THE HASSE-DAVENPORT RELATION

1. ENVIRONMENT: FIELD, TRACES, NORMS

Let p be prime and let our ground field be
F, =E,.

Let ¢ = p” for some r > 1, and let the smaller of our two main fields be
F =T,
The map
op: F— F, op(t)=1t"
is an automorphism of F', and the group of automorphisms of F' is the cyclic group

of order r generated by o,

Aut(F) = (o) = {l,ap,037~-- ,U;_l .

All such automorphisms fix F, pointwise, and conversely any element of F' that is
fixed by the automorphisms lies in F,. It suffices to check whether an element of F’
is fixed by the generator o,,.

The trace function from F' to F, symmetrizes each element additively by sum-
ming it and all of its automorphisim-conjugates,

trF/Fo F— f‘ﬂo7 tTF/FO(t) = Z U(t)
oc€Aut(F)
Note that indeed tr(t) lies in F, because it is fixed by automorphisms. The trace
is an additive homomorphism, i.e.,
trp/p, (t+t') =trp/p,(t) +trpp,(t'), tt €F.

Similarly, the norm function from F' to F,, symmetrizes each element multiplica-
tively,
.Z\fp/poZF‘—)_FO7 NF/FO(ZL): H U(t)
oceAut(F)

The norm is a multiplicative homomorphism,

NF/FO(ttI):NF/FO(t)NF/FO(tl), t,tIEFX.

Fix some s > 1 and let the larger of our two main fields be
K - Fqs .

Note that K contains F' as a subfield.
Since also K = F,rs, the previous discussion of trace and norm applies verbatim
with rs in place of r to give

trK/Fo K — F‘O7 trK/Fa(t> = Z O'(t)
occAut(K)
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and
NK/FO ZK—)Fm NK/Fn(t) = H O'(t)
c€Aut(K)
But also, we now have a relative trace and norm. The map
o K — K, o4t)=t!
is an automorphism of K that fixes F', and the group of such automorphisms of F’
is the cyclic group of order s generated by o,

Autp(K) = (04) = {1,aq,03,~-~ ,03_1}.
All such automorphisms fix F' pointwise and any element of K that is fixed by the
automorphisms lies in F', and it suffices to check whether an element of K is fixed
by og.
The relative trace function from K to F is

tI'K/F IK—>F7 tI'K/F(t): Z O'(t),

and the relative norm function from K to F' is

Nkp:K —F, Ngpt)= [ o).
oc€Autp(K)

The relative trace is again additive and the relative norm is again multiplicative,
and the traces and norms compose as nicely as they possibly could,

trg/p, =tTp/p, o trg/p and Nk/r, = Np/p, o Ng/p-
2. ADDITIVE CHARACTERS, MULTIPLICATIVE CHARACTERS, GAUSS SUMS
Recall that F, = F,. Let ¢, = €2™/? € C. An additive character of F,, is
Yo By — CX, h(t) = .
The corresponding additive character of F' is
Yp: F— C*, Yp=1,0trpp,,
and the corresponding additive character of K is
VY K — C*, g =vFpotrgp,
Given also a nontrivial multiplicative character of F,
Xp i FX —CX,
the corresponding multiplicative character of K is
xk : K* — C*, xk =xroNg/p.
Definition 2.1. The Gauss sum of xp is
T(xr) = ZXF(t)¢F(t),
teF
and the Gauss sum of xk is
T(xx) = Y Xk )k (t).
teK

Here we are tacitly defining x(0) = 0. Alternatively, we could sum over t € F* for
the first Gauss sum and similarly for the second.
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3. GAUSss SuUM TERMS AND MINIMAL POLYNOMIALS

Let ¢ be a nonzero element of K. Let H be the subgroup of Auty(K) that fixes t.
Then H takes the form

H = (a?) for some d | s.

Thus ¢ has d distinct conjugates in K, including itself. Denote these conjugates t;
through ¢4 where t; = ¢t. Then

tri p(t) = (s/d)(t1 + - +tq) and N p(t) = (t---tq)*/"

Also, consider the polynomial

d
FXO=][X —t)=X"—(tr+ - +ta) X"+ + (1)t -+ ta).
i=1
Certainly f(t) = 0 since t = t;. Also, because any automorphism o of K over F
permutes the conjugates of ¢, the product form of f(X) shows that it is invariant
when its coefficients are passed through any such . Thus the coefficients of f lie in
the smaller field F. In fact f(X) is the smallest monic polynomial in F[X] satisfied
by t, making it irreducible. The polynomial f(X) is the minimal polynomial of ¢
over F.
Rewrite the minimal polynomial of ¢ as

FX) =X~ X4 (<) ey
Then (s/d)ci = trg/p(t) and /4 = Ng/p(t), and so

(Yr(c1)xr(ca))™? = vr((s/d)ci)xr(ca)™?
= Yr(trg/r(t)Xr(Ni/r(t))
= Y (t)xK(t),

giving a term of the Gauss sum 7(xx). And furthermore, since ¢ and its conjugates
all have the same trace and norm and hence all have the same 1 x- and xx-values,

d
d(@r(er)xr(ca))®® = i () xr (t).
i=1

Let MZ denote the set of monic irreducible polynomials in F[X]. Each t € K
satisfies some f € MZ with deg(f) | s, and conversely each such f € MZ divides
X9 — X so that its roots lie in K = splp(X? — X). If f € MZ is specified, let
d = deg(f) and let ¢; and ¢4 be the coefficients of f as displayed in the previous
paragraph. Then the previous display and the reasoning of this paragraph combine
to give the following formula.

Proposition 3.1. The Gauss sum for xx where K = Fys is

T(XK) = Z d(r(c1)xr(ca))®?.

femMz
d|s
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4. AN EULER FACTORIZATION FOR POLYNOMIALS
The calculations of the previous section suggest a general definition.

Definition 4.1. Let M denote the set of monic polynomials in F[X], not neces-
sarily irreducible. Define a function
A M — C*
as follows: For any f(X) = X% —c; X4t ... 4 (=1)9cy € M,
A(f) = vr(e1)xr(ca).
Note that in particular, A(1) = ¢¥r(0)xr(1) = 1.
A little algebra shows that A is multiplicative,
A(fg) = AM(f)M(g) for all monic f,g € M.

That is, A gathers the additive character ¥ and the multiplicative character x g
into a single multiplicative character on the monoid M. (A monoid is like a group
but without inverses.)

Proposition 4.2. The following Euler factorization identity holds for any mult-
plicative function X : M — C*,

YoAanTel = I = apHTiesd)=
fem fEMI

Furthermore, for the particular \ of the previous definition, the left side of the
previous display simplifies to

> ANHTES =1+ 7(xp)T.
fem

Proof. The fact that every monic polynomial factors uniquely into monic irre-
ducibles gives the crucial third equality (in which the symbol f changes its meaning
from a general monic irreducible polynomial on the left side of the equality to a
general monic polynomial on the right side) in the calculation

[T a-xpreeh=t= T d_()rrrae!

feEMT fFEMI n>0

= H Z,\(fn)Tdcg(f”)

fEMIn>0
= > AT
fem
This gives the Euler factorization. For the second part, we have

DOANTIES =37 A TE.

fem n>0 feM
d=n

For n = 0 the inner sum is 1. For n = 1, the monic irreducible polynomials are
f(X)=X—tforallte F, with ¢; = ¢4 =t, and so the inner sum is

> CANT =) MX =0T =Y ¢p(t)xrt)T = 7(xr)T.
fe teF teF
d=1
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For n > 2, note that for each choice of ¢; and ¢, in F there are ¢"~“ monic

polynomials with those coefficients. Thus

DOANNT=q"72 > drle)xrlen) =" D trler) Y xrlcn):
fdG:n c1,cn€F c1EF cn€F

But both character sums are zero (for the second sum it is relevant that yp is
nontrivial), and so the entire expression vanishes. [

5. THE HASSE-DAVENPORT RELATION

Theorem 5.1 (Hasse-Davenport Relation). The relation between the Gauss sums
T(xK) and T(xF) is
—7(xx) = (=7(xr))".
Proof. From the previous proposition we have the relation
L+ 70T = J[ (= AT,
feEMT
Take logarithmic derivatives and multiply by T,

)T deg(f)A(f)TIE(D)
L+ 7(xr)T (1 = A(f)TdesD)

feEMT
and then expand the geometric series,
D) T = Y0 D deg(HA(S) TN
n>1 fEMT d>1
Equate the coefficients of T,
—(=m(xr)?) = D AT

feEMI
d|s

The right side is 7(xx) by Proposition 3.1, so the proof is complete. O



