
MATH 361: NUMBER THEORY — THIRD LECTURE

The topic of this lecture is arithmetic functions and Dirichlet series. Euler’s
proof that the sum

∑
1/p of the reciprocal primes diverges is used to introduce the

function ζ(s) as a Dirichlet series that has an Euler product representation. We
then proceed to formal Dirichlet series in general, noting that their multiplication
encodes the convolution of the arithmetic functions that give their coefficients. Var-
ious results about arithmetic functions, in particular the famous Möbius inversion
formula, now follow from observations about Dirichlet series. Arithmetic functions
having a particular property called multiplicativity correspond to Dirichlet series
having Euler product representations, with so-called totally multiplicative arith-
metic functions matching up with particularly nice Euler products. At the end of
the writeup we prove a more general version of Möbius inversion, with no reference
to Dirichlet series, in order to give an important example of its use, the cyclotomic
polynomial formula.
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1. Introduction

By way of introduction, consider Euclid’s proof that there exist infinitely many
primes: If p1 through pn are prime then the number

q = 1 +

n∏
i=1

pi

is not divisible by any pi. According to this argument, the next prime after p1
through pn could be as large as q. The overestimate is astronomical. Specifically,
compute that for n ≥ 3, because

pn ≤ 1 + p1 · · · pn−1 ≤ (7/6)p1 · · · pn−1,
1
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it follows that

pn ≤ (7/6)p1 · · · pn−1
≤ (7/6)2(p1 · · · pn−2)2

≤ (7/6)4(p1 · · · pn−3)4

≤ · · ·

≤ (7/6)2
n−3

(p1p2)2
n−3

= 72
n−3

(because p1p2 = 6)

< e2
n−2

.

So, for example, the tenth prime p10 satisfies p10 < 1.51143× 1011. Because in fact
p10 = 29, we see how little Euclid’s argument tells us.

By contrast, Euler argued that∑
p∈P

1

p
diverges,

and in fact his argument shows more. The argument proceeds as follows. Define

ζ(s) =

∞∑
n=1

1

ns
, s > 1.

The basic estimate
∫∞
1
x−s dx < ζ(s) < 1 +

∫∞
1
x−s dx, obtained by first placing

boxes of base 1 over the y = 1/x curve and then shifting them leftward by 1 so
that they lie under the curve, shows that as s approaches 1 from the right, ζ(s) is
asymptotic to 1/(s − 1) and so log ζ(s) is asymptotic to log(1/(s − 1)). Here the
logarithm is natural, of course. Thus

lim
s→1+

ζ(s) =∞,

and also

lim
s→1+

log ζ(s) =∞.

Now, summing over values of n with steadily more prime factors gives∑
n=2e2

n−s =

∞∑
e2=0

(2−s)e2 = (1− 2−s)−1,

∑
n=2e23e3

n−s =

∞∑
e2=0

(2−s)e2
∞∑
e3=0

(3−s)e3 = (1− 2−s)−1(1− 3−s)−1,

...∑
n=2e2 ···pep

n−s = (1− 2−s)−1 · · · (1− p−s)−1.

And so, being very casual about convergence, it is essentially a restatement of
unique factorization that the zeta function also has an infinite product expression,

ζ(s) =
∑
n∈Z+

n−s =
∏
p∈P

(1− p−s)−1.
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From the general series

log(1−X)−1 =

∞∑
n=1

Xn/n, |X| < 1,

we have (again being very casual about convergence)

log ζ(s) = log
∏
p∈P

(1− p−s)−1 =
∑
p∈P

log(1− p−s)−1 =
∑
p∈P

∞∑
n=1

p−ns

n

=
∑
p∈P

p−s +
∑
p∈P

∞∑
n=2

p−ns

n
.

From above, we know that lims→1+ log ζ(s) =∞, and the dominant term
∑
p∈P p

−s

at the end of the previous display is what we want to understand as s tends to 1.
The other term is small,∑

p∈P
n≥2

p−ns

n
<
∑
p∈P
n≥2

p−n =
∑
p∈P

1

p2(1− p−1)
=
∑
p∈P

1

p(p− 1)
<

∞∑
n=2

1

n(n− 1)
= 1.

This shows that the quantity that we want to understand is close to a quantity that
we do understand, ∣∣∣∣∣∣

∑
p∈P

p−s − log ζ(s)

∣∣∣∣∣∣ < 1.

And so

lim
s→1+

∑
p∈P

p−s =∞,

and more specifically,

lim
s→1+

∑
p p
−s

log ζ(s)
= 1.

This strong suggests, although it doesn’t show, that the sum of prime reciprocals
grows asymptotically as the logarithm of the harmonic series. Recall that the partial
sums of the harmonic series themselves grow logarithmically, so that the sum of
prime reciprocals grows very slowly. Euler’s result is far stronger than Euclid’s,
and it illustrates analytic number theory .

2. Dirichlet Series

The zeta function is a particular instance of a Dirichlet series.

Definition 2.1. An arithmetic function is a complex-valued function of positive
integers,

f : Z+ −→ C.
Its associated Dirichlet series is a formal series that depends on a parameter s,

F (s) =

∞∑
n=1

f(n)

ns
.
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Using Dirichlet series to discuss arithmetic functions is not really necessary, but
I think that the Dirichlet series clarify what is going on.

Let F and G be the Dirichlet series associated to the arithmetic functions f
and g. Compute that their product is

F (s)G(s) =
∑
d

f(d)

ds

∑
e

g(e)

es
=
∑
d,e

f(d)g(e)

(de)s
=
∑
n

∑
de=n f(d)g(e)

ns
.

Thus, if we define the convolution (or Dirichlet product) of f and g to be

f ∗ g : Z+ −→ C, (f ∗ g)(n) =
∑
de=n

f(d)g(e)

(also (f ∗ g)(n) =
∑
d|n f(d)g(n/d) =

∑
d|n f(n/d)g(d), and we freely use any of

the three formulas for f ∗ g) then the corresponding product of Dirichlet series is

F (s)G(s) =

∞∑
n=1

(f ∗ g)(n)

ns
.

That is, for arithmetic functions f , g, and h, and for Dirichlet series F , G, and H,

h = f ∗ g ⇐⇒ H = FG.

Because the multiplication of Dirichlet series is associative and commumative,(
F (s)G(s)

)
H(s) = F (s)

(
G(s)H(s)

)
and F (s)G(s) = G(s)F (s)

(for the left equality, both are
∑
n

∑
cde=n f(c)g(d)h(e)/ns), the same properties

hold for the convolution of arithmetic functions,

(f ∗ g) ∗ h = f ∗ (g ∗ h) and f ∗ g = g ∗ f.
And because Dirichlet series with nonzero leading term are invertible (

∑
ann

−s

has inverse
∑
bnn
−s where b1 = a−11 and bn = −a−11

∑
1<d|n adbn/d for n > 1), it

follows from the boxed equivalence that the arithmetic functions that do not vanish
at 1 form a group under convolution.

3. Examples, Möbius Inversion

With the boxed equivalence in mind, we create a small catalogue of arithmetic
functions and their Dirichlet series.

• The identity arithmetic function is

id(n) =

{
1 if n = 1,

0 otherwise.

The corresponding Dirichlet series is simply

I(s) = 1.

Because I(s) is the multiplicative identity, id is the convolution identity.
• The unit arithmetic function is

u(n) = 1 for all n.

(Ireland and Rosen call this function I.) The corresponding Dirichlet series
is the zeta function,

U(s) = ζ(s).
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• The reciprocal of the zeta function is the Dirichlet series

ζ(s)−1 =
∏
p

(1− p−s) = 1−
∑
p

p−s +
∑
p,q

(pq)−s −
∑
p,q,r

(pqr)−s + · · · .

The corresponding arithmetic function is the Möbius function,

µ(n) =

{
(−1)k if n = p1 · · · pk (distinct primes),

0 if n is divisible by a nontrivial square.

The first case in the previous formula says in particular that µ(1) = 1. Because
ζ(s) and ζ(s)−1 are Dirichlet series inverses, u and µ are convolution inverses,

µ ∗ u = id.

That is, because u always returns the value 1,∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

The reader may enjoy verifying this directly, without reference to Dirichlet series.
More generally, for any arithmetic functions f and g, because u and µ are in-

verses, we have the Möbius Inversion Principle,

g = f ∗ u ⇐⇒ f = g ∗ µ.

Usually this equivalence is written as the Möbius Inversion Formula,

g(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

g(d)µ(n/d).

Often the idea is that f is interesting but we don’t immediately have a formula for
it, while g = f ∗ u is easy to compute, so that Möbius inversion gives a formula
for f . For example, consider two arithmetic functions,

f(n) = sum of the primitive nth roots of 1,

g(n) = sum of all nth roots of 1.

Here f is interesting while the finite geometric sum formula shows that g is simply
the convolution identity function id. The relation f ∗ u = g = id says that f is the
convolution inverse of u, the Möbius function. That is,

sum of the primitive nth roots of 1 = µ(n).

The reader can enjoy verifying this for n = 1, 2, 3, . . . through the first value of n
where it is not easy.

4. The Euler Totient Function

The Euler totient function is an arithmetic function,

ϕ : Z+ −→ Z+, ϕ(n) = #{x ∈ {0, . . . , n− 1} : gcd(x, n) = 1} = #(Z/nZ)×.

For the least equality in the previous display, gcd(x, n) = 1 if and only if there exist
a and b such that ax + bn = 1, which holds if and only if there exists a such that
ax ≡ 1 mod n, i.e., x ∈ (Z/nZ)×. Thus ϕ(1) = 1 and ϕ(p) = p− 1 for p prime.
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Now we set up Möbius inversion by counting that

n =
∑
d|n

ϕ(d) for all n ∈ Z+.

Indeed, noting that ((n/d)k, n) = (n/d)(k, d) for the second equality to follow,

{0, . . . , n− 1} =
⊔
d|n

{x ∈ {0, . . . , n− 1} : (x, n) = n/d}

=
⊔
d|n

{(n/d)k : 0 ≤ k < d, (k, d) = 1},

and the desired counting formula n =
∑
d|n ϕ(d) follows immediately by definition

of the totient function. (As an example, if n = 20 then the disjoint union is, with
d = 1, 2, 4, 5, 10, 20,

{0} t {10} t {5, 15} t {4, 8, 12, 16} t {2, 6, 14, 18} t {1, 3, 7, 9, 11, 13, 17, 19},

and then, e.g., for d = 10 the set {2, 6, 14, 18} = (20/10) · {1, 3, 7, 9} contains
ϕ(10) = 4 elements.) Consequently, Möbius inversion gives

ϕ(n) =
∑
d|n

µ(d)
n

d
.

That is,

ϕ(n) = n
∑
d|n

µ(d)

d
= n

1−
∑
p|n

1

p
+
∑
p,q|n

1

pq
− · · ·

 .

The alternating sum-of-sums factors to give the formula for the totient function,

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Alternatively one can obtain the formula ϕ(n) =
∑
d|n µ(d)nd by inclusion–exclusion,

leading to the boxed formula for ϕ(n) and also giving n =
∑
d|n ϕ(d) for all n ∈ Z+

by Möbius inversion. In functional language, introducing the arithmetic function

i : Z+ −→ Z, i(n) = n,

which is neither the convolution identity function id nor the unit function u from
earlier, we have shown that i = ϕ ∗ u, so that ϕ = i ∗ µ, but alternatively one can
proceed from ϕ = i ∗ µ to i = ϕ ∗ u.

Some consequences of the totient function formula are

ϕ(pe) = pe − pe−1 for e ≥ 1 (this is even if p > 2 or e ≥ 1),

ϕ(mn) = ϕ(m)ϕ(n) if (m,n) = 1,

a | b =⇒ ϕ(a) | ϕ(b),

n ≥ 3 =⇒ ϕ(n) is even,

n = pe11 · · · p
ek
k =⇒ 2k | ϕ(n) if all pi > 2 or 4 | n.
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5. Two More Arithmetic Functions

The kth power function is

πk : Z+ −→ Z+, πk(n) = nk.

The function i(n) = n from just above is π1, and the function u(n) = 1 from earlier
is π0. The sum of divisor kth powers function is

σk : Z+ −→ Z+, σk(n) =
∑
d|n

dk.

Especially, σ0 counts the divisors of n and σ1 sums them.
The Dirichlet series of πk is

Πk(s) = ζ(s− k),

whose multiplicative inverse is

ζ−1(s− k) =
∑
n≥1

µ(n)

ns−k
=
∑
n≥1

(πkµ)(n)

ns
,

and so the convolution inverse of πk is πkµ. Because σk = πk ∗ u is a convolution,
its convolution inverse is the convolution of the individual convolution inverses,
πkµ ∗ µ. Also, the Dirichlet series Σk(s) of σk is the product of the corresponding
Dirichlet series,

Σk(s) = ζ(s− k)ζ(s),

as can be checked directly for practice. Möbius inversion of the relation σk = πk ∗u
gives πk = σk ∗ µ, i.e.,

nk =
∑
d|n

σk(d)µ(n/d), n ≥ 1.

Altogether, we now have the convolution identity function id (recall that id(n)
is 1 for n = 1 and is 0 for n > 1); and the convolution inverse pairs (πk, πkµ),
including (u, µ) when k = 0 (recall that u(n) = 1 for all n); and the convolution
inverse pairs (σk, πkµ ∗ µ), with σk = πk ∗ u by definition and πk = σk ∗ µ in
consequence; and Euler’s totient function is ϕ = π1 ∗ µ = i ∗ µ so that i = ϕ ∗ u
(recall that i(n) = n for all n).

We mention the not-at-all-obvious fact that, letting r(n, 4) denote the number
of representations of n as a sum of 4 squares,

r(n, 4) = 8σ1(n) if 4 - n

For example, one can check directly that r(3, 4) = 32 and also 8σ1(3) = 32, but
r(4, 4) = 24 while 8σ1(4) = 56.

6. Multiplicative and Totally Multiplicative Functions

Definition 6.1. Let f : Z+ −→ C be an arithmetic function. Then f is multi-
plicative if

f(nm) = f(n)f(m) for all n and m such that (n,m) = 1,

and f is totally multiplicative if

f(nm) = f(n)f(m) for all n and m.
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Thus:

For nonzero multiplicative functions, f(1) = 1 and f(
∏
p

pep) =
∏
p

f(pep).

And:

For totally multiplicative functions, furthermore f(
∏
p

pep) =
∏
p

f(p)ep .

The corresponding Dirichlet series conditions are

f is multiplicative ⇐⇒ F (s) =
∏
p

∞∑
e=0

f(pe)

pes

and

f is totally multiplicative ⇐⇒ F (s) =
∏
p

(1− f(p)p−s)−1.

The first equivalence follows from the formal identity that for any arithmetic func-
tion f , ∏

p

∞∑
e=0

f(pe)

pes
=

∞∑
n=1

∏
pep‖n f(pep)

ns
,

because the right side is the Dirichlet series of f exactly when f is multiplicative.
Here the notation pep‖n means that pep is the highest power of p that divides n.
The second equivalence follows from the first and from the geometric series formula.

Some further facts that are straightforward to check, either directly or by using
Dirichlet series, are

• If f and g are multiplicative then so is f ∗ g.
• If f is multiplicative and nonzero then so is the convolution inverse of f .
• If f is totally multiplicative and nonzero then its convolution inverse is fµ.

We have seen the third bullet for f = πk.
To establish the first bullet using Dirichlet series, compute that because f and

g are multiplicative, their Dirichlet series are

F (s) =
∏
p

∞∑
e=0

f(pe)

pes
and G(s) =

∏
p

∞∑
e=0

g(pe)

pes
,

and then it follows quickly that

F (s)G(s) =
∏
p

∞∑
e=0

(f ∗ g)(pe)

pes
,

so that f ∗ g is again multiplicative.
The second bullet says that if f is multiplicative and nonzero then so is the convo-

lution inverse of f . To establish this using Dirichlet series, let g be the convolution
inverse of f , and consider the Dirichlet series

H(s) =
∏
p

∞∑
e=0

g(pe)

pes
.

As above, F (s)H(s) multiplies out to
∏
p

∑∞
e=0(f ∗g)(pe)/pes, and because g is the

convolution inverse of f , this is 1. That is, H(s) inverts F (s), showing that H(s)
is the Dirichlet series of g, and now the form of H shows that g is multiplicative.
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The third bullet says that if f is totally multiplicative and nonzero then its con-
volution inverse is fµ. To establish this using Dirichlet series, we need to show that
the inverse F (s)−1 of the Dirichlet series of f is the Dirichlet series

∑
n(fµ)(n)/ns

of fµ. Compute that indeed because F (s) =
∏
p(1− f(p)p−s)−1,

F (s)−1 =
∏
p

(1− f(p)p−s)

= 1−
∑
p

f(p)p−s +
∑
p,q

f(pq)(pq)−s −
∑
p,q,r

f(pqr)(pqr)−s + · · ·

=

∞∑
n=1

f(n)µ(n)

ns
,

as desired. Also, we can establish the third bullet very quickly without Dirichlet
series, by recalling from section 3 that

∑
d|n µ(d) is 1 for n = 1 and is 0 for n > 1,

and computing that

(f ∗ fµ)(n) =
∑
d|n

f(n/d)f(d)µ(d) = f(n)
∑
d|n

µ(d) = id(n).

As an example of the first bullet, the observation from earlier that σk = πk ∗ u
now says that σk is multiplicative because πk and u are, and indeed the verification
of the Dirichlet series Σk(s) = ζ(s − k)ζ(s), earlier left as an exercise, shows that
σk is determined completely by the values σk(pe). By the finite geometric sum
formula, these are

σk(pe) =
p(e+1)k − 1

pk − 1
.

For another example, because Euler’s totient function is the convolution ϕ = π1 ∗µ,
where π1(n) = n and µ is the Möbius function, its Dirichlet series is the correspond-
ing product

Φ(s) = ζ(s− 1)ζ(s)−1 =
∏
p

(1− p1−s)−1(1− p−s).

Here the Euler factor 1 − p−s of ζ(s)−1 is
∑
e≥0 µ(pe)p−es, the general Euler fac-

tor formula for a multiplicative function specialized to µ. Because π1 and µ are
multiplicative, so is ϕ, and so its Dirichlet series is

Φ(s) =
∏
p

∞∑
e=0

ϕ(pe)

pes
.

Match Euler factors to show that for every prime p,

∞∑
e=0

ϕ(pe)

pes
= (1− p1−s)−1(1− p−s).

Of course this can be verified directly, noting that ϕ(pe) is 1 for e = 0 and is
pe(1− p−1) for e ≥ 1.
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7. Abelian Group Möbius Inversion and Cyclotomic Polynomials

The arithmetic functions in this writeup have been complex-valued, but more
generally we may take arithmetic functions from the positive integers to any abelian
group, and Möbius inversion still holds.

To see this, note that any abelian group G carries not only addition but also
scalar multiplication by Z; e.g., 3g means g+ g+ g and (−5)g means −(5g), taking
the latter inverse in G. Now, for any functions w : Z+ −→ Z and f : Z+ −→ G,
define

w ∗ f : Z+ −→ G

to be

(w ∗ f)(n) =
∑
de=n

w(d)f(e) (adding and scaling in G).

If also v : Z+ −→ Z is integer-valued on Z+ then for any n ∈ Z+,

(v ∗ (w ∗ f))(n) =
∑
de=n

v(d)(w ∗ f)(e)

=
∑
de=n

∑
bc=e

v(d)w(b)f(c)

=
∑
bcd=n

v(d)w(b)f(c)

=
∑
ac=n

∑
bd=a

v(d)w(b)f(c)

=
∑
ac=n

(v ∗ w)(a)f(c)

= ((v ∗ w) ∗ f)(n).

Thus associativity still holds, v∗(w∗f) = (v∗w)∗f , with v∗w the usual convolution
of integer-valued functions. Especially, u ∗ (µ ∗ f) = (u ∗µ) ∗ f = f by associativity
and because u∗µ = id is still the convolution identity, and similarly µ∗ (u∗f) = f .
Abelian group Möbius inversion follows: For functions f, g : Z+ −→ G,

g = u ∗ f ⇐⇒ f = µ ∗ g.

The cyclotomic polynomials Φn(X) for n ≥ 1 are defined by the condition

Xn − 1 =
∏
d|n

Φd(X) for n ≥ 1, each Φd monic.

For example, Φ1(X) = X − 1 and Xp − 1 = (X − 1)Φp(X) for p prime, so that
Φp(X) = Xp−1 + Xp−2 + · · · + X + 1. We state some facts about the cyclotomic
polynomials without proof.

• The cyclotomic polynomials have integer coefficients.
• The degree of Φn is ϕ(n), and the complex roots of Φn are the primitive
nth complex roots of unity, e2πik/n where 0 ≤ k < n and gcd(k, n) = 1.

• The cyclotomic polynomials are irreducible as polynomials over Q.
• Every cyclotomic polynomial Φn(X) for n > 1 has constant term 1.

Now, let our abelian group G be Q(X)×, the multiplicative group of nonzero
quotients of polynomials having rational coefficients. The “addition” operation of
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this group is multiplication, and the “scaling” operation is exponentiation,

r(X)⊕ r̃(X) = r(X)r̃(X), c� r(X) = r(X)c for c ∈ Z.
In this context, the condition Xn − 1 =

∏
d|n Φd(X) for n ≥ 1 gives by Möbius

inversion in G
Φn(X) =

∏
d|n

(Xd − 1)µ(n/d), n ≥ 1.

For example,

Φpq(X) =
(Xpq − 1)(X − 1)

(Xp − 1)(Xq − 1)
, p, q distinct primes,

and this is a monic polynomial with integer coefficients. Similarly,

Φ12(X) =
(X12 − 1)(X2 − 1)

(X6 − 1)(X4 − 1)
=
X6 + 1

X2 + 1
= X4 −X2 + 1.

8. A Comment on Ireland and Rosen 2.4

Define a prime-counting function,

π : R −→ R, π(x) = #{p ∈ P : p ≤ x}.
The Prime Number Theorem says that

lim
x→∞

π(x)

x/ log x
= 1.

Section 2.4 of Ireland and Rosen shows that easy analytic estimates give for some
constants c1 and c2,

c1x/ log x < π(x) < c2x/ log x.

The Prime Number Theorem was first proved in 1899 by Hadamard and (indepen-
dently) Poussin. Elementary proofs were given in the 1940s by Erdös and Selberg.
For students with background in complex analysis, see the writeup for this course
that gives a short proof of the Prime Number Theorem.


