THE HASSE-DAVENPORT RELATION

1. Environment: Field, Traces, Norms

Let p be prime and let our ground field be

$$
F_{o}=\mathbb{F}_{p}
$$

Let $q=p^{r}$ for some $r \geq 1$, and let the smaller of our two main fields be

$$
F=\mathbb{F}_{q}
$$

The map

$$
\sigma_{p}: F \longrightarrow F, \quad \sigma_{p}(t)=t^{p}
$$

is an automorphism of F, and the group of automorphisms of F is the cyclic group of order r generated by σ_{p},

$$
\operatorname{Aut}(F)=\left\langle\sigma_{p}\right\rangle=\left\{1, \sigma_{p}, \sigma_{p}^{2}, \cdots, \sigma_{p}^{r-1}\right\}
$$

All such automorphisms fix F_{o} pointwise, and conversely any element of F that is fixed by the automorphisms lies in F_{o}. It suffices to check whether an element of F is fixed by the generator σ_{p}.

The trace function from F to F_{o} symmetrizes each element additively by summing it and all of its automorphisim-conjugates,

$$
\operatorname{tr}_{F / F_{o}}: F \longrightarrow F_{o}, \quad \operatorname{tr}_{F / F_{o}}(t)=\sum_{\sigma \in \operatorname{Aut}(F)} \sigma(t)
$$

Note that indeed $\operatorname{tr}(t)$ lies in F_{o} because it is fixed by automorphisms. The trace is an additive homomorphism, i.e.,

$$
\operatorname{tr}_{F / F_{o}}\left(t+t^{\prime}\right)=\operatorname{tr}_{F / F_{o}}(t)+\operatorname{tr}_{F / F_{o}}\left(t^{\prime}\right), \quad t, t^{\prime} \in F
$$

Similarly, the norm function from F to F_{o} symmetrizes each element multiplicatively,

$$
N_{F / F_{o}}: F \longrightarrow F_{o}, \quad N_{F / F_{o}}(t)=\prod_{\sigma \in \operatorname{Aut}(F)} \sigma(t)
$$

The norm is a multiplicative homomorphism,

$$
N_{F / F_{o}}\left(t t^{\prime}\right)=N_{F / F_{o}}(t) N_{F / F_{o}}\left(t^{\prime}\right), \quad t, t^{\prime} \in F^{\times}
$$

Fix some $s \geq 1$ and let the larger of our two main fields be

$$
K=\mathbb{F}_{q^{s}}
$$

Note that K contains F as a subfield.
Since also $K=\mathbb{F}_{p^{r s}}$, the previous discussion of trace and norm applies verbatim with $r s$ in place of r to give

$$
\operatorname{tr}_{K / F_{o}}: K \longrightarrow F_{o}, \quad \operatorname{tr}_{K / F_{o}}(t)=\sum_{\sigma \in \operatorname{Aut}(K)} \sigma(t)
$$

and

$$
N_{K / F_{o}}: K \longrightarrow F_{o}, \quad N_{K / F_{o}}(t)=\prod_{\sigma \in \operatorname{Aut}(K)} \sigma(t)
$$

But also, we now have a relative trace and norm. The map

$$
\sigma_{q}: K \longrightarrow K, \quad \sigma_{q}(t)=t^{q}
$$

is an automorphism of K that fixes F, and the group of such automorphisms of F is the cyclic group of order s generated by σ_{q},

$$
\operatorname{Aut}_{F}(K)=\left\langle\sigma_{q}\right\rangle=\left\{1, \sigma_{q}, \sigma_{q}^{2}, \cdots, \sigma_{q}^{s-1}\right\}
$$

All such automorphisms fix F pointwise and any element of K that is fixed by the automorphisms lies in F, and it suffices to check whether an element of K is fixed by σ_{q}.

The relative trace function from K to F is

$$
\operatorname{tr}_{K / F}: K \longrightarrow F, \quad \operatorname{tr}_{K / F}(t)=\sum_{\sigma \in \operatorname{Aut}_{F}(K)} \sigma(t)
$$

and the relative norm function from K to F is

$$
N_{K / F}: K \longrightarrow F, \quad N_{K / F}(t)=\prod_{\sigma \in \operatorname{Aut}_{F}(K)} \sigma(t)
$$

The relative trace is again additive and the relative norm is again multiplicative, and the traces and norms compose as nicely as they possibly could,

$$
\operatorname{tr}_{K / F_{o}}=\operatorname{tr}_{F / F_{o}} \circ \operatorname{tr}_{K / F} \quad \text { and } \quad N_{K / F_{o}}=N_{F / F_{o}} \circ N_{K / F}
$$

2. Additive Characters, Multiplicative Characters, Gauss Sums

Recall that $F_{o}=\mathbb{F}_{p}$. Let $\zeta_{p}=e^{2 \pi i / p} \in \mathbb{C}$. An additive character of F_{o} is

$$
\psi_{o}: F_{o} \longrightarrow \mathbb{C}^{\times}, \quad \psi_{o}(t)=\zeta_{p}^{t}
$$

The corresponding additive character of F is

$$
\psi_{F}: F \longrightarrow \mathbb{C}^{\times}, \quad \psi_{F}=\psi_{o} \circ \operatorname{tr}_{F / F_{o}}
$$

and the corresponding additive character of K is

$$
\psi_{K}: K \longrightarrow \mathbb{C}^{\times}, \quad \psi_{K}=\psi_{F} \circ \operatorname{tr}_{K / F}
$$

Given also a nontrivial multiplicative character of F,

$$
\chi_{F}: F^{\times} \longrightarrow \mathbb{C}^{\times}
$$

the corresponding multiplicative character of K is

$$
\chi_{K}: K^{\times} \longrightarrow \mathbb{C}^{\times}, \quad \chi_{K}=\chi_{F} \circ N_{K / F}
$$

Definition 2.1. The Gauss sum of χ_{F} is

$$
\tau\left(\chi_{F}\right)=\sum_{t \in F} \chi_{F}(t) \psi_{F}(t)
$$

and the Gauss sum of χ_{K} is

$$
\tau\left(\chi_{K}\right)=\sum_{t \in K} \chi_{K}(t) \psi_{K}(t)
$$

Here we are tacitly defining $\chi(0)=0$. Alternatively, we could sum over $t \in F^{\times}$for the first Gauss sum and similarly for the second.

3. Gauss Sum Terms and Minimal Polynomials

Let t be a nonzero element of K. Let H be the subgroup of $\operatorname{Aut}_{F}(K)$ that fixes t. Then H takes the form

$$
H=\left\langle\sigma_{q}^{d}\right\rangle \quad \text { for some } d \mid s
$$

Thus t has d distinct conjugates in K, including itself. Denote these conjugates t_{1} through t_{d} where $t_{1}=t$. Then

$$
\operatorname{tr}_{K / F}(t)=(s / d)\left(t_{1}+\cdots+t_{d}\right) \quad \text { and } \quad N_{K / F}(t)=\left(t_{1} \cdots t_{d}\right)^{s / d}
$$

Also, consider the polynomial

$$
f(X)=\prod_{i=1}^{d}\left(X-t_{i}\right)=X^{d}-\left(t_{1}+\cdots+t_{d}\right) X^{n-1}+\cdots+(-1)^{d}\left(t_{1} \cdots t_{d}\right)
$$

Certainly $f(t)=0$ since $t=t_{1}$. Also, because any automorphism σ of K over F permutes the conjugates of t, the product form of $f(X)$ shows that it is invariant when its coefficients are passed through any such σ. Thus the coefficients of f lie in the smaller field F. In fact $f(X)$ is the smallest monic polynomial in $F[X]$ satisfied by t, making it irreducible. The polynomial $f(X)$ is the minimal polynomial of t over F.

Rewrite the minimal polynomial of t as

$$
f(X)=X^{d}-c_{1} X^{d-1}+\cdots+(-1)^{d} c_{d}
$$

Then $(s / d) c_{1}=\operatorname{tr}_{K / F}(t)$ and $c_{n}^{s / d}=N_{K / F}(t)$, and so

$$
\begin{aligned}
\left(\psi_{F}\left(c_{1}\right) \chi_{F}\left(c_{d}\right)\right)^{s / d} & =\psi_{F}\left((s / d) c_{1}\right) \chi_{F}\left(c_{d}\right)^{s / d} \\
& =\psi_{F}\left(\operatorname{tr}_{K / F}(t)\right) \chi_{F}\left(N_{K / F}(t)\right) \\
& =\psi_{K}(t) \chi_{K}(t)
\end{aligned}
$$

giving a term of the Gauss sum $\tau\left(\chi_{K}\right)$. And furthermore, since t and its conjugates all have the same trace and norm and hence all have the same $\psi_{K^{-}}$and $\chi_{K^{-}}$-values,

$$
d\left(\psi_{F}\left(c_{1}\right) \chi_{F}\left(c_{d}\right)\right)^{s / d}=\sum_{i=1}^{d} \psi_{K}\left(t_{i}\right) \chi_{K}\left(t_{i}\right)
$$

Let $\mathcal{M I}$ denote the set of monic irreducible polynomials in $F[X]$. Each $t \in K$ satisfies some $f \in \mathcal{M I}$ with $\operatorname{deg}(f) \mid s$, and conversely each such $f \in \mathcal{M I}$ divides $X^{q^{s}}-X$ so that its roots lie in $K=\operatorname{spl}_{F}\left(X^{q^{s}}-X\right)$. If $f \in \mathcal{M I}$ is specified, let $d=\operatorname{deg}(f)$ and let c_{1} and c_{d} be the coefficients of f as displayed in the previous paragraph. Then the previous display and the reasoning of this paragraph combine to give the following formula.

Proposition 3.1. The Gauss sum for χ_{K} where $K=\mathbb{F}_{q^{s}}$ is

$$
\tau\left(\chi_{K}\right)=\sum_{\substack{f \in \mathcal{M} \mathcal{I} \\ d \mid s}} d\left(\psi_{F}\left(c_{1}\right) \chi_{F}\left(c_{d}\right)\right)^{s / d}
$$

4. An Euler Factorization for Polynomials

The calculations of the previous section suggest a general definition.
Definition 4.1. Let \mathcal{M} denote the set of monic polynomials in $F[X]$, not necessarily irreducible. Define a function

$$
\lambda: \mathcal{M} \longrightarrow \mathbb{C}^{\times}
$$

as follows: For any $f(X)=X^{d}-c_{1} X^{d-1}+\cdots+(-1)^{d} c_{d} \in \mathcal{M}$,

$$
\lambda(f)=\psi_{F}\left(c_{1}\right) \chi_{F}\left(c_{d}\right)
$$

Note that in particular, $\lambda(1)=\psi_{F}(0) \chi_{F}(1)=1$.
A little algebra shows that λ is multiplicative,

$$
\lambda(f g)=\lambda(f) \lambda(g) \quad \text { for all monic } f, g \in \mathcal{M}
$$

That is, λ gathers the additive character ψ_{F} and the multiplicative character χ_{F} into a single multiplicative character on the monoid \mathcal{M}. (A monoid is like a group but without inverses.)

Proposition 4.2. The following Euler factorization identity holds for any multplicative function $\lambda: \mathcal{M} \longrightarrow \mathbb{C}^{\times}$,

$$
\sum_{f \in \mathcal{M}} \lambda(f) T^{\operatorname{deg} f}=\prod_{f \in \mathcal{M} \mathcal{I}}\left(1-\lambda(f) T^{\operatorname{deg} f}\right)^{-1}
$$

Furthermore, for the particular λ of the previous definition, the left side of the previous display simplifies to

$$
\sum_{f \in \mathcal{M}} \lambda(f) T^{\operatorname{deg} f}=1+\tau\left(\chi_{F}\right) T
$$

Proof. The fact that every monic polynomial factors uniquely into monic irreducibles gives the crucial third equality (in which the symbol f changes its meaning from a general monic irreducible polynomial on the left side of the equality to a general monic polynomial on the right side) in the calculation

$$
\begin{aligned}
\prod_{f \in \mathcal{M I}}\left(1-\lambda(f) T^{\operatorname{deg} f}\right)^{-1} & =\prod_{f \in \mathcal{M} \mathcal{I}} \sum_{n \geq 0}(\lambda(f))^{n} T^{n \operatorname{deg} f} \\
& =\prod_{f \in \mathcal{M} \mathcal{I}} \sum_{n \geq 0} \lambda\left(f^{n}\right) T^{\operatorname{deg}\left(f^{n}\right)} \\
& =\sum_{f \in \mathcal{M}} \lambda(f) T^{\operatorname{deg} f}
\end{aligned}
$$

This gives the Euler factorization. For the second part, we have

$$
\sum_{f \in \mathcal{M}} \lambda(f) T^{\operatorname{deg} f}=\sum_{n \geq 0} \sum_{\substack{f \in \mathcal{M} \\ d=n}} \lambda(f) T^{\operatorname{deg} f}
$$

For $n=0$ the inner sum is 1 . For $n=1$, the monic irreducible polynomials are $f(X)=X-t$ for all $t \in F$, with $c_{1}=c_{d}=t$, and so the inner sum is

$$
\sum_{\substack{f \in \mathcal{M} \\ d=1}} \lambda(f) T=\sum_{t \in F} \lambda(X-t) T=\sum_{t \in F} \psi_{F}(t) \chi_{F}(t) T=\tau\left(\chi_{F}\right) T
$$

For $n \geq 2$, note that for each choice of c_{1} and c_{n} in F there are q^{n-2} monic polynomials with those coefficients. Thus

$$
\sum_{\substack{f \in \mathcal{M} \\ d=n}} \lambda(f) T=q^{n-2} \sum_{c_{1}, c_{n} \in F} \psi_{F}\left(c_{1}\right) \chi_{F}\left(c_{n}\right)=q^{n-2} \sum_{c_{1} \in F} \psi_{F}\left(c_{1}\right) \sum_{c_{n} \in F} \chi_{F}\left(c_{n}\right) .
$$

But both character sums are zero (for the second sum it is relevant that χ_{F} is nontrivial), and so the entire expression vanishes.

5. The Hasse-Davenport Relation

Theorem 5.1 (Hasse-Davenport Relation). The relation between the Gauss sums $\tau\left(\chi_{K}\right)$ and $\tau\left(\chi_{F}\right)$ is

$$
-\tau\left(\chi_{K}\right)=\left(-\tau\left(\chi_{F}\right)\right)^{s} .
$$

Proof. From the previous proposition we have the relation

$$
1+\tau\left(\chi_{F}\right) T=\prod_{f \in \mathcal{M} \mathcal{I}}\left(1-\lambda(f) T^{\operatorname{deg}(f)}\right)^{-1}
$$

Take logarithmic derivatives and multiply by T,

$$
\frac{\tau\left(\chi_{F}\right) T}{1+\tau\left(\chi_{F}\right) T}=\sum_{f \in \mathcal{M I}} \frac{\operatorname{deg}(f) \lambda(f) T^{\operatorname{deg}(f)}}{\left(1-\lambda(f) T^{\operatorname{deg}(f)}\right)}
$$

and then expand the geometric series,

$$
\sum_{n \geq 1}(-1)^{n-1} \tau\left(\chi_{F}\right)^{n} T^{n}=\sum_{f \in \mathcal{M} \mathcal{I}} \sum_{d \geq 1} \operatorname{deg}(f) \lambda(f)^{d} T^{d \operatorname{deg}(f)}
$$

Equate the coefficients of T^{s},

$$
-\left(-\tau\left(\chi_{F}\right)^{s}\right)=\sum_{\substack{f \in \mathcal{M} \mathcal{I} \\ d \mid s}} d \lambda(f)^{s / d}
$$

The right side is $\tau\left(\chi_{K}\right)$ by Proposition 3.1, so the proof is complete.

