Why does the Fourier series of a continuous function mean-square converge to the function?

Jerry Shurman

Math 361, Spring 2019

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be \mathbb{Z} -periodic and continuous

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be \mathbb{Z} -periodic and continuous

The Fourier coefficients of f are

$$\widehat{f}(n) = \int_{t=0}^{1} f(t)e^{-2\pi i n t} dt, \quad n \in \mathbb{Z}$$

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be \mathbb{Z} -periodic and continuous

The Fourier coefficients of f are

$$\widehat{f}(n) = \int_{t=0}^{1} f(t)e^{-2\pi i n t} dt, \quad n \in \mathbb{Z}$$

The partial sums of its Fourier series are

$$(s_N f)(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}, \quad N \in \mathbb{Z}_{\ge 0}$$

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be \mathbb{Z} -periodic and continuous

The Fourier coefficients of f are

$$\widehat{f}(n) = \int_{t=0}^{1} f(t)e^{-2\pi int} dt, \quad n \in \mathbb{Z}$$

The partial sums of its Fourier series are

$$(s_N f)(x) = \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}, \quad N \in \mathbb{Z}_{\ge 0}$$

The partial sums $s_N f$ mean-square converge to f

$$\lim_{N} \int_{x=0}^{1} |(s_{N}f)(x) - f(x)|^{2} dx = 0$$

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be \mathbb{Z} -periodic and continuous

The Fourier coefficients of f are

$$\widehat{f}(n) = \int_{t=0}^{1} f(t)e^{-2\pi int} dt, \quad n \in \mathbb{Z}$$

The partial sums of its Fourier series are

$$(s_N f)(x) = \sum_{|n| < N} \widehat{f}(n) e^{2\pi i n x}, \quad N \in \mathbb{Z}_{\geq 0}$$

The partial sums $s_N f$ mean-square converge to f

$$\lim_{N} \int_{x=0}^{1} |(s_{N}f)(x) - f(x)|^{2} dx = 0$$

How is this true, even though no claim about pointwise convergence of the $s_N f$ to f is supportable?

□ > ←를 > ←를 > _ 를

Outline

- ① One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oldsymbol{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- 7 Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Outline

- 1 One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oxed{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

The physical space and the test function space

The physical space is $X = \mathbb{R}/\mathbb{Z}$

The physical space and the test function space

The physical space is $X = \mathbb{R}/\mathbb{Z}$

- compact topological group
- ullet inherits its topology and Haar measure from ${\mathbb R}$

The physical space and the test function space

The physical space is $X = \mathbb{R}/\mathbb{Z}$

- compact topological group
- ullet inherits its topology and Haar measure from ${\mathbb R}$

The test function space is $C^{\infty}(X)$ (smooth functions from X to \mathbb{C})

Two norms on the test function space

uniform norm
$$|f|_{\mathcal{C}^0}=\sup_{x\in X}|f(x)|$$
 mean-square norm $|f|_{\mathcal{L}^2}=\left(\int_X|f(x)|^2\right)^{1/2}$

Two norms on the test function space

uniform norm
$$|f|_{\mathcal{C}^0}=\sup_{x\in X}|f(x)|$$
 mean-square norm $|f|_{\mathcal{L}^2}=\left(\int_X|f(x)|^2\right)^{1/2}$

The uniform norm dominates the mean-square norm

$$|f|_{\mathcal{C}^0} \geq |f|_{\mathcal{L}^2}$$

Two norms on the test function space

uniform norm
$$|f|_{\mathcal{C}^0}=\sup_{x\in X}|f(x)|$$
 mean-square norm $|f|_{\mathcal{L}^2}=\left(\int_X|f(x)|^2\right)^{1/2}$

The uniform norm dominates the mean-square norm

$$|f|_{\mathcal{C}^0} \geq |f|_{\mathcal{L}^2}$$

So the identity set-map

$$\left(\mathcal{C}^{\infty}(X),|\cdot|_{\mathcal{C}^{0}}\right)\longrightarrow\left(\mathcal{C}^{\infty}(X),|\cdot|_{\mathcal{L}^{2}}\right)$$

is continuous

Two completions of the test function space

$$\begin{split} \mathcal{C}^0(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{C}^0}\right) \\ \mathcal{L}^2(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{L}^2}\right) \end{split}$$

Two completions of the test function space

$$\begin{split} \mathcal{C}^0(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{C}^0}\right) \\ \mathcal{L}^2(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{L}^2}\right) \end{split}$$

So a continuous map

$$\mathcal{C}^0(X) \longrightarrow \mathcal{L}^2(X)$$

of complete spaces amenable to analysis

Two completions of the test function space

$$\begin{split} \mathcal{C}^0(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{C}^0}\right) \\ \mathcal{L}^2(X) &= \text{completion of } \left(\mathcal{C}^\infty(X), |\cdot|_{\mathcal{L}^2}\right) \end{split}$$

So a continuous map

$$C^0(X) \longrightarrow L^2(X)$$

of complete spaces amenable to analysis

 $\mathcal{L}^2(X)$ carries an inner product

$$\langle f, g \rangle = \int_X f \overline{g}$$

The setting

We consider functions in $\mathcal{C}^0(X)$ from now on

The setting

We consider functions in $\mathcal{C}^0(X)$ from now on freely viewing them as elements of $\mathcal{L}^2(X)$ as well

Outline

- One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oxed{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

The integer-frequency oscillations are

$$\{\psi_n:n\in\mathbb{Z}\}$$

where

$$\psi_n: X \longrightarrow \mathbb{C}^{\times}$$
 is $\psi_n(x) = e^{2\pi i n x}$

The integer-frequency oscillations are

$$\{\psi_n:n\in\mathbb{Z}\}$$

where

$$\psi_n: X \longrightarrow \mathbb{C}^{\times}$$
 is $\psi_n(x) = e^{2\pi i n x}$

Characters

$$\psi_n(x+y) = \psi_n(x)\psi_n(y)$$

The integer-frequency oscillations are

$$\{\psi_n:n\in\mathbb{Z}\}$$

where

$$\psi_n: X \longrightarrow \mathbb{C}^{\times}$$
 is $\psi_n(x) = e^{2\pi i n x}$

Characters

$$\psi_n(x+y)=\psi_n(x)\psi_n(y)$$

Orthonormal

$$\langle \psi_n, \psi_m \rangle = \delta_{n,m}$$
 (Kronecker delta)

The integer-frequency oscillations are

$$\{\psi_n:n\in\mathbb{Z}\}$$

where

$$\psi_n: X \longrightarrow \mathbb{C}^{\times}$$
 is $\psi_n(x) = e^{2\pi i n x}$

Characters

$$\psi_n(x+y)=\psi_n(x)\psi_n(y)$$

Orthonormal

$$\langle \psi_{n}, \psi_{m} \rangle = \delta_{n,m}$$
 (Kronecker delta)

Handy properties

$$\psi_n = \psi_1^n$$
 $\psi_n \psi_m = \psi_{n+m}$ $\psi_n(-x) = \overline{\psi}_n(x) = \psi_{-n}(x)$

Fourier polynomials

In $\mathcal{L}^2(X)$ the Nth Fourier polynomial of any f is

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

Fourier polynomials

In $L^2(X)$ the Nth Fourier polynomial of any f is

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

As earlier, the Fourier coefficients are

$$\langle f, \psi_n \rangle = \int_{t=0}^1 f(t) e^{-2\pi i n t} dt$$

Fourier polynomials

In $\mathcal{L}^2(X)$ the Nth Fourier polynomial of any f is

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

As earlier, the Fourier coefficients are

$$\langle f, \psi_n \rangle = \int_{t=0}^1 f(t) e^{-2\pi i n t} dt$$

Especially the value at 0 is just the sum of the coefficients, a single inner product

$$(s_N f)(0) = \sum_{|n| \le N} \langle f, \psi_n \rangle = \langle f, \sum_{|n| \le N} \psi_n \rangle$$

Fix $f \in C^0(X)$, fix N

Fix
$$f \in C^0(X)$$
, fix N

 $s_N f$ is constructed to make $f - s_N f$ orthogonal to the span of $\{\psi_n : |n| \leq N\}$

Fix $f \in C^0(X)$, fix N

 $s_N f$ is constructed to make $f - s_N f$ orthogonal to the span of $\{\psi_n : |n| \leq N\}$

For any t_N in this span, also $s_N f - t_N$ is in the span, and the orthogonal decomposition

$$f-t_N=(f-s_Nf)+(s_Nf-t_N)$$

gives

$$|f - t_N|_{\mathcal{L}^2}^2 = |f - s_N f|_{\mathcal{L}^2}^2 + |s_N f - t_N|_{\mathcal{L}^2}^2$$

Fix $f \in C^0(X)$, fix N

 $s_N f$ is constructed to make $f - s_N f$ orthogonal to the span of $\{\psi_n : |n| \leq N\}$

For any t_N in this span, also $s_N f - t_N$ is in the span, and the orthogonal decomposition

$$f-t_N=(f-s_Nf)+(s_Nf-t_N)$$

gives

$$|f - t_N|_{\mathcal{L}^2}^2 = |f - s_N f|_{\mathcal{L}^2}^2 + |s_N f - t_N|_{\mathcal{L}^2}^2$$

So

$$|f-t_N|_{\mathcal{L}^2}^2 \ge |f-s_N f|_{\mathcal{L}^2}^2$$

Fix $f \in C^0(X)$, fix N

 $s_N f$ is constructed to make $f - s_N f$ orthogonal to the span of $\{\psi_n : |n| \leq N\}$

For any t_N in this span, also $s_N f - t_N$ is in the span, and the orthogonal decomposition

$$f-t_N=(f-s_Nf)+(s_Nf-t_N)$$

gives

$$|f - t_N|_{\mathcal{L}^2}^2 = |f - s_N f|_{\mathcal{L}^2}^2 + |s_N f - t_N|_{\mathcal{L}^2}^2$$

So

$$|f-t_N|_{\mathcal{L}^2}^2 \ge |f-s_N f|_{\mathcal{L}^2}^2$$

 $s_N f$ is the \mathcal{L}^2 -best degree-N trigonometric polynomial approximation of f

Fix $f \in C^0(X)$, fix N

 $s_N f$ is constructed to make $f - s_N f$ orthogonal to the span of $\{\psi_n : |n| \leq N\}$

For any t_N in this span, also $s_N f - t_N$ is in the span, and the orthogonal decomposition

$$f - t_N = (f - s_N f) + (s_N f - t_N)$$

gives

$$|f - t_N|_{\mathcal{L}^2}^2 = |f - s_N f|_{\mathcal{L}^2}^2 + |s_N f - t_N|_{\mathcal{L}^2}^2$$

So

$$|f-t_N|_{\mathcal{L}^2}^2 \ge |f-s_N f|_{\mathcal{L}^2}^2$$

 $s_N f$ is the \mathcal{L}^2 -best degree-N trigonometric polynomial approximation of f But is " \mathcal{L}^2 -best" any good at all?

General trigonometric polynomials

Let $a=\{a_n\}_{n\in\mathbb{Z}}$ be compactly supported, with $a_0=1$

General trigonometric polynomials

Let $a=\{a_n\}_{n\in\mathbb{Z}}$ be compactly supported, with $a_0=1$

The corresponding trigonometric polynomial-formation operator $t=t_a$ is

$$tf = \sum_{n} a_{n} \langle f, \psi_{n} \rangle \psi_{n}$$

General trigonometric polynomials

Let $a=\{a_n\}_{n\in\mathbb{Z}}$ be compactly supported, with $a_0=1$

The corresponding trigonometric polynomial-formation operator $t=t_a$ is

$$tf = \sum_{n} a_{n} \langle f, \psi_{n} \rangle \psi_{n}$$

 a_n : the weight given the *n*th term of the Fourier series

General trigonometric polynomials

Let $a=\{a_n\}_{n\in\mathbb{Z}}$ be compactly supported, with $a_0=1$

The corresponding trigonometric polynomial-formation operator $t=t_a$ is

$$tf = \sum_{n} a_{n} \langle f, \psi_{n} \rangle \psi_{n}$$

 a_n : the weight given the *n*th term of the Fourier series

And

$$(tf)(0) = \sum_{n} a_{n} \langle f, \psi_{n} \rangle = \langle f, \sum_{n} a_{n} \psi_{n} \rangle$$

13 / 32

Outline

- One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oxed{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- 7 Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Zoom-in construction

Given
$$f \in C^0(X)$$
 and $y \in X$

Zoom-in construction

Given $f \in C^0(X)$ and $y \in X$

The zoom-in of f at y is just f in local coordinates about y

$$f_y(x) = f(y+x) - f(y)$$

Note $f_y(0) = 0$

Zoom-in construction

Given $f \in \mathcal{C}^0(X)$ and $y \in X$

The zoom-in of f at y is just f in local coordinates about y

$$f_{y}(x) = f(y+x) - f(y)$$

Note $f_y(0) = 0$

Functional notation

$$f_y = T_y f - f(y)$$
 $T_y = \text{pre-translate by } y$

Trig-polynomial approximation preserved under zoom-in

Compute for any y

$$(tf)(y) = \sum_{n} a_{n} \langle f, \psi_{n} \rangle \psi_{n}(y) = \sum_{n} a_{n} \langle f, T_{-y} \psi_{n} \rangle = \sum_{n} a_{n} \langle T_{y} f, \psi_{n} \rangle$$

That is

$$(tf)(y) = (tT_y f)(0)$$

Also, viewing f(y) as a constant function, t(f(y)) = f(y) is the same constant function

So again letting $f_v = T_v f - f(y)$ denote the zoom-in of f at y,

$$(tf)(y) - f(y) = (tT_y f)(0) - t(f(y))(0) = t(T_y f - f(y))(0) = (tf_y)(0)$$

16 / 32

Trig-polynomial approximation preserved under zoom-in

Compute for any y

$$(tf)(y) = \sum_{n} a_{n} \langle f, \psi_{n} \rangle \psi_{n}(y) = \sum_{n} a_{n} \langle f, T_{-y} \psi_{n} \rangle = \sum_{n} a_{n} \langle T_{y} f, \psi_{n} \rangle$$

That is

$$(tf)(y) = (tT_y f)(0)$$

Also, viewing f(y) as a constant function, t(f(y)) = f(y) is the same constant function

So again letting $f_y = T_y f - f(y)$ denote the zoom-in of f at y,

$$(tf)(y) - f(y) = (tT_y f)(0) - t(f(y))(0) = t(T_y f - f(y))(0) = (tf_y)(0)$$

So, to check trigonometric polynomial approximation anywhere, just work with the zoom-in at 0

Outline

- One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oldsymbol{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- 7 Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

Fix y, let f_y be the zoom-in

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

Fix y, let f_y be the zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, \sum_{|n| \leq N} \psi_n \rangle$$

$$s_N f = \sum_{|n| \le N} \langle f, \psi_n \rangle \psi_n$$

Fix y, let f_y be the zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, \sum_{|n| \leq N} \psi_n \rangle$$

So need to study

$$D_N = \sum_{|n| \le N} \psi_n$$

This is the Dirichlet kernel

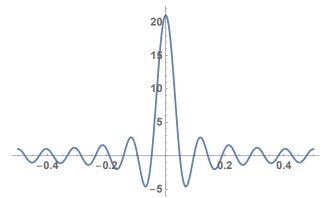
Dirichlet kernel

$$D_N = \sum_{|n| \le N} \psi_n = \frac{\psi_{N+1} - \psi_{-N}}{\psi_1 - 1} = \frac{\psi_{N+1/2} - \psi_{-N-1/2}}{\psi_{1/2} - \psi_{-1/2}} = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}$$

Dirichlet kernel

$$D_N = \sum_{|n| \le N} \psi_n = \frac{\psi_{N+1} - \psi_{-N}}{\psi_1 - 1} = \frac{\psi_{N+1/2} - \psi_{-N-1/2}}{\psi_{1/2} - \psi_{-1/2}} = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}$$

E.g., for N=10



Dirichlet kernel properties

The Dirichlet kernel is

- good in \mathcal{L}^2 , but this is hard for us to see because we don't have visual \mathcal{L}^2 intuition
- ullet bad in \mathcal{C}^0 , because of positive and negative values, horizontal spread

Outline

- One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oxed{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Guided by faith that the Dirichlet kernel is \mathcal{L}^2 -good, i.e., mean-square good,

Guided by faith that the Dirichlet kernel is \mathcal{L}^2 -good, i.e., mean-square good, repair its \mathcal{C}^0 -deficiencies by *squaring* it

Guided by faith that the Dirichlet kernel is \mathcal{L}^2 -good, i.e., mean-square good, repair its \mathcal{C}^0 -deficiencies by *squaring* it

Example

$$D_1^2 = (\psi_{-1} + \psi_0 + \psi_1)(\psi_{-1} + \psi_0 + \psi_1) = \psi_{-2} + 2\psi_{-1} + 3\psi_0 + 2\psi_1 + \psi_2$$

Guided by faith that the Dirichlet kernel is \mathcal{L}^2 -good, i.e., mean-square good, repair its \mathcal{C}^0 -deficiencies by *squaring* it

Example

$$D_1^2 = (\psi_{-1} + \psi_0 + \psi_1)(\psi_{-1} + \psi_0 + \psi_1) = \psi_{-2} + 2\psi_{-1} + 3\psi_0 + 2\psi_1 + \psi_2$$

And in general

$$D_N^2 = \sum_{|n| \le 2N} (2N + 1 - |n|) \psi_n$$

Guided by faith that the Dirichlet kernel is \mathcal{L}^2 -good, i.e., mean-square good, repair its \mathcal{C}^0 -deficiencies by *squaring* it

Example

$$D_1^2 = (\psi_{-1} + \psi_0 + \psi_1)(\psi_{-1} + \psi_0 + \psi_1) = \psi_{-2} + 2\psi_{-1} + 3\psi_0 + 2\psi_1 + \psi_2$$

And in general

$$D_N^2 = \sum_{|n| \le 2N} (2N + 1 - |n|) \psi_n$$

Low-frequency coefficients are larger

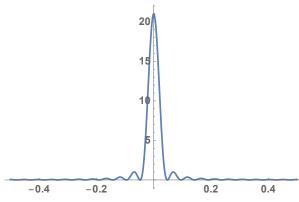
$$1, 2, 3, \ldots, 2N, 2N+1, 2N, \ldots, 3, 2, 1$$

Féjer kernel

Scale the constant coefficient to 1

$$K_N = \frac{1}{2N+1}D_N^2 = \frac{1}{2N+1}\frac{\sin^2((2N+1)\pi x)}{\sin^2(\pi x)}$$

E.g., for ${\it N}=10$



Good C^0 -properties of the Féjer kernel

The Féjer kernel is

- positive: $K_N \ge 0$ (because K_N is a scaled square)
- normalized: $\int_X K_N = 1$ (because all ψ_n integrate to 0 except ψ_0)
- concentrated near 0: For all $\varepsilon, \delta > 0$, there exists N_o such that

$$\int_{|x| \ge \delta} K_N < \varepsilon \quad \text{for all } N \ge N_o$$

(modeling X as [-1/2, 1/2])

Good C^0 -properties of the Féjer kernel

The Féjer kernel is

- positive: $K_N \ge 0$ (because K_N is a scaled square)
- normalized: $\int_X K_N = 1$ (because all ψ_n integrate to 0 except ψ_0)
- concentrated near 0: For all $\varepsilon, \delta > 0$, there exists N_o such that

$$\int_{|x| \ge \delta} K_N < \varepsilon \quad \text{for all } N \ge N_o$$

(modeling X as [-1/2, 1/2])

Establishing the third bullet is the key, and a good exercise

Féjer polynomials

The Nth Féjer polynomial is

$$t_N f = \sum_{|n| \le 2N} \frac{2N + 1 - |n|}{2N + 1} \langle f, \psi_n \rangle \psi_n$$

Féjer polynomials

The Nth Féjer polynomial is

$$t_N f = \sum_{|n| \le 2N} \frac{2N + 1 - |n|}{2N + 1} \langle f, \psi_n \rangle \psi_n$$

For fixed frequency n, the nth Féjer polynomial coefficient isn't static as the degree N grows, but it does converge to the Fourier coefficient

$$\frac{2N+1-|n|}{2N+1}\langle f,\psi_n\rangle \xrightarrow{N} \langle f,\psi_n\rangle$$

Féjer polynomials

The Nth Féjer polynomial is

$$t_N f = \sum_{|n| \le 2N} \frac{2N + 1 - |n|}{2N + 1} \langle f, \psi_n \rangle \psi_n$$

For fixed frequency n, the nth Féjer polynomial coefficient isn't static as the degree N grows, but it does converge to the Fourier coefficient

$$\frac{2N+1-|n|}{2N+1}\langle f,\psi_n\rangle \xrightarrow{N} \langle f,\psi_n\rangle$$

The Nth Féjer polynomial at 0 of the zoom-in f_y for any $y \in X$ is just the inner product against the Féjer kernel

$$(t_N f_y)(0) = \langle f_y, K_N \rangle$$

Outline

- ① One physical space, two complete function spaces
- 2 Trigonometric polynomials
- The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oldsymbol{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Let $f \in C^0(X)$ be given

Let $f \in \mathcal{C}^0(X)$ be given

Let $\varepsilon > 0$ be given

Let $f \in C^0(X)$ be given

Let $\varepsilon > 0$ be given

Set
$$\varepsilon' = \varepsilon/(1+2|f|_{\mathcal{C}^0})$$

Let $f \in C^0(X)$ be given

Let $\varepsilon > 0$ be given

Set
$$\varepsilon' = \varepsilon/(1+2|f|_{\mathcal{C}^0})$$

Note f is uniformly continuous because X is compact so there exists suitable $\delta = \delta(\varepsilon', f)$

Let $f \in C^0(X)$ be given

Let $\varepsilon > 0$ be given

Set
$$\varepsilon' = \varepsilon/(1+2|f|_{\mathcal{C}^0})$$

Note f is uniformly continuous because X is compact so there exists suitable $\delta = \delta(\varepsilon', f)$

For any $y \in X$, let $g = f_v$ be the zoom-in

Let $f \in \mathcal{C}^0(X)$ be given

Let $\varepsilon > 0$ be given

Set
$$\varepsilon' = \varepsilon/(1+2|f|_{\mathcal{C}^0})$$

Note f is uniformly continuous because X is compact so there exists suitable $\delta = \delta(\varepsilon', f)$

For any $y \in X$, let $g = f_y$ be the zoom-in

- ullet δ from above works for g at 0, independently of y
- ullet $|g|_{\mathcal{C}^0} \leq 2|f|_{\mathcal{C}^0}$, independently of y

Let $f \in \mathcal{C}^0(X)$ be given

Let $\varepsilon > 0$ be given

Set
$$\varepsilon' = \varepsilon/(1+2|f|_{\mathcal{C}^0})$$

Note f is uniformly continuous because X is compact so there exists suitable $\delta = \delta(\varepsilon', f)$

For any $y \in X$, let $g = f_y$ be the zoom-in

- ullet δ from above works for g at 0, independently of y
- ullet $|g|_{\mathcal{C}^0} \leq 2|f|_{\mathcal{C}^0}$, independently of y

(continued on next slide)

Uniform Féjer polynomial approximation (continued)

For
$$N \geq N_o(f)$$
, $(t_N f - f)(y)$ is $(t_N g)(0)$, which is $\langle g, K_N \rangle$,
$$|(t_N f - f)(y)| = \left| \int_X g K_N \right|$$

$$\leq \int_{|x| \leq \delta} |g| K_N + \int_{|x| \geq \delta} |g| K_N \quad (K_N \text{ positive})$$

$$< \varepsilon' + |g|_{\mathcal{C}^0} \varepsilon' \qquad (K_N \text{ normalized, concentrated})$$

$$\leq (1 + 2|f|_{\mathcal{C}^0}) \varepsilon'$$

$$= \varepsilon, \text{ independently of } y$$

Uniform Féjer polynomial approximation (continued)

For $N \ge N_o(f)$, $(t_N f - f)(y)$ is $(t_N g)(0)$, which is $\langle g, K_N \rangle$, $|(t_N f - f)(y)| = \left| \int_X g K_N \right|$ $\le \int_{|x| \le \delta} |g| K_N + \int_{|x| \ge \delta} |g| K_N \quad (K_N \text{ positive})$

 $\leq (1+2|f|_{\mathcal{C}^0})\varepsilon'$ = ε , independently of y

 $<\varepsilon'+|g|_{c0}\varepsilon'$

Given $\varepsilon > 0$, there exists $N_o(f)$ such that $|f - t_N f|_{\mathcal{C}^0} < \epsilon$ for all $N \geq N_o(f)$

 $(K_N \text{ normalized, concentrated})$

Uniform Féjer polynomial approximation (continued)

For
$$N \ge N_o(f)$$
, $(t_N f - f)(y)$ is $(t_N g)(0)$, which is $\langle g, K_N \rangle$,
$$|(t_N f - f)(y)| = \left| \int_X g K_N \right|$$
$$\le \int_{|x| \le \delta} |g| K_N + \int_{|x| \ge \delta} |g| K_N \quad (K_N \text{ positive})$$
$$< \varepsilon' + |g|_{\mathcal{C}^0} \varepsilon' \qquad (K_N \text{ normalized, concentrated})$$
$$< (1 + 2|f|_{\mathcal{C}^0}) \varepsilon'$$

Given $\varepsilon > 0$, there exists $N_o(f)$ such that $|f - t_N f|_{\mathcal{C}^0} < \epsilon$ for all $N \ge N_o(f)$ We want close approximation of f by Fourier polynomials in \mathcal{L}^2

 $= \varepsilon$, independently of y

Uniform Féjer polynomial approximation (continued)

For $N \ge N_o(f)$, $(t_N f - f)(y)$ is $(t_N g)(0)$, which is $\langle g, K_N \rangle$,

$$\begin{split} |(t_N f - f)(y)| &= \left| \int_X g K_N \right| \\ &\leq \int_{|x| \leq \delta} |g| K_N + \int_{|x| \geq \delta} |g| K_N \quad (K_N \text{ positive}) \\ &< \varepsilon' + |g|_{\mathcal{C}^0} \varepsilon' \qquad \qquad (K_N \text{ normalized, concentrated}) \\ &\leq (1 + 2|f|_{\mathcal{C}^0}) \varepsilon' \\ &= \varepsilon, \text{ independently of } y \end{split}$$

Given $\varepsilon > 0$, there exists $N_o(f)$ such that $|f - t_N f|_{\mathcal{C}^0} < \epsilon$ for all $N \ge N_o(f)$

We want close approximation of f by Fourier polynomials in \mathcal{L}^2

We have close approximation of f by the wrong polynomials in the wrong space

Outline

- ① One physical space, two complete function spaces
- 2 Trigonometric polynomials
- The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- 5 Féjer polynomials
- $oldsymbol{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Given f in $C^0(X)$

Given f in $C^0(X)$

Given $\varepsilon > 0$

Given f in $C^0(X)$

Given $\varepsilon > 0$

Recall

- The Fourier polynomial $s_{2N}f$ is the \mathcal{L}^2 -best degree-2N trigonometric polynomial approximation of f, by general inner product space principles
- ullet The uniform \mathcal{C}^0 -norm dominates the mean-square \mathcal{L}^2 -norm

Given f in $\mathcal{C}^0(X)$

Given $\varepsilon > 0$

Recall

- The Fourier polynomial $s_{2N}f$ is the \mathcal{L}^2 -best degree-2N trigonometric polynomial approximation of f, by general inner product space principles
- ullet The uniform \mathcal{C}^0 -norm dominates the mean-square \mathcal{L}^2 -norm

So for $N \geq N_o(f)$,

$$|f - s_{2N}f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{C}^0} < \varepsilon$$

Given f in $C^0(X)$

Given $\varepsilon > 0$

Recall

- The Fourier polynomial $s_{2N}f$ is the \mathcal{L}^2 -best degree-2N trigonometric polynomial approximation of f, by general inner product space principles
- ullet The uniform \mathcal{C}^0 -norm dominates the mean-square \mathcal{L}^2 -norm

So for $N \geq N_o(f)$,

$$|f - s_{2N}f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{C}^0} < \varepsilon$$

That is, no claim is made that $\{(s_N f)(y)\} \xrightarrow{N} f(y)$ for any particular y, but rather

$$\{s_N f\} \stackrel{N}{\longrightarrow} f \text{ in } \mathcal{L}^2(X) \quad \text{because} \quad \{t_N f\} \stackrel{N}{\longrightarrow} f \text{ in } \mathcal{C}^0(X)$$

Given f in $C^0(X)$

Given $\varepsilon > 0$

Recall

- The Fourier polynomial $s_{2N}f$ is the \mathcal{L}^2 -best degree-2N trigonometric polynomial approximation of f, by general inner product space principles
- ullet The uniform \mathcal{C}^0 -norm dominates the mean-square \mathcal{L}^2 -norm

So for $N \geq N_o(f)$,

$$|f - s_{2N}f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{L}^2} \le |f - t_N f|_{\mathcal{C}^0} < \varepsilon$$

That is, no claim is made that $\{(s_N f)(y)\} \xrightarrow{N} f(y)$ for any particular y, but rather

$$\{s_N f\} \stackrel{N}{\longrightarrow} f \text{ in } \mathcal{L}^2(X) \quad \text{ because} \quad \{t_N f\} \stackrel{N}{\longrightarrow} f \text{ in } \mathcal{C}^0(X)$$

The Fourier polynomials mean-square converge to f because the Féjer polynomials uniformly converge to f

Outline

- ① One physical space, two complete function spaces
- 2 Trigonometric polynomials
- 3 The zoom-in construction and trigonometric approximation
- 4 Fourier polynomials
- Féjer polynomials
- $oxed{6}$ Féjer polynomial approximation is good in \mathcal{C}^0
- $oldsymbol{7}$ Fourier polynomial approximation is good in \mathcal{L}^2
- 8 A pointwise convergence result

Fourier polynomial approximation is preserved under zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, D_N \rangle$$

Fourier polynomial approximation is preserved under zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, D_N \rangle$$

That is, with $g = f_y$ as usual, we need to study

$$\int_{x=-1/2}^{1/2} \frac{x}{e^{2\pi i x} - 1} \cdot \frac{g(x)}{x} \cdot \left(e^{2\pi i (N+1)x} - e^{-2\pi i Nx}\right) dx$$

Fourier polynomial approximation is preserved under zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, D_N \rangle$$

That is, with $g = f_v$ as usual, we need to study

$$\int_{x=-1/2}^{1/2} \frac{x}{e^{2\pi i x} - 1} \cdot \frac{g(x)}{x} \cdot \left(e^{2\pi i (N+1)x} - e^{-2\pi i Nx}\right) dx$$

The first quotient in the integrand is well-behaved at 0

Fourier polynomial approximation is preserved under zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, D_N \rangle$$

That is, with $g = f_y$ as usual, we need to study

$$\int_{x=-1/2}^{1/2} \frac{x}{e^{2\pi i x} - 1} \cdot \frac{g(x)}{x} \cdot \left(e^{2\pi i (N+1)x} - e^{-2\pi i Nx}\right) dx$$

The first quotient in the integrand is well-behaved at 0

If so is the second, then the Riemann-Lebesgue lemma says that the integral goes to 0 as $\it N$ grows. So

Fourier polynomial approximation is preserved under zoom-in

$$(s_N f - f)(y) = (s_N f_y)(0) = \langle f_y, D_N \rangle$$

That is, with $g = f_y$ as usual, we need to study

$$\int_{x=-1/2}^{1/2} \frac{x}{e^{2\pi i x} - 1} \cdot \frac{g(x)}{x} \cdot \left(e^{2\pi i (N+1)x} - e^{-2\pi i Nx}\right) dx$$

The first quotient in the integrand is well-behaved at 0

If so is the second, then the Riemann-Lebesgue lemma says that the integral goes to 0 as $\it N$ grows. So

If f has left and right derivatives at y, not necessarily equal, then $\{(s_N f)(y)\} \stackrel{N}{\longrightarrow} f(y)$

