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As a complementary ordering of the ideas in chapter 1 of the Ireland and Rosen
text, we discuss unique factorization in a general principal ideal domain, after noting
that the rings Z, Z[i], Z[ω] (where ω is a complex cube root of 1), and k[X] (the
ring of formal polynomials over some field) are all PIDs.
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1. Introduction

The topic of this lecture is eventually the unique factorization theorem for the
integers:

Theorem 1.1. Let n be a nonzero integer. Then n factors as

n = ±pe11 · · · perr , r ≥ 0, p1, . . . , pr ∈ P, e1, . . . , er ∈ Z+,

and the factorization is unique.

The proof that a factorization exists is easy, at least on the face of it. Consider
any positive integer n. If n is irreducible then we are done. Otherwise n = n1n2
with n1 < n and n2 < n, and so we are done by induction. The only worrisome point
here is that irreducible has appeared as a stand-in synonym for prime, suggesting
that prime might mean something other than irreducible to the cognoscenti. We
will see that indeed the two words mean different things, and that the mathematical
use of prime is not as we would expect.

By contrast, the proof that the factorization is unique is nuanced. Many books
prove unique factorization in Z by elementary methods, but to me the issues are
somehow more naturally (i.e., more clearly, perhaps more easily) discussed in the
context of ring theory rather than just in the integers Z. The upshot is that this
lecture in some sense proceeds backwards through chapter 1 of Ireland and Rosen.
(Nonetheless, you should read the chapter from front to back.)
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2. Rings, Integral Domains

Definition 2.1. A commutative ring with identity is an algebraic structure

(R,+, ·)
that satisfies all of the field axioms except (possibly) the existence of multiplicative
inverses. That is, for all r, s, t ∈ R we have

r + s = s+ r (+ is commutative)

(r + s) + t = r + (s+ t) (+ is associative)

r · s = s · r (· is commutative)

(r · s) · t = r · (s · t) (· is associative)

r · (s+ t) = r · s+ r · t (the distributive law holds)

and there exist distinct elements 0, 1 ∈ R such that for all r ∈ R,

r + 0 = r (0 is an additive identity)

r + s = 0 for some s ∈ R (additive inverses exist)

r · 1 = r (1 is a multiplicative identity).

Often we will simply refer to a commutative ring with identity as a ring. And we
usually omit the “·” symbol for multiplication. As in Math 112, for any given r ∈ R,
the element s ∈ R such that r + s = 0 is unique, and so it can be unambiguously
denoted −r.

Definition 2.2. Given a ring (R,+, ·), its unit group is the algebraic structure

(R×, ·)
whose underlying structure is the set of multiplicatively invertible elements of R,

R× = {r ∈ R : rs = 1 for some s ∈ R},
and whose operation is the restriction of the multiplication of R to R×.

The unit group is an abelian group in that the product of two units is a unit (if
rs = 1 and r′s′ = 1 then (rr′)(ss′) = 1) and that for all r, s, t ∈ R×,

rs = sr,

(rs)t = r(st),

r1 = r,

and for all r ∈ R×,
rs = 1 for some s ∈ R×.

The s here is unique, so it can be denoted r−1.

Definition 2.3. An integral domain is a ring (R,+, ·) satisfying the following
property:

For all r, s ∈ R, rs = 0 =⇒ r = 0 or s = 0.

That is, an integral domain has no zero-divisors, i.e., no nonzero elements r, s
such that rs = 0. (To make sure that the language is clear: zero-divisor means
divisor of zero.) The cancellation law holds in any integral domain:

If ab = ac and a 6= 0 then b = c.
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Note that we cannot prove the cancellation law by multiplying through by a−1,
because the inverse may not exist. Rather, the argument is that a(b − c) = 0 and
a 6= 0, so that b− c = 0.

Some rings to bear in mind, beyond the most obvious example Z (we usually
write R rather than (R,+, ·) when the operations are clear) are

• the Gaussian integers Z[i],

• the cubic integers Z[ω] where ω = ζ3 = e2πi/3 = (−1 + i
√

3)/2,
• the polynomial ring k[X] where k is any field.

Note that k[X] is a ring of functions rather than a ring of numbers.

3. Prime and Irreducible Elements

Definition 3.1. Let R be an integral domain. An element r of R divides an
element s of R if s = rr′ for some r′ ∈ R. The symbolic notation for r divides s is

r | s.

A nonunit r of R is prime if:

For all s, s′ ∈ R, r | ss′ =⇒ r | s or r | s′.

Let R× be the unit group of R. A nonzero nonunit r of R is irreducible if:

For all s, s′ ∈ R, r = ss′ =⇒ s ∈ R× or s′ ∈ R×.

Thus primality is a criterion about how a given ring element fits into products,
while irreducibility is a criterion about how products fit into a given element. There
are ways to rewrite the definitions of prime and irreducible to further emphasize
their symmetry; for example, for irreducibility the condition

for all s, s′ ∈ R, r = ss′ =⇒ r | s or r | s′

is equivalent to the condition in the definition, again excluding r = 0. However, it
deserves brief mention that in a general commutative ring with 1, as compared to
our more specific environment of an integral domain, the two definitions just given
for irreducibility are not equivalent. For example, in the ring Z/6Z the factorization
2 = 2 · 4 shows that 2 does not satisfy the first definition, but 2 does satisfy the
second.

4. Generally, Nonzero Prime =⇒ Irreducible

The cancellation law says that 0 is prime in any integral domain. On the other
hand, 0 is not irreducible because the the definition of irreducibility excludes it. The
next result says that 0 is exceptional, the only prime that fails to be irreducible.

Proposition 4.1. In any integral domain, the nonzero primes are irreducible.

Proof. Let R be an integral domain and let R× be its unit group. Consider any
nonzero prime r of R. If r = ss′ then certainly r | ss′ and so without loss of
generality r | s. Thus r = ss′ = rts′ for some t. Because r 6= 0 cancellation gives
ts′ = 1, and consequently s′ ∈ R×. �

The converse question is

Are the irreducible elements of an integral domain prime?
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This question does not have a general answer. That is, the answer is yes for some
rings R and no for others. For example, consider a subring of the complex number
system, and its unit group,

R = Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z}, R× = {±1}.

This R is an integral domain. The element 2 of R is irreducible because for all
nonunits s, s′ ∈ R,

ss′ = 2 =⇒ sss′s′ = 4 =⇒ ss = 2 (else s or s′ is a unit),

but the condition ss = 2 is impossible in R because ss = a2 +5b2 for some a, b ∈ Z.
On the other hand 2 is not prime because

2 | 6 = (1 +
√
−5)(1−

√
−5) but 2 - (1 +

√
−5) and 2 - (1−

√
−5),

with 2 - 1±
√
−5 because 2(a+ b

√
−5) = 2a+ 2b

√
−5 6= 1±

√
−5 for a, b ∈ Z.

5. Euclidean Domains

Definition 5.1. The integral domain R is Euclidean if it comes equipped with a
norm function

N : R \ {0} −→ Z≥0
such that the following condition holds: For all a, b ∈ R with b 6= 0, there exist
q, r ∈ R such that

a = qb+ r, r = 0 or Nr < Nb.

Here q is the quotient obtained on dividing a by b, and r is the remainder.

All of our example rings from earlier are Euclidean.

• For R = Z, take Nn = |n| for all nonzero n ∈ Z.
• For R = Z[i], take Nz = zz = |z|2 = a2+b2 for all nonzero z = a+ib ∈ Z[i].

This norm is multiplicative, i.e., N(zw) = NzNw, because zw = z w for
all z, w ∈ C and therefore N(zw) = zwzw = zzww = NzNw as claimed.
• For R = Z[ω], take Nz = zz = |z|2 = a2 − ab + b2 for all nonzero z =
a + ωb ∈ Z[ω]. (Note that ω = ω2; also 1 + ω + ω2 = 0, so ω2 = −1 − ω.)
This norm is multiplicative for the same reason as the previous one.
• For R = k[X], take Nf = deg(f) for nonzero polynomials f ∈ k[X]. Note

that the nonzero constant polynomials have norm 0. This norm is additive
rather than multiplicative. Instead we could take Nf = 2deg(f) to get a
multiplicative norm with the nonzero constant polynomials having norm 1,
and extend to N0 = 0 (apparently the norm of 0 was somehow −∞ a
moment ago), or we could take Nf = adeg(f) for any integer a > 1 instead
of a = 2.

(Warning: Ireland and Rosen are a little casual on pages 12–13. They extend the
norms here to Q[i] and Q[ω] in sections 1.4.1 and 1.4.2. In 1.4.1 they have λ ∈ Q[i]
but then α, γ ∈ Z[i]. In 1.4.2 they define λ ∈ Z[ω] but then use it in Q[ω].)

In each case we need to verify that the specified norm makes the integral domain
Euclidean.

• Verifying that the Z-norm makes Z Euclidean is easy: Given a, b ∈ Z with
b 6= 0, let

S = {a− qb : q ∈ Z}.
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Note that S contains nonnegative elements (those arising from q ≤ a/b
if b > 0, those arising from q ≥ a/b if b < 0), and let r be the least
nonnegative element of S. Then indeed a = qb+r, and Nr = r must be less
than Nb = |b| because otherwise S has a smaller nonnegative element r−|b|.
• To verify that the Z[i]-norm makes Z[i] Euclidean, consider any a, b ∈ Z[i]

with b 6= 0. Note that a/b = r + is where r, s ∈ Q. (Here we are tacitly
using the fact that Z(i) = Q(i) = Q[i].) Then a/b = r + is sits in the unit
box about some point q = m+ in ∈ Z[i]. Consequently a/b− q sits in the
unit box about 0. (See figure 1.) It follows that N(a/b− q) ≤ 1/2 < 1, and
so because the norm (extended to Q[i]) is multiplicative, N(a− qb) < Nb.
Alternatively, to work only in Z[i], one can argue that given a, b ∈ Z[i] with
b 6= 0, some translate r = a − qb lies in the square having side-midpoints
±b/2 and ±ib/2. (See figure 2.) The points of the square having maximal
norm are the corners, of norm Nb/2.
• The verification that Z[ω] is Euclidean is very similar. This time we have

a hexagon about 0 (see figure 3), and any point in the hexagon has norm
at most 1/3, hence strictly less than 1. Again if we want to work only
in Z[ω] rather than carry out any division, the hexagonal lattice and the
gray hexagon are scaled by b. (See figure 4.)
• The verification that the k[X]-norm makes k[X] Euclidean is a matter of

polynomial long division. Specifically, given f, g ∈ k[X] with g 6= 0, proceed
as follows.
◦ (Initialize)

Set q = 0 and r = f . (So f = qg + r.) Let g = bmx
m + · · · .

◦ (Iterate)
While deg r ≥ deg g,

let r = rnx
n + · · · and set δ = (rn/bm)xn−m

replace q by q + δ
replace r by r − δg. (Still f = qg + r, and deg r has decreased.)

◦ (Terminate)
Return q and r. (Now f = qg + r, and deg r < deg g.)

Similarly to Z[i] one can show that Z[i
√

2] is Euclidean, using a box that is no

longer a square, and similarly to Z[ω] one can show that Z[(−1 + i
√

7)/2] and

Z[(−1 + i
√

11)/2] are Euclidean, using hexagons that are no longer regular.

6. Ideals, Principal Ideals

Definition 6.1. Let R be a ring. A subset I of R is called an ideal if

(1) I is closed under addition: for all i, j ∈ I, also i+ j ∈ I.
(2) I is strongly closed under multiplication: for all r ∈ R and i ∈ I, also

ri ∈ I.

The definition of ideal may seem unmotivated. One explanation is that a ring
is sort of like a vector space over itself in that pairs of elements can be added and
any element can be multiplied by the ring elements; from this point of view an
ideal is analogous to a subspace. A second explanation is that ideals are the correct
subrings for the creation of quotient rings, just as normal subgroups are the correct
subgroups for the creation of quotient groups; that said, we do not discuss quotient
structures here. A third explanation is that the next example shows that some



6 MATH 361: NUMBER THEORY — SECOND LECTURE

Figure 1. a/b− q lies in the gray for some q ∈ Z[i]; the lattice is Z[i]

Figure 2. a− qb lies in the gray for some q ∈ Z[i]; the lattice is bZ[i]

ideals can be viewed as essentially being elements but other ideals are needed as
well. Indeed, ideals are so named because they were conceived as ideal numbers,
numbers that we wish were present even when they aren’t.

For example, let R be a ring, pick any element r0 ∈ R and let (r0) denote the
set of all multiples of r0,

(r0) = {rr0 : r ∈ R}.
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Figure 3. a/b− q lies in the gray for some q ∈ Z[ω]; the lattice is Z[ω]

Figure 4. a− qb lies in the gray for some q ∈ Z[ω]; the lattice is bZ[ω]

For instance, (2) = {0,±2,±4, . . . } in Z. Similarly, pick any two elements r0, s0 ∈ R
and let (r0, s0) denote the set of all R-linear combinations of r0 and s0,

(r0, s0) = {rr0 + ss0 : r, s ∈ R}.

For instance, (2, 3) = {−1 · 2 + 1 · 3, . . . } = {1, . . . } = Z in Z, while (2, 4) = (2) and
(4, 6) = (2) as well.

Definition 6.2. The ideal I is principal if it takes the form I = (r) for some
r ∈ R.



8 MATH 361: NUMBER THEORY — SECOND LECTURE

(Note: princiPAL. An easy mistake is to misspell it “principle ideal.”) So far,
all of the ideals that we have seen are principal. For an example of a nonprincipal
ideal, let R = Z[

√
−5] and let

I = (2, 1 +
√
−5).

Using the norm function N(a+b
√
−5) = a2+5b2 (which takes products to products

but which we do not claim has the Euclidean property), note that N2 = 4 and
N(1 +

√
−5) = 6. Suppose that I is principal, i.e., I = (r) for some r ∈ Z[

√
−5].

Then

2 = rs for some s, so Nr | N2 = 4,

and

1 +
√
−5 = rs′ for some s′, so Nr | N(1 +

√
−5) = 6.

Thus Nr | 2. But the condition Nr = 2 is impossible. And the condition Nr = 1
forces I = Z[

√
−5], which is false. (Any element of I is r = 2s+ (1 +

√
−5)t where

s, t ∈ Z[
√
−5], and a little algebra shows that r = a + b

√
−5 where a and b have

the same parity. Thus r 6= 1, i.e., 1 /∈ I, and so the ideal is not the full ring.) In
conclusion, I can not be a principal ideal.

Definition 6.3. An integral domain in which every ideal is principal is called a
principal ideal domain.

Principal ideal domain is usually abbreviated to PID .

7. Euclidean =⇒ PID

Proposition 7.1. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain. Let I be a nonzero ideal in R. Let b ∈ I be
an element of least norm. Note that b 6= 0. Because R is Euclidean, we have for
any a ∈ I some q, r ∈ R such that

a = qb+ r, r = 0 or Nr < Nb.

Because I is an ideal and a, b ∈ I, also r ∈ I, making the condition Nr < Nb
impossible. Thus r = 0, and so a = qb. That is, every element of I is a multiple
of b and hence I = (b). �

As an application of the proposition, consider a PID R. For any x, y ∈ R the
ideal (x, y) takes the form (x, y) = (z) for some z ∈ R. The ideal-generator z is a
common divisor of x and y. Also, z is a linear combination of x and y,

z = ax+ by for some a, b ∈ R.

The display shows that any common divisor w of x and y divides z. Thus z is the
greatest common divisor of x and y. That is, the greatest common divisor of x
and y is a linear combination of x and y that generates the ideal (x, y). In symbols,
(x, y) = (gcd(x, y)). For this reason, the greatest common divisor gcd(x, y) is
usually written (x, y) without the gcd ; the collision of (x, y) as gcd-notation and as
ideal-notation is a nonissue because the gcd and the ideal are essentially the same
thing. We saw this earlier with our calculations that (2, 3) = (1), (2, 4) = (2), and
(4, 6) = (2) in Z.



MATH 361: NUMBER THEORY — SECOND LECTURE 9

Continuing with the ideas of the previous paragraph, we compute a gcd by finding
an ideal-generator,

(826, 1890) = (826, 1890− 2 · 826)

= (238, 826) = (238, 826− 3 · 238)

= (112, 238) = (112, 238− 2 · 112)

= (14, 112) = (14, 112− 8 · 14)

= (0, 14) = (14).

Thus gcd(826, 1890) = 14. (The process just demonstrated is the venerable Eu-
clidean algorithm). And furthermore, we can backtrack to express the gcd as a
linear combination of the two given numbers,

14 = 238− 2 · 112

= 238− 2 · (826− 3 · 238)

= 7 · 238− 2 · 826

= 7 · (1890− 2 · 826)− 2 · 826

= −16 · 826 + 7 · 1890.

Better than backtracking this way, we can maintain a little more information
through the forward Euclidean algorithm in order to have the linear combination
coefficients at hand as well when it terminates. The method to do so is laid out in
the first problem set for this course. The Euclidean algorithm shows that we know
how to solve any equation of the form

ax+ by = c,

where a, b, c ∈ Z are the given coefficients and we seek integer solutions (x, y).
Solutions exist if and only if gcd(a, b) | c, in which case we can find one particular
solution via the algorithm. All other solutions differ from the particular solution
by solutions to the homogenized equation ax+ by = 0, which is easy to solve: after
dividing a and b by their gcd we get a′x+ b′y = 0 where gcd(a′, b′) = 1, and so the
solutions are (x, y) = n(b′,−a′) for all n ∈ Z.

8. PID =⇒ (Irreducible =⇒ Prime)

Proposition 8.1. Let R be a PID. Then every irreducible element of R is prime.

Proof. Let r ∈ R be irreducible. Suppose that r | ss′ and r - s. We need to show
that r | s′. Because r is irreducible and r - s, in fact (r, s) = (1). Thus there exist
a, b ∈ R such that ar + bs = 1. Consequently ars′ + bss′ = s′. But r | ars′ + bss′,
and hence r | s′ as desired. �

9. PID =⇒ Noetherian

Definition 9.1. A ring R is Noetherian if any ascending chain of ideals in R,

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,

eventually stabilizes, meaning that the In are equal for all n after some starting
index N .

Proposition 9.2. Let R be a PID. Then R is Noetherian.
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Proof. Given an ascending chain of ideals in R,

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,
let

I =

∞⋃
n=1

In.

Then I is an ideal of R (exercise). Because R is a PID, in fact I = (r) for some
r ∈ R. Because r ∈ I, in fact r ∈ IN for some N . Thus I = (r) ⊂ IN ⊂ I, so that
IN = I. Consequently In = I for all n ≥ N . �

10.
(
(Irreducible =⇒ Prime) and Noetherian

)
=⇒ UFD

Definition 10.1. An integral domain in which every nonzero element factors as
a product of finitely many irreducible elements, with the irreducible elements deter-
mined uniquely up to units, is called a unique factorization domain, or UFD.

Proposition 10.2. Let R be a Noetherian integral domain in which all irreducible
elements are prime. Then R is a UFD.

Proof. Let r be a nonzero element of R. The Noetherian property of R gives a
factorization of r into finitely many irreducibles, because otherwise we could create
a a nonstabilizing chain of ideals,

(r) ⊂ (r1) ⊂ (r2) ⊂ (r3) ⊂ · · · .
The fact that irreducibles are prime makes the factorization unique, because if

r = p1 · · · ps = vq1 · · · qt
where v is a unit, and all pi and qj are irreducible, and without loss of generality
s ≤ t, then

ps | q1 · · · qt,
so that because ps is prime we have (after reindexing if necessary)

ps | qt
and thus, because qt is irreducible, in fact ps = qt after multiplying qt by a unit if
necessary. Cancel the common irreducible from both sides to get

p1 · · · ps−1 = vq1 · · · qt−1.
By induction on s, these factorizations agree—the base case is that 1 = vq1 · · · qt
forces t = 0 and then v = 1—and we are done. �

11. Summary

We have shown that for integral domains,

Euclidean =⇒ PID =⇒
{

irreducible =⇒ prime

Noetherian

}
=⇒ UFD.

And our integral domains Z, Z[i], Z[ω], and k[X] are all Euclidean, so they are
UFDs.

This all may seem pointlessly Byzantine, but the issues here are already live in
elementary contexts. For example,

• Math 112 exercises have to dance around the question
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For what positive integers n is Z/nZ a field?
Everybody knows morally that the answer is For prime n. However, the
problem is that while this isn’t hard to show for our revised notion of
prime, showing that the answer is what we would phrase For irreducible n
raises the issue of whether prime and irreducible mean the same thing. For
any n ∈ Z+ it is easy to show that

n is prime ⇐⇒ Z/nZ is a field =⇒ n is irreducible.

But to show that if n is irreducible then Z/nZ is a field requires the non-
trivial fact that irreducibles are prime in Z.
• Similarly, a standard argument that there is no square root of 2 in Q tacitly

makes at least partial use of unique factorization. The argument is some
version of:

Let r ∈ Q satisfy r2 = 2. Because r is a nonzero rational number,
it takes the form r = 2er′ where e ∈ Z and r′ ∈ Q is nonzero
with no 2’s in its numerator or its denominator. Thus 2 = r2 =
22e(r′)2. But this is impossible because there are no 2’s in (r′)2

and so the left side has one power of 2 while the right side has an
even number of 2’s.

This argument assumes that the power of 2 dividing a nonzero integer is
unique. This uniqueness is easier to show than full blown unique factoriza-
tion, but it does need to be shown to make the argument valid.


