. The Sun Ze Theorem

The Sun Ze Theorem is often called the Chinese Remainder Theorem. Here is an example to motivate it. Suppose that we want to solve the equation

$$
13 x=23 \bmod 2310 .
$$

(Note that $2310=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$.) Since $\operatorname{gcd}(13,2310)=1$, we can solve the congruence using the extended Euclidean algorithm, but we want to think about it in a different way now. The idea is that

```
    13x = 23 mod 2310
\Longleftrightarrow
    13x=23(2),13x=23(3),13x=23(5),13x=23(7),13x=23(11)
\Longleftrightarrow
    x=1(2), x=2(3), 3x=3(5), 6x=2(7), 2x=1(11)
\Longleftrightarrow
    x=1(2), x=2(3),x=1 (5), x= 5(7), x=6 (11).
```

This succession of equivalences has reduced one linear congruence with a large modulus to a system of linear congruences with smaller moduli. Furthermore, the moduli are pairwise coprime.

In general, given pairwise coprime positive integers n_{1}, \ldots, n_{k}, compute the integers

$$
e_{i}=\left(\prod_{j \neq i} n_{j}\right) \times\left(\prod_{j \neq i} n_{j}\right)^{-1} \bmod n_{i}, \quad i=1, \ldots, k .
$$

These numbers satisfy the conditions

$$
e_{i}=\left\{\begin{array}{l}
1 \bmod n_{i} \\
0 \bmod n_{j}
\end{array} \quad \text { for } j \neq i .\right.
$$

That is, they are rather like the standard basis of \mathbb{R}^{n} in that each e_{i} lies one unit along the i th direction and is orthogonal to the other directions. But in this context, direction refers to a modulus.

With the e_{i} in hand, we can solve the system of congruences

$$
x=a_{1}\left(n_{1}\right), \quad x=a_{2}\left(n_{2}\right), \quad \cdots, \quad x=a_{k}\left(n_{k}\right) .
$$

A solution is simply the obvious linear combination,

$$
x=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{k} e_{k} .
$$

Returning to the example, a solution is

$$
\begin{aligned}
x= & 1 \cdot(3 \cdot 5 \cdot 7 \cdot 11) \cdot 1+2 \cdot(2 \cdot 5 \cdot 7 \cdot 11) \cdot 2+1 \cdot(2 \cdot 3 \cdot 7 \cdot 11) \cdot 3 \\
& +5 \cdot(2 \cdot 3 \cdot 5 \cdot 11) \cdot 1+6 \cdot(2 \cdot 3 \cdot 5 \cdot 7) \cdot 1 \\
= & 8531 \\
= & 1601 \bmod 2310 .
\end{aligned}
$$

(It is easy to verify that $13 \cdot 1601=23 \bmod 2310$.)

2. The Sun Ze Theorem Structurally

Again let n_{1}, \ldots, n_{k} be pairwise coprime positive integers, and let n be their product. The map

$$
\mathbb{Z} \longrightarrow \prod_{i} \mathbb{Z} / n_{i} \mathbb{Z}, \quad x \longmapsto\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)
$$

is a ring homomorphism. Its kernel is $n \mathbb{Z}$. So the map descends to an injection

$$
\mathbb{Z} / n \mathbb{Z} \longrightarrow \prod_{i} \mathbb{Z} / n_{i} \mathbb{Z}, \quad x \bmod n \longmapsto\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)
$$

But this injection surjects as well. One can see this either by counting (both sides are finite rings with n elements) or by noting that in fact we have constructed the inverse map,

$$
\prod_{i} \mathbb{Z} / n_{i} \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}, \quad\left(x_{1} \bmod n_{1}, \ldots, x_{k} \bmod n_{k}\right) \longmapsto \sum x_{i} e_{i} \bmod n
$$

For example, the inverse of

$$
\mathbb{Z} / 12 \mathbb{Z} \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, \quad x \bmod 12 \longmapsto(x \bmod 4, x \bmod 3)
$$

is

$$
\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \longrightarrow \mathbb{Z} / 12 \mathbb{Z}, \quad\left(x_{1} \bmod 4, x_{2} \bmod 3\right) \longmapsto 9 x_{1}+4 x_{2} \bmod 12
$$

Especially, if the n_{i} are prime powers then we have an isomorphism

$$
\mathbb{Z} /\left(p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}\right) \mathbb{Z} \xrightarrow{\sim}\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p_{k}^{e_{k}} \mathbb{Z}\right)
$$

or

$$
\mathbb{Z} /\left(\prod_{p} p^{e_{p}}\right) \mathbb{Z} \xrightarrow{\sim} \prod_{p} \mathbb{Z} / p^{e_{p}} \mathbb{Z}
$$

3. The Miller-Rabin Test Again

Suppose that an odd integer n factors as $n=\prod_{p} p^{e_{p}}$. By the Sun Ze Theorem, the condition

$$
x^{2}=1 \bmod n
$$

is equivalent to the simultaneous conditions

$$
x^{2}=1 \bmod p^{e_{p}} \quad \text { for all } p \mid n
$$

which in turn, because n is odd, is equivalent to the simultaneous conditions

$$
x= \pm 1 \bmod p^{e_{p}} \quad \text { for all } p \mid n
$$

with all the " \pm " signs independent of each other. Thus, if n is divisible by k distinct primes then there are 2^{k} square roots of 1 modulo n.

Of these 2^{k} square roots of 1 modulo n, only one is -1 modulo n. The MillerRabin test returns the result that n could be prime if it finds the particular square root -1 of 1 modulo n. The odds of finding -1 rather than some other square root of 1 are $1 / 2^{k}$, so they are at most $1 / 4$.

4. A Simple Thresh-hold Scheme Based on the Sun Ze Theorem

Let n_{1}, \ldots, n_{k} be pairwise coprime integers, all large. Define

$$
\begin{aligned}
N & =\text { the product of all the } n_{i} \\
n & =\text { the product of all the } n_{i} \text { except } n_{k}
\end{aligned}
$$

Thus

$$
N / n=n_{k}
$$

Consider a secret number

$$
x: 0 \leq x<N
$$

Let $a_{i}=x \bmod n_{i}$ for $i=1, \ldots, k$. Then:

$$
\text { All } k \text { of the } a_{i} \text { determine } x \text {, but the first } k-1 \text { of them do not. }
$$

Indeed, given a_{1} through a_{k}, the Sun Ze Theorem shows how the congruences

$$
\tilde{x}=a_{i} \bmod n_{i}, \quad i=1, \ldots, k
$$

give us a value \tilde{x} in $\{0, \cdots, N-1\}$ that agrees with x modulo N. But also x lies in the same range as \tilde{x}, so they are equal.

On the other hand, given only a_{1} through a_{k-1}), we can solve the congruences

$$
\tilde{x}=a_{i} \bmod n_{i}, \quad i=1, \ldots, k-1,
$$

and so we have a value $\tilde{x} \in\{0, \cdots, n-1\}$ that agrees with x modulo n. But also \tilde{x} plus any multiple of n is a candidate for x until we reach N. Thus there are $N / n=n_{k}$ candidates for x based on \tilde{x}.

