
WHENCE GAUSS SUMS?

Let p be an odd prime, let (·/p) be the Legendre symbol, and let ζp = e2πi/p.
Typically in a first number theory course the quadratic Gauss sum

τ =

p−1∑
a=1

(
a

p

)
ζap

is pulled out of thin air, and its properties established by elementary calculations
that appear to work for no discernible reason. More generally, for any Dirichlet
character modulo p,

χ : (Z/pZ)× −→ C×,
the corresponding Gauss sum

τ(χ) =

p−1∑
a=1

χ(a)ζap

satisfies many of the same properties. A person might wonder just what is going
on and how anybody might conceive of such a thing. This writeup shows that
the Gauss sum is a special case of a general symmetrizing device, the Lagrange
resolvent , that has built-in equivariance and equation-solving properties that are
easier to understand in general than in the confusingly overly-specific context of
Gauss sums alone.

First we place the Gauss sum in the context of appropriate fields. The pth
cyclotomic field is

K = Q(ζ), ζ = e2πi/p.

Also introduce the auxiliary field

F = Q(ω), ω = e2πi/(p−1)

and the composite field

L = FK = Q(ω, ζ).

Thus any Dirichlet character modulo p in fact maps into F×,

χ : (Z/pZ)× −→ F×.

and so the corresponding Gauss sum lies in the composite field,

τ(χ) =
∑

a∈(Z/pZ)×
χ(a)ζa ∈ L.

Next we work quite generally. Let L/F be a Galois field extension with cyclic
Galois group G. If the characteristic is nonzero then assume that the order of G is
coprime to it. Consider two data, an element of the larger field and a character of
the Galois group into the multiplicative group of the smaller one,

θ ∈ L, χ : G −→ F×.
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The Lagrange resolvent associated to θ and χ is the χ-weighted average over the
Galois orbit of θ,

R = R(θ, χ) =
∑
g∈G

χ(g)g(θ) ∈ L.

Because R is a weighted average and because the character-outputs are fixed by the
Galois group, the equivariance property of the Lagrange resolvent is immediate, as
follows. For any g ∈ G,

g(R) = g(
∑
g̃

χ(g̃)g̃(θ)) =
∑
g̃

χ(g̃)(gg̃)(θ) = χ(g−1)
∑
g̃

χ(gg̃)(gg̃)(θ)) = χ(g−1)R.

Repeating,

g(R) = χ(g−1)R.

Consequently, letting d = |Gal(L/F )|,

g(Rd) = (g(R))d = χd(g−1)Rd = Rd because χd = 1.

Thus Rd lies in the smaller field F . Indeed, letting m denote the order of χ, this
argument shows that Rm = R(θ, χ)m lies in F . (This should remind the reader of
the fact that the square of the quadratic Gauss sum is (−1/p)p, an element of Q.)
However, the matter of finding a method to express R(θ, χ)m as an element of F is
context-specific.

As for the equation-solving properties of the Lagrange resolvent, begin by noting
that the group of characters χ of the finite cyclic Galois group G is again finite cyclic
of the same order. Assume now that F is large enough to contain the range of all
such characters. Fix generators g of the Galois group and χ of the character group.
The expression of each Lagrange resolvent as a linear combination of the Galois
orbit of θ encodes as an equality of column vectors in Ld (with d = |G| as before),

R(θ, χ0)
R(θ, χ1)

...
R(θ, χd−1)

 = Vχ


g0(θ)
g1(θ)

...
gd−1(θ)

 ,
where the matrix relating the vectors is the Vandermonde matrix,

Vχ =


χ0(g0) χ0(g1) · · · χ0(gd−1)
χ1(g0) χ1(g1) · · · χ1(gd−1)

...
...

. . .
...

χd−1(g0) χd−1(g1) · · · χd−1(gd−1).

 ∈ F d×d.
The top row and the left column of Vχ are all 1’s. As a very small case of Fourier
analysis, orthogonality shows that the inverse of the Vandermonde matrix is essen-
tially the transpose of another one,

V T
χ−1Vχ = d Id.
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Thus we can invert the equality of column vectors in Ld to solve for θ and its
conjugates in terms of the resolvents,

g0(θ)
g1(θ)

...
gd−1(θ)

 =
1

d
V T
χ−1


R(θ, χ0)
R(θ, χ1)

...
R(θ, χd−1)

 .
Especially, equate the top entries to see that θ itself is the average of its resolvents,

θ =
1

d

d−1∑
i=0

R(θ, χi).

Because each resolvent is a dth root over F , this expresses θ in radicals.

Finally, to see that the Lagrange resolvent subsumes Gauss sums, specialize the
environment back to F = Q(ω) (with ω = e2πi/(p−1)) and L = FK where K = Q(ζ)
(with ζ = e2πi/p). Then Gal(L/F ) ≈ (Z/pZ)×, the automorphisms being

ga : ζ 7−→ ζa, a ∈ (Z/pZ)×.

Also specializing the top-field element θ to ζ, the Lagrange resolvent is indeed the
Gauss sum if we view any character χ : G −→ F× as a character of (Z/pZ)× as
well,

R(ζ, χ) =
∑
g∈G

χ(g)g(ζ) =
∑

a∈(Z/pZ)×
χ(a)ζa = τ(χ).

The general reasoning has shown that if χ has order m then τ(χ)m lies in F , and
that ζ can be expressed as an average of Gauss sums τ(χ). Because the order of
each χ divides p − 1, this constructs ζ from numbers whose (p − 1)st powers are
rational numbers. While ζ has the rational power ζp = 1, this power is higher
than p−1. And while ζ satisfies a polynomial of degree p−1, that polynomial does
not take the form Xp−1 − a.

In particular, if p is a Fermat prime p = 2n + 1 (where n = 2e in turn) then the
Gauss sums all satisfy τ2

n

= 1 and so plausibly they can be constructed in turn by
successions of square roots.


