
CYCLOTOMIC INTEGER RINGS, IN GENERAL

Our previous writeup showed, by fairly elementary means, that the cyclotomic
field Q(ζpe) has integer ring Z[pe] for every prime power pe. This writeup builds on
that result to show, now using the discriminant, that Q(ζn) has integer ring Z[ζn]
for every positive integer n. Section 1 gives some basic facts about discriminants.
Section 2 notes that if two positive integers n and m are coprime then so are the
discriminants of the nth and mth cyclotomic polynomials. A slightly general argu-
ment in section 3 specializes to two results that bound the denominators occurring
in integer rings. Section 4 completes the argument that the cyclotomic integer ring
is as claimed, although we make one invocation. The optional section 5 continues
on to compute the discriminant of the nth cyclotomic polynomial for any n, even
though doing so is unnecessary for this writeup’s main result.

Contents

1. Discriminants: some basic facts 1
2. Cyclotomic coprimality result 3
3. Two results on integer rings and discriminants 3
4. Q(ζn) has integer ring Z[ζn] 4
5. Cyclotomic polynomial discriminant 5

1. Discriminants: some basic facts

Let F be a number field, meaning an extension field of Q having finite degree
d = [F : Q], this degree being the dimension of F as a vector space over Q. There
exist d field embeddings σ1, . . . , σd of F into the complex number field C. For some
nonnegative integers r and s such that r + 2s = d, r of these embeddings take F
into R, and the remaining 2s embeddings are s complex conjugate pairs that take F
to nonreal subfields of C.

Consider a vector ~α = (α1, . . . , αd) with each αj in F . Its discriminant is

disc(~α) = (det[σi(αj)])
2 where [σi(αj)] =

σ1(α1) · · · σ1(αd)
...

. . .
...

σd(α1) · · · σd(αd)

 .
Each complex conjugate pair ~x + i~y, ~x − i~y of rows in the matrix of the previous
display linearly recombines to give the rows 2~x, i~y. Thus the squared determinant
disc(~α) is real with sign (−1)s.

Let α ∈ K be a generator, meaning that K = Q(α). Let ~α = (1, α, α2, . . . , αd−1).
Define αi = σi(α) for i = 1, . . . , d and compute that because each σi is a ring
homomorphism,

disc(~α) = (det[σi(α
j−1)])2 = (det[σi(α)j−1])2 = (det[αj−1i ])2.
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Here we have a Vandermonde determinant (−1)bd/2c det[αj−1i ] =
∏
i<j(αi − αj),

such as

− det

1 a a2

1 b b2

1 c c2

 = (a− b)(a− c)(b− c).

Thus

disc(1, α, α2, . . . , αd−1) =
∏
i<j

(αi − αj)2, αi = σi(α) for all i.

This product of squares of differences is also by definition the polynomial discrim-

inant of the minimal polynomial fα(x) =
∏d
i=1(x− αi) of α, and so

disc(1, α, α2, . . . , αd−1) = disc(fα).

We review the fact that the discriminant of a monic polynomial is, up to sign,
the product of the polynomial’s derivative-values at its roots. Indeed, for any
polynomial

f(X) =
∏
j

(X − αj)

we have

f ′(X) =
∑
k

∏
j 6=k

(X − αj),

so that f ′(αi) =
∏
j 6=i(αi − αj) and then∏

i

f ′(αi) =
∏

i,j:i 6=j

(αi − αj).

So with d = deg(f), noting that
(
d
2

)
and bd/2c have the same parity,∏

i

f ′(αi) = (−1)bd/2c disc(f).

For degree d = 1, the product and the discriminant are both 1 and the exponent
of −1 is 0. Although the formula in the previous display is not immediately useful
numerically unless we know the roots of f , it is useful theoretically and also we
will indeed know the roots of the polynomials in this writeup, these being Xn − 1
with roots ζin for i ∈ Z/nZ and the cyclotomic polynomials Φn(X) with roots ζin
for i ∈ (Z/nZ)×.

Now we show:

If f(X) | g(X) in Z[X] then disc(f) | disc(g) in Z.

Indeed, the assumed divisibility is

g(X) = f(X)h(X) for some h(X) ∈ Z[X],

from which

g′(X) = f ′(X)h(X) + f(X)h′(X).

Thus for any root α of f ,

g′(α) = f ′(α)h(α),

and multiplying over all such roots gives, with d = deg(f),∏
α

g′(α) = (−1)bd/2c disc(f) ·
∏
α

h(α).
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Both products lie in the ring of integers of the splitting field of f over Q, and also
they are invariant under the Galois group, so they lie in Q; that is, they lie in Z.
Because disc(g) is a multiple of

∏
α g
′(α) in Z (recall that this product is taken over

the roots of f , a subset of the roots of g), this gives the result.

Returning to our number field F , suppose that we have vectors ~α and ~β = M~α
where M ∈ Qd×d; for this equality we treat the vectors as columns. Compute

[σi(~β)] = [σi(M~α)] = [Mσi(~α)] = M [σi(~α)],

and so

disc(~β) = (det[σi(~β)])2 = (detM [σi(~α)])2 = (detM)2 disc(~α).

The relation disc(~β) = (detM)2 disc(~α) has two quick consequences:

• If ~α and ~β are Z-bases of the integer ring OF then the matrix M has entries

in Z and determinant ±1, and so disc(~β) = disc(~α). The common value
of disc(~α) for all Z-bases ~α of OF is the field discriminant of F , written
disc(F ).

• If ~α is a basis of OF and ~β = (1, β, β2, . . . , βd−1) where F = Q(β) and
β ∈ OF then the matrix M has entries in Z and nonzero determinant, so the

discriminant disc(~β) = disc(fβ) is a nonzero square multiple of disc(~α) in Z.
Thus any prime that divides disc(fβ) once also divides disc(F ) once, and
any prime that divides disc(fβ) an odd number of times also divides disc(F )
an odd number of times though possibly fewer. Computing disc(fβ) for
various β can narrow down the possible values of disc(F ) or even determine
it.

2. Cyclotomic coprimality result

For any positive integer n, let Φn(X) denote the nth cyclotomic polynomial.
The divisibility Φn(X) | Xn−1 in Z[X] says that disc(Φn) | disc(Xn−1) in Z, and
by the product formula from the previous section, the latter discriminant is

disc(Xn − 1) = (−1)bn/2c
n−1∏
i=0

nζ(n−1)in = (−1)bn/2cnn
n−1∏
i=0

ζin = −(−1)b(n+1)/2cnn.

Although the sign of this discriminant doesn’t particularly matter to us, we may
note that it is 1 if n = 1, 2 mod 4, and −1 if n = 3, 4 mod 4. Because disc(Φn)
divides a power of n, we have the following result:

For positive integers n and m with gcd(n,m) = 1,
also gcd(disc(Φn),disc(Φm)) = 1.

We will use this result later in this writeup.

3. Two results on integer rings and discriminants

Consider two number fields, of degrees n and m,

F = Q(~α) where ~α = (α1, . . . , αn), each αj ∈ OF
K = Q(~β) where ~β = (β1, . . . , βm), each βk ∈ OK .

Suppose further that

F ∩K = Q,
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and introduce the composite field

L = FK = Q(~α, ~β).

Every element γ of OL takes the form

γ =
∑
j,k

αjβkxjk with all xjk ∈ Q

=
∑
j

αjκj where κj =
∑
k

βkxjk ∈ K for each j.

Let σ1, . . . , σn denote the embeddings of F in C, extended trivially on K to L; here
we are using the condition F ∩K = Q. We have a linear systemσ1γ...

σnγ

 =

σ1α1 . . . σ1αn
...

. . .
...

σnα1 . . . σnαn


κ1...
κn

 ,
or, more concisely,

~σγ = A~κ.

Here (detA)2 = disc(~α). Multiply through from the left by disc(~α)−1 det(A)Aadj =
A−1, where adj denotes the classical adjoint, to get

disc(~α)−1 det(A)Aadj~σγ = ~κ.

This equality of vectors shows that each κj lies in disc(~α)−1Z∩K = disc(~α)−1OK .

For one consequence of this reasoning, specialize to K = Q, so that ~β = 1 and
κj = xj for all j with no reason for a k-index, and make no assumption that ~α is a
Z-basis of the entire integer ring OF . Certainly Z[~α] ⊂ OF , but also the work has
shown that each xj lies in disc(~α)−1Z, giving an outer containment of OF as well,

OF ⊂ disc(~α)−1Z[~α].

For a second consequence, drop the specialization of K, but now assume that

OF = Z[~α] and OK = Z[~β]. Each κj =
∑
k βkxjk of ~κ lies in disc(~α)−1Z[~β],

and so {xjk} ⊂ disc(~α)−1Z. Symmetrically {xjk} ⊂ disc(~β)−1Z, and so, because
γ =

∑
j,k αjβkxjk is an arbitrary element of OL, we have shown the containment

OL ⊂ gcd(disc(~α),disc(~β))−1Z[~α, ~β] if OF = Z[~α] and OK = Z[~β].

In particular, if OF = Z[~α] and OK = Z[~β] and gcd(disc(~α),disc(~β)) = 1 then

OL = Z[~α, ~β].

4. Q(ζn) has integer ring Z[ζn]

Recall that we have established that for positive n and m with gcd(n,m) = 1,
also gcd(disc(Φn),disc(Φm)) = 1. For such n and m set

F = Q(ζn) K = Q(ζm),

and suppose that OF = Z[ζn] and OK = Z[ζm]. We have ζn = ζmnm and ζm = ζnnm,
and because Nn+Mm = 1 for some N and M also ζmn = ζNn+Mm

mn = ζNmζ
M
n , so

Z[ζn, ζm] = Z[ζnm].
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By results beyond the limited scope of this writeup, the intersection F ∩K is Q.
(A formula for field discriminants shows that disc(F ∩ K) divides disc(F ) and
disc(K), which divide nn and mm, so that disc(F ∩K) = 1, and then it is a fact
of algebraic number theory that this gives F ∩K = Q.) And the composite field
L = FK = Q(ζn, ζm) is L = Q(ζnm). Because disc(F ) and disc(K) are coprime,
the last sentence of the previous section of this writeup and the previous display
together say that

OL = Z[ζnm].

Because we know that the integer ring of Q(ζn) is indeed Z[ζn] when n is a prime
power, the work here extends the result to all positive integers n.

5. Cyclotomic polynomial discriminant

This section is optional. We compute the discriminant of the nth cyclotomic
polynomial Φn(X) for the reader who wants to see it as a matter of practice, even
though this computation is not necessary for this writeup’s main goal of proving
that the nth cyclotomic field Q(ζn) has integer ring Z[ζn]. With this fact proved,
we know that disc(Φn) = disc(Q(ζn)). Because Q(ζn) has no complex embeddings
for n = 1, 2 and φ(n) complex embeddings for n ≥ 3, and this number of complex
embeddings is 2s = 2bφ(n)/2c in all cases, the sign of disc(Φn) is (−1)bφ(n)/2c. If
n is a prime p then this sign is

sgn(disc(Φp)) =

{
1 if p = 2 or p = 1 mod 4

−1 if p = 3 mod 4.

If n is a prime power pe then it is

sgn(disc(Φpe)) =

{
1 if pe = 2e with e 6= 2 or if p = 1 mod 4

−1 if pe = 4 or if p = 3 mod 4.

Because φ is multiplicative, sgn(disc(Φn)) in general is 1 when some 2e with e 6= 2
exactly divides n or if p | n for some p = 1 mod 4. Thus we need only to compute the
absolute value of disc(Φn). The sign of disc(Φn) can be computed directly, without
using the fact that disc(Φn) = disc(Q(ζn)), but doing so makes the calculation more
cluttered and so we omit it.

The prime power cyclotomic polynomial is

Φpe(X) = Φp(X
pe−1

) =
Xpe − 1

Xpe−1 − 1
.

Thus (Xpe−1 − 1)Φpe(X) = Xpe − 1, and then differentiating gives

(Xpe−1

− 1)Φ′pe(X) + pe−1Xpe−1−1Φpe(X) = peXpe−1.

Substitute X = ζipe for any i ∈ (Z/peZ)× to get (ζip
e−1

pe − 1)Φ′pe(ζipe) = peζ
i(pe−1)
pe ,

or

(ζip − 1)Φ′pe(ζipe) = peζ−ipe .

Multiply over all i ∈ (Z/peZ)×,

±
∏

i∈(Z/peZ)×
(ζip − 1) · disc(Φpe) = peφ(p

e)
∏

i∈(Z/peZ)×
ζipe .
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If pe = 2 then the last product is −1, otherwise its terms cancel pairwise to give 1.
Thus we have

±
∏

i∈(Z/peZ)×
(1− ζip) · disc(Φpe) = peφ(p

e),

which is to say, noting that the product is Φp(1)p
e−1

because the natural surjection
(Z/peZ)× −→ (Z/pZ)× has degree φ(pe)/φ(p) = pe−1,

disc(Φpe) = ±p(e(p−1)−1)p
e−1).

As above, the sign is (−1)bφ(p
e)/2c. That is,

disc(Φpe) = (−1)bφ(p
e)/2c(pe)φ(p

e)/pφ(p
e)/(p−1).

Especially disc(Φp) is a proper divisor of disc(Xp− 1) = −(−1)(
p+1
2 )pp from above,

disc(Φp) = (−1)b(p−1)/2cpp−2.

Now consider the case that n is divisible by at least two primes. First we show:

If n =
∏g
i=1 p

ei
i ( g ≥ 2, each ei ≥ 1) then

∏
j∈(Z/nZ)×(1− ζjn) = 1.

Indeed, for every positive integer m the polynomial equality
∏m−1
j=1 (X − ζjm) =∑m−1

i=1 Xi gives for X = 1 the relation
∏m−1
j=1 (1 − ζjm) = m. Especially, this holds

for m = n and for m = peii ,

n−1∏
j=1

(1− ζjn) = n,

p
ei
i −1∏
j=1

(1− ζj
p
ei
i

) = peii .

If j ∈ {1, . . . , n−1} takes the form j = j′n/peii , j′ ∈ {1, . . . , peii −1}, then ζjn = ζj
′

p
ei
i

and i is unique to j. So the product
∏n−1
j=1 (1 − ζjn) is a multiple of the product∏g

i=1

∏n/p
ei
i −1

j′=1 (1− ζj
′

p
ei
i

), and both of these products equal n. This says that with

S = {j ∈ {1, . . . , n− 1} not of the form j′n/peii for any j′ and i},

we have
∏
j∈S(1 − ζjn) = 1. The set S contains all values j ∈ {1, . . . , n − 1}

coprime to n, because n and j′n/peii share at least the factor
∏
k 6=i p

ek
k ; here we use

the condition that n is not a prime power. This shows that the rational integer∏
(j,n)=1(1 − ζjn), which divides 1 in Z[ζn] and therefore in Z, is ±1. Finally, it

is 1 because it consists of products of pairs of complex conjugate terms 1− ζjn and
1− ζ−jn , and each such product is positive.

Now we can compute the discriminant of Φn(X). The relation

Φn(X) =
(Xn − 1)

∏
p,q|n(Xn/pq − 1) · · ·∏

p|n(Xn/p − 1)
∏
p,q,r|n(Xn/pqr − 1) · · ·

differentiates at X = ζn to (noting that ζ
n/d
n = ζd)

Φ′n(ζn) =
nζ−1n

∏
p,q|n(ζpq − 1) · · ·∏

p|n(ζp − 1)
∏
p,q,r|n(ζpqr − 1) · · ·

.
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The same calculation holds with ζn replaced by ζin for each i ∈ (Z/nZ)×. Multiply
the equalities together, recalling that

∏
i∈(Z/pZ)×(1 − ζip) = p while if at least two

primes divide d then
∏
i∈(Z/dZ)×(1− ζid) = 1,

disc(Φn) = (−1)bφ(n)/2cnφ(n)/
∏
p|n

pφ(n)/(p−1).


