# Why does the Fourier series of a continuous function mean-square converge to the function? 

Jerry Shurman

Math 361, Spring 2019

## The issue

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be $\mathbb{Z}$-periodic and continuous
The Fourier coefficients of $f$ are

$$
\widehat{f}(n)=\int_{t=0}^{1} f(t) e^{-2 \pi i n t} \mathrm{~d} t, \quad n \in \mathbb{Z}
$$

The partial sums of its Fourier series are

$$
\left(s_{N} f\right)(x)=\sum_{|n| \leq N} \widehat{f}(n) e^{2 \pi i n x}, \quad N \in \mathbb{Z}_{\geq 0}
$$

The partial sums $s_{N} f$ mean-square converge to $f$

$$
\lim _{N} \int_{x=0}^{1}\left|\left(s_{N} f\right)(x)-f(x)\right|^{2} \mathrm{~d} x=0
$$

How is this true, even though no claim about pointwise convergence of the $s_{N} f$ to $f$ is supportable?

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation
(4) Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
(8) A pointwise convergence result

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation
(4) Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $C^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
( ( A pointwise convergence result

## The physical space and the test function space

The physical space is $X=\mathbb{R} / \mathbb{Z}$

- compact topological group
- inherits its topology and Haar measure from $\mathbb{R}$

The test function space is $\mathcal{C}^{\infty}(X)$ (smooth functions from $X$ to $\mathbb{C}$ )

## Two norms on the test function space

$$
\begin{aligned}
\text { uniform norm } \quad|f|_{\mathcal{C}^{0}}=\sup _{x \in X}|f(x)| \\
\text { mean-square norm } \quad|f|_{\mathcal{L}^{2}}=\left(\int_{X}|f(x)|^{2}\right)^{1 / 2}
\end{aligned}
$$

The uniform norm dominates the mean-square norm

$$
|f|_{\mathcal{C}^{0}} \geq|f|_{\mathcal{L}^{2}}
$$

So the identity set-map

$$
\left(\mathcal{C}^{\infty}(X),|\cdot|_{\mathcal{C}^{0}}\right) \longrightarrow\left(\mathcal{C}^{\infty}(X),|\cdot|_{\mathcal{L}^{2}}\right)
$$

is continuous

## Two completions of the test function space

$$
\begin{aligned}
& \mathcal{C}^{0}(X)=\text { completion of }\left(\mathcal{C}^{\infty}(X),\left.|\cdot|\right|_{\mathcal{C}^{0}}\right) \\
& \mathcal{L}^{2}(X)=\text { completion of }\left(\mathcal{C}^{\infty}(X),|\cdot|_{\mathcal{L}^{2}}\right)
\end{aligned}
$$

So a continuous map

$$
\mathcal{C}^{0}(X) \longrightarrow \mathcal{L}^{2}(X)
$$

of complete spaces amenable to analysis
$\mathcal{L}^{2}(X)$ carries an inner product

$$
\langle f, g\rangle=\int_{X} f \bar{g}
$$

## The setting

We consider functions in $\mathcal{C}^{0}(X)$ from now on freely viewing them as elements of $\mathcal{L}^{2}(X)$ as well

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$

8 A pointwise convergence result

## Orthonormal family of characters in $\mathcal{L}^{2}$

The integer-frequency oscillations are

$$
\left\{\psi_{n}: n \in \mathbb{Z}\right\}
$$

where

$$
\psi_{n}: X \longrightarrow \mathbb{C}^{\times} \quad \text { is } \quad \psi_{n}(x)=e^{2 \pi i n x}
$$

Characters

$$
\psi_{n}(x+y)=\psi_{n}(x) \psi_{n}(y)
$$

Orthonormal

$$
\left.\left\langle\psi_{n}, \psi_{m}\right\rangle=\delta_{n, m} \quad \text { (Kronecker delta }\right)
$$

Handy properties

$$
\psi_{n}=\psi_{1}^{n} \quad \psi_{n} \psi_{m}=\psi_{n+m} \quad \psi_{n}(-x)=\bar{\psi}_{n}(x)=\psi_{-n}(x)
$$

## Fourier polynomials

In $\mathcal{L}^{2}(X)$ the $N$ th Fourier polynomial of any $f$ is

$$
s_{N} f=\sum_{|n| \leq N}\left\langle f, \psi_{n}\right\rangle \psi_{n}
$$

As earlier, the Fourier coefficients are

$$
\left\langle f, \psi_{n}\right\rangle=\int_{t=0}^{1} f(t) e^{-2 \pi i n t} \mathrm{~d} t
$$

Especially the value at 0 is just the sum of the coefficients, a single inner product

$$
\left(s_{N} f\right)(0)=\sum_{|n| \leq N}\left\langle f, \psi_{n}\right\rangle=\left\langle f, \sum_{|n| \leq N} \psi_{n}\right\rangle
$$

## The Fourier polynomials are $\mathcal{L}^{2}$-best

Fix $f \in \mathcal{C}^{0}(X)$, fix $N$
$s_{N} f$ is constructed to make $f-s_{N} f$ orthogonal to the span of $\left\{\psi_{n}:|n| \leq N\right\}$
For any $t_{N}$ in this span, also $s_{N} f-t_{N}$ is in the span, and the orthogonal decomposition

$$
f-t_{N}=\left(f-s_{N} f\right)+\left(s_{N} f-t_{N}\right)
$$

gives

$$
\left|f-t_{N}\right|_{\mathcal{L}^{2}}^{2}=\left|f-s_{N} f\right|_{\mathcal{L}^{2}}^{2}+\left|s_{N} f-t_{N}\right|_{\mathcal{L}^{2}}^{2}
$$

So

$$
\left|f-t_{N}\right|_{\mathcal{L}^{2}}^{2} \geq\left|f-s_{N} f\right|_{\mathcal{L}^{2}}^{2}
$$

$s_{N} f$ is the $\mathcal{L}^{2}$-best degree- $N$ trigonometric polynomial approximation of $f$ But is " $\mathcal{L}^{2}$-best" any good at all?

## General trigonometric polynomials

Let $a=\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ be compactly supported, with $a_{0}=1$
The corresponding trigonometric polynomial-formation operator $t=t_{\mathrm{a}}$ is

$$
t f=\sum_{n} a_{n}\left\langle f, \psi_{n}\right\rangle \psi_{n}
$$

$a_{n}$ : the weight given the $n$th term of the Fourier series
And

$$
(t f)(0)=\sum_{n} a_{n}\left\langle f, \psi_{n}\right\rangle=\left\langle f, \sum_{n} a_{n} \psi_{n}\right\rangle
$$

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
(8) A pointwise convergence result

## Zoom-in construction

Given $f \in \mathcal{C}^{0}(X)$ and $y \in X$
The zoom-in of $f$ at $y$ is just $f$ in local coordinates about $y$

$$
f_{y}(x)=f(y+x)-f(y)
$$

Note $f_{y}(0)=0$
Functional notation

$$
f_{y}=T_{y} f-f(y) \quad T_{y}=\text { pre-translate by } y
$$

## Trig-polynomial approximation preserved under zoom-in

Compute for any $y$

$$
(t f)(y)=\sum_{n} a_{n}\left\langle f, \psi_{n}\right\rangle \psi_{n}(y)=\sum_{n} a_{n}\left\langle f, T_{-y} \psi_{n}\right\rangle=\sum_{n} a_{n}\left\langle T_{y} f, \psi_{n}\right\rangle
$$

That is

$$
(t f)(y)=\left(t T_{y} f\right)(0)
$$

Also, viewing $f(y)$ as a constant function, $t(f(y))=f(y)$ is the same constant function
So again letting $f_{y}=T_{y} f-f(y)$ denote the zoom-in of $f$ at $y$,

$$
(t f)(y)-f(y)=\left(t T_{y} f\right)(0)-t(f(y))(0)=t\left(T_{y} f-f(y)\right)(0)=\left(t f_{y}\right)(0)
$$

So, to check trigonometric polynomial approximation anywhere, just work with the zoom-in at 0

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$

8 A pointwise convergence result

## Fourier polynomial in particular

$$
s_{N} f=\sum_{|n| \leq N}\left\langle f, \psi_{n}\right\rangle \psi_{n}
$$

Fix $y$, let $f_{y}$ be the zoom-in

$$
\left(s_{N} f-f\right)(y)=\left(s_{N} f_{y}\right)(0)=\left\langle f_{y}, \sum_{|n| \leq N} \psi_{n}\right\rangle
$$

So need to study

$$
D_{N}=\sum_{|n| \leq N} \psi_{n}
$$

This is the Dirichlet kernel

## Dirichlet kernel

$$
D_{N}=\sum_{|n| \leq N} \psi_{n}=\frac{\psi_{N+1}-\psi_{-N}}{\psi_{1}-1}=\frac{\psi_{N+1 / 2}-\psi_{-N-1 / 2}}{\psi_{1 / 2}-\psi_{-1 / 2}}=\frac{\sin ((2 N+1) \pi x)}{\sin (\pi x)}
$$

E.g., for $N=10$


## Dirichlet kernel properties

The Dirichlet kernel is

- good in $\mathcal{L}^{2}$, but this is hard for us to see because we don't have visual $\mathcal{L}^{2}$ intuition
- bad in $\mathcal{C}^{0}$, because of positive and negative values, horizontal spread


## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
(8) A pointwise convergence result

## $\mathcal{C}^{0}$-improving the kernel: Dirichlet to Féjer

Guided by faith that the Dirichlet kernel is $\mathcal{L}^{2}$-good, i.e., mean-square good, repair its $\mathcal{C}^{0}$-deficiencies by squaring it

Example

$$
D_{1}^{2}=\left(\psi_{-1}+\psi_{0}+\psi_{1}\right)\left(\psi_{-1}+\psi_{0}+\psi_{1}\right)=\psi_{-2}+2 \psi_{-1}+3 \psi_{0}+2 \psi_{1}+\psi_{2}
$$

And in general

$$
D_{N}^{2}=\sum_{|n| \leq 2 N}(2 N+1-|n|) \psi_{n}
$$

Low-frequency coefficients are larger

$$
1, \quad 2, \quad 3, \quad \ldots, \quad 2 N, \quad 2 N+1, \quad 2 N, \quad \ldots, \quad 3, \quad 2, \quad 1
$$

## Féjer kernel

Scale the constant coefficient to 1

$$
K_{N}=\frac{1}{2 N+1} D_{N}^{2}=\frac{1}{2 N+1} \frac{\sin ^{2}((2 N+1) \pi x)}{\sin ^{2}(\pi x)}
$$

E.g., for $N=10$


## Good $\mathcal{C}^{0}$-properties of the Féjer kernel

The Féjer kernel is

- positive: $K_{N} \geq 0$ (because $K_{N}$ is a scaled square)
- normalized: $\int_{X} K_{N}=1$ (because all $\psi_{n}$ integrate to 0 except $\psi_{0}$ )
- concentrated near 0 : For all $\varepsilon, \delta>0$, there exists $N_{o}$ such that

$$
\int_{|x| \geq \delta} K_{N}<\varepsilon \quad \text { for all } N \geq N_{o}
$$

(modeling $X$ as $[-1 / 2,1 / 2]$ )
Establishing the third bullet is the key, and a good exercise

## Féjer polynomials

The Nth Féjer polynomial is

$$
t_{N} f=\sum_{|n| \leq 2 N} \frac{2 N+1-|n|}{2 N+1}\left\langle f, \psi_{n}\right\rangle \psi_{n}
$$

For fixed freqency $n$, the $n$th Féjer polynomial coefficient isn't static as the degree $N$ grows, but it does converge to the Fourier coefficient

$$
\frac{2 N+1-|n|}{2 N+1}\left\langle f, \psi_{n}\right\rangle \xrightarrow{N}\left\langle f, \psi_{n}\right\rangle
$$

The $N$ th Féjer polynomial at 0 of the zoom-in $f_{y}$ for any $y \in X$ is just the inner product against the Féjer kernel

$$
\left(t_{N} f_{y}\right)(0)=\left\langle f_{y}, K_{N}\right\rangle
$$

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$

8 A pointwise convergence result

## Uniform Féjer polynomial approximation is good

Let $f \in \mathcal{C}^{0}(X)$ be given
Let $\varepsilon>0$ be given
Set $\varepsilon^{\prime}=\varepsilon /\left(1+2|f|_{\mathcal{C}^{0}}\right)$
Note $f$ is uniformly continuous because $X$ is compact so there exists suitable $\delta=\delta\left(\varepsilon^{\prime}, f\right)$

For any $y \in X$, let $g=f_{y}$ be the zoom-in

- $\delta$ from above works for $g$ at 0 , independently of $y$
- $|g|_{\mathcal{C}^{0}} \leq 2|f|_{\mathcal{C}^{0}}$, independently of $y$
(continued on next slide)


## Uniform Féjer polynomial approximation (continued)

For $N \geq N_{o}(f),\left(t_{N} f-f\right)(y)$ is $\left(t_{N} g\right)(0)$, which is $\left\langle g, K_{N}\right\rangle$,

$$
\begin{array}{rlrl}
\left|\left(t_{N} f-f\right)(y)\right| & =\left|\int_{X} g K_{N}\right| & \\
& \leq \int_{|x| \leq \delta}|g| K_{N}+\int_{|x| \geq \delta}|g| K_{N} & & \left(K_{N} \text { positive }\right) \\
& <\varepsilon^{\prime}+\left.|g|\right|_{\mathcal{C}^{0} \varepsilon^{\prime}} & & \left(K_{N} \text { normalized, concentrated }\right) \\
& \leq\left(1+2|f| \mathcal{C}^{0}\right) \varepsilon^{\prime} & & \\
& =\varepsilon, \text { independently of } y & &
\end{array}
$$

Given $\varepsilon>0$, there exists $N_{o}(f)$ such that $\left|f-t_{N} f\right|_{\mathcal{C}^{0}}<\epsilon$ for all $N \geq N_{o}(f)$
We want close approximation of $f$ by Fourier polynomials in $\mathcal{L}^{2}$
We have close approximation of $f$ by the wrong polynomials in the wrong space

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
(8) A pointwise convergence result

## Mean-square Fourier polynomial approximation is good

Given $f$ in $\mathcal{C}^{0}(X)$
Given $\varepsilon>0$
Recall

- The Fourier polynomial $s_{2 N} f$ is the $\mathcal{L}^{2}$-best degree- $2 N$ trigonometric polynomial approximation of $f$, by general inner product space principles
- The uniform $\mathcal{C}^{0}$-norm dominates the mean-square $\mathcal{L}^{2}$-norm

So for $N \geq N_{o}(f)$,

$$
\left|f-s_{2 N} f\right|_{\mathcal{L}^{2}} \leq\left|f-t_{N} f\right|_{\mathcal{L}^{2}} \leq\left|f-t_{N} f\right|_{\mathcal{C}^{0}}<\varepsilon
$$

That is, no claim is made that $\left\{\left(s_{N} f\right)(y)\right\} \xrightarrow{N} f(y)$ for any particular $y$, but rather

$$
\left\{s_{N} f\right\} \xrightarrow{N} f \text { in } \mathcal{L}^{2}(X) \quad \text { because } \quad\left\{t_{N} f\right\} \xrightarrow{N} f \text { in } \mathcal{C}^{0}(X)
$$

The Fourier polynomials mean-square converge to $f$ because the Féjer polynomials uniformly converge to $f$

## Outline

(1) One physical space, two complete function spaces
(2) Trigonometric polynomials
(3) The zoom-in construction and trigonometric approximation

4 Fourier polynomials
(5) Féjer polynomials
(6) Féjer polynomial approximation is good in $\mathcal{C}^{0}$
(7) Fourier polynomial approximation is good in $\mathcal{L}^{2}$
(8) A pointwise convergence result

## Zoom in to study pointwise convergence too

Fourier polynomial approximation is preserved under zoom-in

$$
\left(s_{N} f-f\right)(y)=\left(s_{N} f_{y}\right)(0)=\left\langle f_{y}, D_{N}\right\rangle
$$

That is, with $g=f_{y}$ as usual, we need to study

$$
\int_{x=-1 / 2}^{1 / 2} \frac{x}{e^{2 \pi i x}-1} \cdot \frac{g(x)}{x} \cdot\left(e^{2 \pi i(N+1) x}-e^{-2 \pi i N x}\right) \mathrm{d} x
$$

The first quotient in the integrand is well-behaved at 0
If so is the second, then the Riemann-Lebesgue lemma says that the integral goes to 0 as $N$ grows. So

If $f$ has left and right derivatives at $y$, not necessarily equal, then $\left\{\left(s_{N} f\right)(y)\right\} \xrightarrow{N} f(y)$

