
MATH 361: NUMBER THEORY — FOURTH LECTURE

1. Introduction

Everybody knows that three hours after 10:00, the time is 1:00. That is, ev-
erybody is familiar with modular arithmetic, the usual arithmetic of the integers
subject to the additional condition that some fixed integer (such as 12) is treated
as 0. After noting some quick consequences of the Euclidean structure of the inte-
ger ring (Z,+, ·), this lecture places modular arithmetic in the context of quotient
structures of this ring.

2. Some Loose Ends

2.1. Euclid’s Lemma. Euclid’s Lemma states that for positive integers a, b, n:

If n | ab and gcd(n, a) = 1 then n | b.
Note that Euclid’s Lemma is similar to the definition of a prime element of an
integral domain: both have the premise of an element dividing a product, and then
the conclusion that the element divides one of the multiplicands. And, indeed, the
proof of Euclid’s Lemma is essentially the same as the proof that each irreducible
element is prime in a Euclidean domain. Specifically, we have n | ab and, because
gcd(n, a) = 1, we also have Nn + Aa = 1 for some N,A. Multiply this relation
through by b to get Nnb + Aab = b. But n divides the left side, so n divides the
right side, as desired.

We can also state and prove Euclid’s Lemma in the language of ideals, notwith-
standing that doing so is anti-historic. Again for positive integers a, b, n, now the
statement is:

If (ab) ⊂ (n) and (n, a) = (1) then (b) ⊂ (n).

Here the argument is that (b) = (n, a)(b) = (nb, ab) ⊂ (nb, n) = (n). (We are
multiplying ideals here. The definition is that if I and J are ideals then their
product IJ is the ideal generated by all pairwise products ij where i ∈ I and
j ∈ J . Ideal properties show that in fact I is generated by all pairwise products
of generators i and j, and this justifies the equality (n, a)(b) = (na, nb) in the
argument.)

A consequence of Euclid’s Lemma is:

If (a, b) = 1 then (a, bc) = (a, c).

Indeed, given that (a, b) = 1, any divisor d of a and bc satisfies (d, b) = 1 because
d | a, and so Euclid’s Lemma gives d | c because d | bc. That is, any divisor of
a and bc also divides c. Conversely, it is immediate that any divisor d of a and c
divides bc. Alternatively, one can prove the consequence by a variant of proving
the lemma: αa + βb = 1 for some α and β, so αac + βbc = c, and so the linear
combination c of a and bc is a multiple of their greatest common divisor (a, bc).

A particular instance of the consequence of Euclid’s Lemma is:

The set of positive integers coprime to a given n is closed under
multiplication.
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Here the argument is that if (n, b) = (n, c) = 1 then because we have (n, b) = 1
Euclid’s Lemma gives (n, bc) = (n, c), and because we also have (n, c) = 1 indeed
(n, bc) = 1.

2.2. Least common multiple. Any two positive integers a and b have a positive
integer least common multiple, denoted lcm(a, b). If a and b are coprime then
lcm(a, b) = ab, because if a divides a multiple mb of b then a divides m by Euclid’s
Lemma. For general a and b, let g = gcd(a, b). With a = ga′ and b = gb′ where
gcd(a′, b′) = 1,

ab = g2a′b′ = g2 lcm(a′, b′) = g lcm(ga′, gb′) = g lcm(a, b).

That is, lcm(a, b) = ab/ gcd(a, b).
So far this writeup uses global methods, as compared to the local approach of

factoring a and b uniquely into prime powers—as we can do essentially in conse-
quence of Euclid’s Lemma—and then working one prime at a time. To work locally
instead, fix a prime p and suppose that

the powers of p in a and b are pea and peb

so that

the powers of p in ab, gcd(a, b), lcm(a, b) are are pea+eb , pmin(ea,eb), pmax(ea,eb).

Because ea+eb = min(ea, eb)+max(ea, eb), again ab = gcd(a, b) lcm(a, b). Similarly,
it is easy to show the consequence of Euclid’s Lemma in section 2.1 by local methods,
taking unique factorization as morally in hand once Euclid’s Lemma is proved.
There are tradeoffs between local and global methods, depending on context. One
issue in algorithmic/computational number theory is that factorization into primes
can be intractable for large integers while global algorithms can be fast.

3. The Quotient Ring Z/nZ

Let n ∈ Z+ be a positive integer. Equality up to multiples of n partitions Z into
n equivalence classes, called cosets,

0 = 0 + nZ, 1 = 1 + nZ, , . . . , n− 1 = (n− 1) + nZ.

Let Z/nZ denote the set of these cosets. The map

Z −→ Z/nZ, a 7−→ a = a+ nZ

is a well defined surjection. However, for now its domain is a ring but its codomain
is only a set. We want it to be a ring-to-ring map, and this requires addition and
multiplication in Z/nZ.

The natural addition and multiplication of Z/nZ are obvious:

a+ b
def
= a+ b, a · b def

= ab.

Informally we are doing remainder arithmetic, but really an equivalence class such
as 3 means 3 and all its n-translates. The number of hours from any 10:00 to
any 1:00 is 3 rather than 3.

The question is not what the operations of Z/nZ must be, but
whether what they must be makes sense.
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To address this question, we move to coset notation,

(a+ nZ) + (b+ nZ)
def
= (a+ b) + nZ, (a+ nZ)(b+ nZ)

def
= ab+ nZ.

The point is that conceivably a+nZ = a′+nZ and b+nZ = b′+nZ in Z/nZ with
a 6= a′ and/or b 6= b′ in Z, and so the sum (a+nZ)+(b+nZ) = (a′+nZ)+(b′+nZ)
is defined by two different formulas,

(a+ nZ) + (b+ nZ) = a+ b+ nZ, (a′ + nZ) + (b′ + nZ) = a′ + b′ + nZ.
Unless a+ b+nZ = a′+ b′+nZ, addition in Z/nZ isn’t sensible. And similarly for
multiplication in Z/nZ,

(a+ nZ)(b+ nZ) = ab+ nZ, (a′ + nZ)(b′ + nZ) = a′b′ + nZ,
so unless ab+ nZ = a′b′ + nZ, multiplication in Z/nZ isn’t sensible. However, the
conditions

a+ nZ = a′ + nZ and b+ nZ = b′ + nZ
are

a′ − a ∈ nZ and b′ − b ∈ nZ,
which give, crucially using the ideal properties of nZ in Z as compared to merely
its subring properties,

(a′ + b′)− (a+ b) = (a′ − a) + (b′ − b) ∈ nZ
a′b′ − ab = a′(b′ − b) + b(a′ − a) ∈ nZ,

and these conditions are the desired ones,

a+ b+ nZ = a′ + b′ + nZ and ab+ nZ = a′b′ + nZ.
That is, the quotient space Z/nZ inherits ring structure from Z because the subring
nZ of Z is an ideal. With the natural candidate inherited addition and multiplica-
tion operations of Z/nZ confirmed as sensible, the reduction map

: Z −→ Z/nZ
is innately a surjective ring homomorphism.

With these issues clearly addressed, from now on we allow ourselves to be sit-
uationally casual with the notations a, a, and a + nZ. For example, “a ∈ Z/nZ”
and “a ∈ Z/nZ where a ∈ Z” are both literally correct, each assigning a different
meaning to a—especially, a is not an integer in the first—but we may blur this
distinction and let a denote both quantities simultaneously.

The unit group of Z/nZ is

(Z/nZ)× = {a ∈ Z/nZ : ab = 1 for some b ∈ Z/nZ}
Our earlier discussion of ideals and the Euclidean algorithm shows that for any
integer a ∈ Z,

a ∈ (Z/nZ)× ⇐⇒ ab = 1 for some b

⇐⇒ ab+ kn = 1 for some b and k

⇐⇒ (a, n) = 1.

Consequently,
(Z/nZ)× = {a : (a, n) = 1}.

Here we can note that for any integer k we have (a + kn, n) = (a, n), so the value
of (a, n) is independent of which a we use to name the coset a. Thus the previous
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display is sensible. It shows that the elementary definition of the Euler totient
function,

ϕ(n) = |{a ∈ {0, 1, . . . , n− 1} : (a, n) = 1}|
is equivalent to a more conceptual definition,

ϕ(n) = |(Z/nZ)×|.

4. Maps Among Quotient Rings of Z

Let n and m be positive integers with n | m. The inclusion map mZ −→ nZ of
ideals of Z gives rise to a surjective map of quotient rings in the other direction,

: Z/mZ −→ Z/nZ, a+mZ 7−→ a+ nZ.
Similarly to the quotient ring operations, this quotient map is the obvious thing,
but what needs to be shown is that thanks to the containment mZ ⊂ nZ, it makes
sense. The problem is that conceivably an element a+mZ of Z/mZ is also a′+mZ
but a + nZ and a′ + nZ are distinct in Z/nZ. However, this can’t happen: the
condition a + mZ = a′ + mZ is a′ − a ∈ mZ, implying a′ − a ∈ nZ because of the
containment, and this is the condition a+ nZ = a′ + nZ.

Still with n | m, the surjective map between quotient rings gives rise to a corre-
sponding surjective map of multiplicative groups,

: (Z/mZ)× −→ (Z/nZ)×, a+mZ 7−→ a+ nZ,
noting that if (a,m) = 1 then also (a, n) = 1, so indeed the quotient ring map takes
units to units. We show that the unit group map surjects. In general, a surjection
of commutative rings with 1 needn’t give rise to a surjection of the unit groups, as
shown by the map Z −→ Z/5Z, so our argument must use specifics of the situation
at hand. The issue is that the condition (a, n) = 1 doesn’t imply (a,m) = 1. To
address this, it suffices to consider the case m = np with p prime, because the
general case can be built from this one in finitely many steps. By the consequence
of Euclid’s Lemma noted early in this writeup, (a, np) = (a, p). Now there are two
cases.

• If p - a then (a, np) = 1. Thus a + npZ in (Z/npZ)× maps to a + nZ
in (Z/nZ)×.
• If p | a then (n, p) = 1 because (a, n) = 1, and so (a+ n, p) = 1. This gives

(a + n, np) = (a + n, n) by the consequence of Euclid’s Lemma, and then
(a + n, n) = (a, n) = 1, so altogether (a + n, np) = 1. Thus a + n + npZ
in (Z/npZ)× maps to a+ nZ in (Z/nZ)×.

5. Congruence

Definition 5.1. For any integers a, b, and n, we say that a equals b modulo n,
notated

a = b mod n,

if n | b− a. Other notations for congruence are

a =n b, a ≡ b (mod n), a = b (n),

and so on.

We recognize congruence modulo n in Z to mean equality in the quotient ring
Z/nZ. Although there is nothing new in the definition other than notation, the
notation lets us phrase arguments neatly and naturally. Here are some examples.
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• a = b mod 0 if and only if a = b.
• a = b mod 1 for all a and b.
• a = b mod 2 if and only if a and b have the same parity.
• An exercise on the first homework set showed that

f(no + kf(no)) = 0 mod f(no).

• Let f ∈ Z[X1, . . . , Xk], a polynomial in k variables with integer coefficients,
be given. Suppose that we have k pairs of integer values that are congruent
modulo some n,

(x1, . . . , xk) = (y1, . . . , yk) mod n, componentwise.

Then also, because the map Z −→ Z/nZ is a ring homomorphism,

f(x1, . . . , xk) = f(y1, . . . , yk) mod n.

• (Decimal digits) Because 10 = 1 (9), it follows that for any decimal digits
a0, . . . , an,

n∑
i=0

ai10i =

n∑
i=0

ai mod 9.

This is the grade school digit-sum test that a number is divisible by 9 if and
only if the sum of its digits is divisible by 9. Because 10 = 1 (3) the same
result holds for divisibility by 3. Because 10 = −1 (11) a similar result holds
for divisibility by 11, but with the alternating sum of the digits. Because
10 = 0 (2), a number’s last digit determines whether it is divisible by 2,
and similarly for divisibility by 5. Because 10 = 2 (4) and 100 = 0 (4), the
sum of twice a number’s second-to-last digit and its last digit determine
whether it is divisible by 4.

• (A variant of Euclid’s argument) Any odd n satisfies n = 1 (4) or n = 3 (4).
Suppose that there are only finitely primes p = 3 (4); call them pi for
i = 1, . . . , k. (So here p1 = 3.) Consider the odd number

n = 4p2 · · · pk + 3 (note that p1 = 3 is excluded).

Then n 6= 0 (3) and n = 3 (pi) 6= 0 (pi) for i = 2, . . . , k. Thus none of
the pi divide n, and neither does 2. It follows that n is a product of primes
q = 1 (4). But any such product is again 1 (4), contradicting the fact
that n = 3 (4). The conclusion is that there exist infinitely many primes
p = 3 (4).

6. Euler’s Rule and Fermat’s Little Theorem

Proposition 6.1 (Euler’s Rule). Let a, n be positive integers with (a, n) = 1. Then

aϕ(n) = 1 mod n.

Proof. For an elementary proof, let x1, . . . , xϕ(n) be the elements of {0, . . . , n− 1}
that are coprime to n. Then we have

axi = xj(i) mod n, i = 1, . . . , ϕ(n),

where the map
i 7−→ j(i)

permutes {1, . . . , ϕ(n)}. Here one point is that the conditions (a, n) = (xi, n) = 1
give (axi, n) = 1 by the observation after Euclid’s Lemma toward the beginning of
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this writeup that the set of positive integers coprime to a given n is closed under
multiplication; thus we do have axi = xj(i) mod n for some j(i). The second point
is that if axi = axi′ (n) then xi = xi′ (n) also by Euclid’s Lemma, because a is
coprime to n, and so xi = xi′ because both come from {0, . . . , n− 1}. Thus i = i′,
and the map i 7→ j(i) is a permutation, as claimed. Now, because the map is a
permutation, we have

ϕ(n)∏
i=1

xi =n

ϕ(n)∏
i=1

(axi) =n a
ϕ(n)

ϕ(n)∏
i=1

xi.

So 1 = aϕ(n) (n), because the product
∏ϕ(n)

i=1 xi is coprime to n in consequence of
each xi being so. �

The points addressed by explicit situational use of Euclid’s Lemma in the pre-
vious argument are handled tacitly and automatically by the group structure of
(Z/nZ)×. Let G denote this group. Instead of making the elementary argument,
let x1, . . . , xϕ(n) be the elements of G, and identify a with its image a in G. The
map x 7→ ax permutes G, and so ∏

x∈G
ax =

∏
x∈G

x.

The left side is aϕ(n)
∏

x∈G x, and now multiplying by the inverse of the product, or
noting that the cancellation law always holds in a group because we can multiply
by inverses in general, gives the result.

Even more generally, Euler’s Rule is a special case consequence of the beginning
finite group theory result that the order of every subgroup divides the order of
the group. Indeed, for any group element, the order of the cyclic subgroup that
it generates divides the order of the group; the order of the cyclic subgroup is the
order of its generator, so this latter order divides the order of the group. Thus,
raising any group element to the order of the group gives 1. Specializing the group
to (Z/nZ)× gives Euler’s rule that for a ∈ (Z/nZ)×, aϕ(n) = 1 in (Z/nZ)×.

Corollary 6.2 (Fermat’s Little Theorem). Let p be prime. For every integer a
such that p - a,

ap−1 = 1 mod p.

In consequence of Fermat’s Little Theorem,

ap = a mod p for all integers a and primes p.

However, the slight gain of information here occurs outside the group setting of
(Z/pZ)×. In fact, the result in the previous display can be proved additively rather
than multiplicatively, using induction on a ≥ 0 with p fixed but generic, and using
the binomial theorem. The base case a = 0 is clear, and if a ≥ 0 and ap = a mod p
then consequently

(a+ 1)p =

p∑
j=0

(
p

j

)
ap−j = ap + 1 mod p = a+ 1 mod p.

Because (−a)p = −ap mod p for any integer a and prime p, including p = 2, we
have the desired result for negative a as well, using the condition −a ≥ 1 for the
second congruence to follow,

ap = −(−a)p mod p = −(−a) mod p = a.
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7. The Equation ax+ ny = b

Consider the equation

ax+ ny = b, a, n, b ∈ Z, n 6= 0.

Because the integer linear combinations of a and n are precisely the integer multiples
of their greatest common divisor (a, n), the equation has integer solutions [x y] if
and only if (a, n) | b. When indeed (a, n) | b, the Euclidean algorithm gives x̃0
and ỹ0 such that ax̃0 + nỹ0 = (a, n), and so [x0 y0] = [x̃0b/(a, n) ỹ0b/(a, n)] is
one solution of our equation. We seek all solutions. If [x1 y1] is another solution
then a(x0 − x1) + n(y0 − y1) = 0, so to find all solutions it suffices to solve the
homogeneous equation ax + ny = 0. Let g = (a, n). Divide the homogeneous
equation by g to get

(a/g)x+ (n/g)y = 0.

Note that (a/g, n/g) = 1 because g = (a, n) = (ga/g, gn/g) = g(a/g, n/g). The
previous display and the coprimality and Euclid’s Lemma say that n/g divides x
and a/g divides y. Consequently the solution set of the homogeneous equation is

Z[n/g −a/g].

Altogether, when (a, n) divides b, the solutions of ax+ ny = b are

[x0 y0] + Z[n/g −a/g], where ax0 + ny0 = b.

8. The Congruence ax = b mod n

Again consider a, b, n ∈ Z with n 6= 0. For any x ∈ Z we have the equivalences

ax = b mod n ⇐⇒ ax+ ny = b for some y.

So the work that we just did shows the following result.

Proposition 8.1. Let a, b, n ∈ Z with n 6= 0, and let g = gcd(a, n). The congruence

ax = b mod n

has solutions if and only if g | b. When the congruence has a solution x0 ∈ Z then
its full integer solution set is

x0 + Zn/g.
It follows that the equation ax = b in Z/nZ has g solutions,

{x0 + tn/g + nZ : t = 0, 1, . . . , g − 1}.
In particular, if g = 1 then the equation ax = b has one solution in Z/nZ.

Perhaps the proposition is most easily remembered as a procedure:

To solve the congruence

ax = b mod n,

let
g = gcd(a, n), a = a′g, n = n′g.

Then the congruence is

a′gx = b mod n′g.

Unless b = b′g there are no solutions. If b = b′g then the congruence
becomes

a′x = b′ mod n′, gcd(a′, n′) = 1,
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with unique solution

x0 = a′
−1
b′ mod n′.

Thus the original congruence has solutions x0 + tn′ mod n, t =
0, 1, . . . , g − 1.


