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1. Review

A key step in Dirichlet’s proof that there are infinitely many primes in any viable
arithmetic progression a+NZ≥0 is tacitly a simple case of Fourier anlaysis.

Recall the relevant environment. The multiplicative group modulo N ,

G = (Z/NZ)×,

has as its dual group the Dirichlet characters modulo N ,

G∗ = {homomorphisms : G −→ C×}
= {χ : G −→ C× | χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G}.

The orthogonality relations for Dirichlet characters are that for each χ ∈ G∗,∑
g∈G

χ(g) =

{
|G| if χ = 1,

0 otherwise,

and for each g ∈ G, ∑
χ∈G∗

χ(g) =

{
|G∗| if g = 1,

0 otherwise.

Although the second orthogonality relation is sufficient for the Fourier analytic
step of Dirichlet’s argument, that step will be rewritten here as a fuller version of
Fourier analysis. In the context of Dirichlet’s argument alone, the generalization is
gratuitous, but the point is that it will scale up to larger situations.

For any function f : G −→ C, the Fourier transform of f is a corresponding
function on the dual group,

f̂ : G∗ −→ C, f̂(χ) =
1

φ(N)

∑
x∈G

f(x)χ(x−1),

and then the Fourier series of f is

sf : G −→ C, sf (x) =
∑
χ∈G∗

f̂(χ)χ(x).
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The second orthogonality relation shows that the Fourier series reproduces the
original function,

sf (x) =
1

φ(N)

∑
χ∈G∗

∑
y∈G

f(y)χ(xy−1)

=
1

φ(N)

∑
y∈G

f(y)
∑
χ∈G∗

χ(xy−1)

= f(x).

No qualifications on the function f , and no convergence issues of any sort, are
involved here since the group G is finite.

Returning to the Dirichlet proof, specalize the function f to pick off a (mod N),

f(x) =

{
1 if x = a,

0 otherwise.

Then for any χ ∈ G∗, the χth Fourier coefficient of f is simply

f̂(χ) = χ(a−1)/φ(N),

and the relation sf (x) = f(x) is inevitably just the second orthogonality relation,

1

φ(N)

∑
χ∈G∗

χ(xa−1) =

{
1 if x = a,

0 otherwise.

The Dirichlet proof is concerned with the sum
∑
p=a(N) p

−s. The indicator func-

tion f lets us take the sum over all primes instead and then replace f by its Fourier
series sf = (1/φ(N))

∑
χ χ(a−1)χ to get∑

p=a(N)

p−s =
∑
p∈P

f(p)p−s =
1

φ(N)

∑
χ

χ(a−1)
∑
p∈P

χ(p)p−s.

Meanwhile, for each Dirichlet L-function

L(s, χ) =
∑
n∈Z+

χ(n)n−s =
∏
p∈P

(1− χ(p)p−s)−1, Re(s) > 1,

we have

logL(s, χ) =
∑
p∈P
ν∈Z+

ν−1χ(pν)p−νs =
∑
p∈P

χ(p)p−s +
∑
p∈P
ν≥2

ν−1χ(pν)p−νs,

where the second term has absolute value at most 1 by the argument in Euler’s
proof. By the last display of the previous paragraph, the linear combination of
these logarithms whose coefficients are the Fourier coeffients of f is the desired sum
plus a small error term,

1

φ(N)

∑
χ

χ(a−1) logL(s, χ) =
∑

p=a(N)

p−s + ε, |ε| < 1.

These calculations reproduce events from the Dirichlet proof, but now the role
of Fourier analysis in forming the appropriate linear combination of the functions
logL(s, χ) is clear.
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2. A Fourier series

Now replace the finite group G = (Z/NZ)× with the compact group G = R/Z.
We may view G as the interval [0, 1] with its endpoints identified, the operation
being addition modulo 1. The dual group of unitary characters is (letting T denote
the unit circle in the complex plane)

G∗ = {continuous homomorphisms : G −→ T}
= {ψn : n ∈ Z} where ψn(x) = e2πinx.

Analogously to the second orthgonality relation, we suspect that∑
n

ψn = δ,

where δ is the Dirac delta distribution,∫
G

f(x)δ(x) dx = f(0) for measurable functions f that are continuous at 0.

For any measurable function f : G −→ C, the Fourier transform of f is a
corresponding function on the dual group,

f̂ : G∗ −→ C, f̂(ψn) =

∫
G

f(x)ψn(−x) dx,

and then the Fourier series of f is formally

sf =
∑
n∈Z

f̂(ψn)ψn.

Heuristically, the Fourier series should reproduce the original function at its points
of continuity,

sf (x) =
∑
n∈Z

∫
G

f(y)ψn(−y) dy ψn(x)

=

∫
G

f(y)
∑
n∈Z

ψn(x− y) dy

= f(x) if f is continuous at x.

But in fact the issues are trickier than this, and there exist continuous functions
on R/Z whose Fourier series drastically fail to reproduce them. However, the
Fourier series does reproduce the function at points of differentiability.

Let 0 ≤ a < b ≤ 1, and replace the function f from before that picked off
one point of the finite group G = (Z/NZ)× with the function f that picks off the
subinterval [a, b] of G = R/Z,

f : [0, 1] −→ C, f(x) =

{
1 if x ∈ [a, b],

0 otherwise.

For any integer n, the nth Fourier coefficient of f is

f̂(n) =

∫ b

a

ψn(−x) dx =

{
b− a if n = 0,

− 1
2πin

(
e−2πinb − e−2πina

)
if n 6= 0.
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The squarewave f is well enough behaved that its Fourier series reproduces it except
at its jump-points,

f(x) =
∑
n∈Z

f̂(n)ψn(x), x 6= a, b.

3. A Hecke L-function

The integer ring Z[i] of the number field Q(i) forms a unique factorization domain
with unit group Z[i]× = {±1,±i}. Consequently, for any integer n the multiplica-
tive function

χn : Z[i]− {0} −→ C, χn(z) = (z/|z|)4n

is also sensible as a function of nonzero ideals,

χn(a) = χn(g) where a = 〈g〉.

The corresponding L-function for χ = χn is formally

L(s, χ) =
∑
a

χ(a)Na−s =
∏
p

(1− χ(p)Np−s)−1,

and its logarithm is formally

logL(s, χ) =
∑
p

∑
ν∈Z+

ν−1χ(pν)Np−νs.

Basic estimates show that∑
p
ν≥2

|ν−1χ(pν)Np−νs| ≤ 2
∑
p∈P
ν≥2

ν−1p−νs,

and as in the Dirichlet argument, the right side is bounded above by 2. Thus in
terms of behavior as s→ 1+,

logL(s, χ) ∼
∑
p

χ(p)Np−s.

(We won’t need the previous result once we know that nontrivial Hecke L-functions
are finite but nonzero at s = 1, but:) Especially, in the case of the trivial charac-
ter χ0,

log ζQ(i)(s) ∼
∑
p

Np−s.

4. The Dirichlet trick revisited

We may view Q(i) as a dense subfield of C, and we may view the quotient of the
group C× by the Gaussian integer unit group Z[i]× = {±1,±i} as the punctured
first quadrant with its boundary rays identified. The circle R/Z maps naturally to
the quotient C×/Z[i]×,

γ : x 7−→ e2πix/4 · Z[i]×.

Just as we view R/Z as the interval [0, 1] with its endpoints identified, we may view
γ(R/Z) = C×/R+Z[i]× as the first quarter-circle with its endpoints identified as
well. Note that the identity e2πinx = (e2πinx/4)4n is

ψn = χn ◦ γ, n ∈ Z.
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By analogy to Dirichlet’s theorem, suppose that we are interested in the primes
lying in a sector

Sa,b = {a · π/2 ≤ arg(z) ≤ b · π/2}, 0 ≤ a < b ≤ 1.

Recall the function f : R/Z −→ C that picks off the interval [a, b]. The related
function g : C×/R+Z[i]× −→ C defined by the condition

f = g ◦ γ
is the function that picks off the corresponding arc of the quarter-circle. Because
the Fourier series of f is

sf =
∑
n

f̂(n)ψn =
∑
n

f̂(n)χn ◦ γ,

the function g is consequently

g =
∑
n

f̂(n)χn.

It follows that∑
π∈Sa,b

Nπ−s ∼
∑
π∈S0,1

ν∈Z+

πν∈Sa,b

ν−1Nπ−νs =
∑
π,ν

g((π/|π|)ν)ν−1Nπ−νs.

That is, replacing g by its Fourier series,∑
π∈Sa,b

Nπ−s ∼
∑
n∈Z

f̂(n)
∑
π,ν

ν−1χn(πν)Nπ−νs =
∑
n∈Z

f̂(n) logL(s, χn).

If the nontrivial L-functions are finite but nonzero at s = 1 then furthermore,∑
n∈Z

f̂(n) logL(s, χn) ∼ (b− a) log ζQ(i)(s) ∼ (b− a)
∑
p

Np−s.

In sum,

lim
s→1+

∑
π∈Sa,b Nπ−s∑

p Np−s
= b− a.

That is,

In terms of Dirichlet density, the Gaussian primes are distributed
evenly through sectors.

Although half of the primes of Z[i] are rational primes π = q ≡ 2 (mod 3), their
Dirichlet density is 0. The point is that such primes are small in the sense of having
large norms Nπ = q2.


