
THE HASSE–DAVENPORT RELATION

1. Environment: Field, Traces, Norms

Let p be prime and let our ground field be

Fo = Fp.

Let q = pr for some r ≥ 1, and let the smaller of our two main fields be

F = Fq.

The map
σp : F −→ F, σp(t) = tp

is an automorphism of F , and the group of automorphisms of F is the cyclic group
of order r generated by σp,

Aut(F ) = 〈σp〉 = {1, σp, σ2
p, · · · , σr−1

p }.

All such automorphisms fix Fo pointwise, and conversely any element of F that is
fixed by the automorphisms lies in Fo. It suffices to check whether an element of F
is fixed by the generator σp.

The trace function from F to Fo symmetrizes each element additively by sum-
ming it and all of its automorphisim-conjugates,

trF/Fo
: F −→ Fo, trF/Fo

(t) =
∑

σ∈Aut(F )

σ(t).

Note that indeed tr(t) lies in Fo because it is fixed by automorphisms. The trace
is an additive homomorphism, i.e.,

trF/Fo
(t+ t′) = trF/Fo

(t) + trF/Fo
(t′), t, t′ ∈ F.

Similarly, the norm function from F to Fo symmetrizes each element multiplica-
tively,

NF/Fo
: F −→ Fo, NF/Fo

(t) =
∏

σ∈Aut(F )

σ(t).

The norm is a multiplicative homomorphism,

NF/Fo
(tt′) = NF/Fo

(t)NF/Fo
(t′), t, t′ ∈ F×.

Fix some s ≥ 1 and let the larger of our two main fields be

K = Fqs .

Note that K contains F as a subfield.
Since also K = Fprs , the previous discussion of trace and norm applies verbatim

with rs in place of r to give

trK/Fo
: K −→ Fo, trK/Fo

(t) =
∑

σ∈Aut(K)

σ(t)
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and
NK/Fo

: K −→ Fo, NK/Fo
(t) =

∏
σ∈Aut(K)

σ(t).

But also, we now have a relative trace and norm. The map

σq : K −→ K, σq(t) = tq

is an automorphism of K that fixes F , and the group of such automorphisms of F
is the cyclic group of order s generated by σq,

AutF (K) = 〈σq〉 = {1, σq, σ2
q , · · · , σs−1

q }.
All such automorphisms fix F pointwise and any element of K that is fixed by the
automorphisms lies in F , and it suffices to check whether an element of K is fixed
by σq.

The relative trace function from K to F is

trK/F : K −→ F, trK/F (t) =
∑

σ∈AutF (K)

σ(t),

and the relative norm function from K to F is

NK/F : K −→ F, NK/F (t) =
∏

σ∈AutF (K)

σ(t).

The relative trace is again additive and the relative norm is again multiplicative,
and the traces and norms compose as nicely as they possibly could,

trK/Fo
= trF/Fo

◦ trK/F and NK/Fo
= NF/Fo

◦NK/F .

2. Additive Characters, Multiplicative Characters, Gauss Sums

Recall that Fo = Fp. Let ζp = e2πi/p ∈ C. An additive character of Fo is

ψo : Fo −→ C×, ψo(t) = ζtp.

The corresponding additive character of F is

ψF : F −→ C×, ψF = ψo ◦ trF/Fo
,

and the corresponding additive character of K is

ψK : K −→ C×, ψK = ψF ◦ trK/F ,

Given also a nontrivial multiplicative character of F ,

χF : F× −→ C×,
the corresponding multiplicative character of K is

χK : K× −→ C×, χK = χF ◦NK/F .

Definition 2.1. The Gauss sum of χF is

τ(χF ) =
∑
t∈F

χF (t)ψF (t),

and the Gauss sum of χK is

τ(χK) =
∑
t∈K

χK(t)ψK(t).

Here we are tacitly defining χ(0) = 0. Alternatively, we could sum over t ∈ F× for
the first Gauss sum and similarly for the second.
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3. Gauss Sum Terms and Minimal Polynomials

Let t be a nonzero element of K. Let H be the subgroup of AutF (K) that fixes t.
Then H takes the form

H = 〈σdq 〉 for some d | s.

Thus t has d distinct conjugates in K, including itself. Denote these conjugates t1
through td where t1 = t. Then

trK/F (t) = (s/d)(t1 + · · ·+ td) and NK/F (t) = (t1 · · · td)s/d.

Also, consider the polynomial

f(X) =
d∏
i=1

(X − ti) = Xd − (t1 + · · ·+ td)Xn−1 + · · ·+ (−1)d(t1 · · · td).

Certainly f(t) = 0 since t = t1. Also, because any automorphism σ of K over F
permutes the conjugates of t, the product form of f(X) shows that it is invariant
when its coefficients are passed through any such σ. Thus the coefficients of f lie in
the smaller field F . In fact f(X) is the smallest monic polynomial in F [X] satisfied
by t, making it irreducible. The polynomial f(X) is the minimal polynomial of t
over F .

Rewrite the minimal polynomial of t as

f(X) = Xd − c1Xd−1 + · · ·+ (−1)dcd

Then (s/d)c1 = trK/F (t) and c
s/d
n = NK/F (t), and so

(ψF (c1)χF (cd))s/d = ψF ((s/d)c1)χF (cd)s/d

= ψF (trK/F (t))χF (NK/F (t))

= ψK(t)χK(t),

giving a term of the Gauss sum τ(χK). And furthermore, since t and its conjugates
all have the same trace and norm and hence all have the same ψK- and χK-values,

d(ψF (c1)χF (cd))s/d =
d∑
i=1

ψK(ti)χK(ti).

Let MI denote the set of monic irreducible polynomials in F [X]. Each t ∈ K
satisfies some f ∈ MI with deg(f) | s, and conversely each such f ∈ MI divides
Xqs − X so that its roots lie in K = splF (Xqs − X). If f ∈ MI is specified, let
d = deg(f) and let c1 and cd be the coefficients of f as displayed in the previous
paragraph. Then the previous display and the reasoning of this paragraph combine
to give the following formula.

Proposition 3.1. The Gauss sum for χK where K = Fqs is

τ(χK) =
∑
f∈MI
d|s

d(ψF (c1)χF (cd))s/d.
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4. An Euler Factorization for Polynomials

The calculations of the previous section suggest a general definition.

Definition 4.1. Let M denote the set of monic polynomials in F [X], not neces-
sarily irreducible. Define a function

λ :M−→ C×

as follows: For any f(X) = Xd − c1Xd−1 + · · ·+ (−1)dcd ∈M,

λ(f) = ψF (c1)χF (cd).

Note that in particular, λ(1) = ψF (0)χF (1) = 1.
A little algebra shows that λ is multiplicative,

λ(fg) = λ(f)λ(g) for all monic f, g ∈M.

That is, λ gathers the additive character ψF and the multiplicative character χF
into a single multiplicative character on the monoid M. (A monoid is like a group
but without inverses.)

Proposition 4.2. The following Euler factorization identity holds for any mult-
plicative function λ :M−→ C×,∑

f∈M

λ(f)T deg f =
∏

f∈MI

(1− λ(f)T deg f )−1.

Furthermore, for the particular λ of the previous definition, the left side of the
previous display simplifies to∑

f∈M

λ(f)T deg f = 1 + τ(χF )T.

Proof. The fact that every monic polynomial factors uniquely into monic irre-
ducibles gives the crucial third equality (in which the symbol f changes its meaning
from a general monic irreducible polynomial on the left side of the equality to a
general monic polynomial on the right side) in the calculation∏

f∈MI

(1− λ(f)T deg f )−1 =
∏

f∈MI

∑
n≥0

(λ(f))nTn deg f

=
∏

f∈MI

∑
n≥0

λ(fn)T deg(fn)

=
∑
f∈M

λ(f)T deg f .

This gives the Euler factorization. For the second part, we have∑
f∈M

λ(f)T deg f =
∑
n≥0

∑
f∈M
d=n

λ(f)T deg f .

For n = 0 the inner sum is 1. For n = 1, the monic irreducible polynomials are
f(X) = X − t for all t ∈ F , with c1 = cd = t, and so the inner sum is∑

f∈M
d=1

λ(f)T =
∑
t∈F

λ(X − t)T =
∑
t∈F

ψF (t)χF (t)T = τ(χF )T.
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For n ≥ 2, note that for each choice of c1 and cn in F there are qn−2 monic
polynomials with those coefficients. Thus∑

f∈M
d=n

λ(f)T = qn−2
∑

c1,cn∈F
ψF (c1)χF (cn) = qn−2

∑
c1∈F

ψF (c1)
∑
cn∈F

χF (cn).

But both character sums are zero (for the second sum it is relevant that χF is
nontrivial), and so the entire expression vanishes. �

5. The Hasse–Davenport Relation

Theorem 5.1 (Hasse–Davenport Relation). The relation between the Gauss sums
τ(χK) and τ(χF ) is

−τ(χK) = (−τ(χF ))s.

Proof. From the previous proposition we have the relation

1 + τ(χF )T =
∏

f∈MI

(1− λ(f)T deg(f))−1.

Take logarithmic derivatives and multiply by T ,

τ(χF )T
1 + τ(χF )T

=
∑
f∈MI

deg(f)λ(f)T deg(f)

(1− λ(f)T deg(f))
,

and then expand the geometric series,∑
n≥1

(−1)n−1τ(χF )nTn =
∑
f∈MI

∑
d≥1

deg(f)λ(f)dT d deg(f).

Equate the coefficients of T s,

−(−τ(χF )s) =
∑
f∈MI
d|s

dλ(f)s/d.

The right side is τ(χK) by Proposition 3.1, so the proof is complete. �


