WHENCE GAUSS SUMS?

Let p be an odd prime, let (\cdot/p) be the Legendre symbol, and let $\zeta_p = e^{2\pi i/p}$. Typically in a first number theory course the quadratic Gauss sum

$$\tau = \sum_{a=1}^{p-1} \left(\frac{a}{p} \right) \zeta_p^a$$

is pulled out of thin air, and its properties established by elementary calculations that appear to work for no discernible reason. More generally, for any Dirichlet character modulo p,

$$\chi : (\mathbb{Z}/p\mathbb{Z})^\times \longrightarrow \mathbb{C}^\times,$$

the corresponding Gauss sum

$$\tau(\chi) = \sum_{a=1}^{p-1} \chi(a) \zeta_p^a$$

satisfies many of the same properties. A person might wonder just what is going on and how anybody might conceive of such a thing. This writeup shows that the Gauss sum is a special case of a general symmetrizing device, the Lagrange resolvent, that has built-in equivariance and equation-solving properties that are easier to understand in general than in the confusingly overly-specific context of Gauss sums alone.

First we place the Gauss sum in the context of appropriate fields. The pth cyclotomic field is

$$K = \mathbb{Q}(\zeta), \quad \zeta = e^{2\pi i/p}.$$

Also introduce the auxiliary field

$$F = \mathbb{Q}(\omega), \quad \omega = e^{2\pi i/(p-1)}$$

and the composite field

$$L = FK = \mathbb{Q}(\omega, \zeta).$$

Thus any Dirichlet character modulo p in fact maps into F^\times,

$$\chi : (\mathbb{Z}/p\mathbb{Z})^\times \longrightarrow F^\times,$$

and so the corresponding Gauss sum lies in the composite field,

$$\tau(\chi) = \sum_{a\in(\mathbb{Z}/p\mathbb{Z})^\times} \chi(a) \zeta^a \in L.$$

Next we work quite generally. Let L/F be a Galois field extension with cyclic Galois group G. (If the characteristic is nonzero then assume that the order of G is coprime to it.) Consider two data, an element of the larger field and a character of the Galois group into the multiplicative group of the smaller one,

$$\theta \in L, \quad \chi : G \longrightarrow F^\times.$$

The Lagrange resolvent associated to θ and χ is the χ-weighted average over the Galois orbit of θ,

$$R = R(\theta, \chi) = \sum_{g \in G} \chi(g)\theta(g) \in L.$$

Since R is a weighted average and since the character-outputs are fixed by the Galois group, the equivariance property of the Lagrange resolvent is immediate: for any $g \in G$,

$$g(R) = g(\sum_{\tilde{g}} \chi(\tilde{g})\tilde{g}(\theta)) = \sum_{\tilde{g}} \chi(\tilde{g})(g\tilde{g})(\theta) = \chi(g^{-1})\sum_{\tilde{g}} \chi(g\tilde{g})(\tilde{g})(\theta)) = \chi(g^{-1})R.$$

Consequently, letting $d = |\text{Gal}(L/F)|$,

$$g(R^d) = (g(R))^d = (\chi(g^{-1})R)^d = R^d$$

showing that R^d lies in the smaller field F. Indeed, letting m denote the order of χ, this argument shows that $R(\theta, \chi)^m \in F$. However, the matter of finding a method to express $R(\theta, \chi)^m$ as an element of F is context-specific.

As for the equation-solving properties of the Lagrange resolvent, begin by noting that the group of characters χ of the finite cyclic Galois group G is again finite cyclic of the same order. Assume now that F is large enough to contain the range of all such characters. Fix generators g of the Galois group and χ of the character group. The expression of each Lagrange resolvent as a linear combination of the Galois orbit of θ encodes as an equality of column vectors in L^d (with $d = |G|$ as before),

$$\begin{bmatrix} R(\theta, \chi^0) \\ R(\theta, \chi^1) \\ \vdots \\ R(\theta, \chi^{d-1}) \end{bmatrix} = V_\chi \begin{bmatrix} g^0(\theta) \\ g^1(\theta) \\ \vdots \\ g^{d-1}(\theta) \end{bmatrix},$$

where the matrix relating the vectors is the Vandermonde matrix,

$$V_\chi = \begin{bmatrix} \chi^0(g^0) & \chi^0(g^1) & \cdots & \chi^0(g^{d-1}) \\ \chi^1(g^0) & \chi^1(g^1) & \cdots & \chi^1(g^{d-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi^{d-1}(g^0) & \chi^{d-1}(g^1) & \cdots & \chi^{d-1}(g^{d-1}) \end{bmatrix} \in F^{d \times d}.$$

The top row and the left column of V_χ are all 1’s. As a very small case of Fourier analysis, orthogonality shows that the inverse of the Vandermonde matrix is essentially the transpose of another one,

$$V_\chi^T V_\chi = dI_d.$$

Thus we can invert the equality of column vectors in L^d to solve for θ and its conjugates in terms of the resolvents,

$$\begin{bmatrix} g^0(\theta) \\ g^1(\theta) \\ \vdots \\ g^{d-1}(\theta) \end{bmatrix} = \frac{1}{d} V_\chi^T R(\theta, \chi^1) \begin{bmatrix} R(\theta, \chi^0) \\ R(\theta, \chi^1) \\ \vdots \\ R(\theta, \chi^{d-1}) \end{bmatrix}. $$

Especially, equate the top entries to see that \(\theta \) itself is the average of its resolvents,

\[
\theta = \frac{1}{d} \sum_{i=0}^{d-1} R(\theta, \chi^i).
\]

Since each resolvent is a \(d \)th root over \(F \), this expresses \(\theta \) in radicals.

Finally, to see that the Lagrange resolvent subsumes Gauss sums, specialize the environment back to \(F = \mathbb{Q}(\omega) \) (with \(\omega = e^{2\pi i/(p-1)} \)) and \(L = FK \) where \(K = \mathbb{Q}(\zeta) \) (with \(\zeta = e^{2\pi i/p} \)). Then \(\text{Gal}(L/F) \approx (\mathbb{Z}/p\mathbb{Z})^\times \), the automorphisms being

\[
g_a : \zeta \mapsto \zeta^a, \quad a \in (\mathbb{Z}/p\mathbb{Z})^\times.
\]

Also specializing the top-field element \(\theta \) to \(\zeta \), the Lagrange resolvent is indeed the Gauss sum if we view any character \(\chi : G \rightarrow F^\times \) as a character of \((\mathbb{Z}/p\mathbb{Z})^\times\) as well,

\[
R(\zeta, \chi) = \sum_{g \in G} \chi(g) g(\zeta) = \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^\times} \chi(a) \zeta^a = \tau(\chi).
\]

The general reasoning has shown that if \(\chi \) has order \(d \) then \(\tau(\chi)^d \) lies in \(F \), and that \(\zeta \) can be expressed as an average of Gauss sums \(\tau(\chi) \). Since the order of each \(\chi \) divides \(p-1 \), this constructs \(\zeta \) from numbers whose \((p-1)\)st powers are rational numbers. While \(\zeta \) it has the rational power \(\zeta^p = 1 \), this power is higher than \(p-1 \). And while \(\zeta \) satisfies a polynomial of degree \(p-1 \), that polynomial does not take the form \(X^{p-1} - a \).

In particular, if \(p \) is a Fermat prime \(p = 2^n + 1 \) (where \(n = 2^e \) in turn) then the Gauss sums all satisfy \(\tau^{2^n} = 1 \) and so plausibly they can be constructed in turn by successions of square roots.