
DIRICHLET’S THEOREM ON ARITHMETIC PROGRESSIONS

1. Introduction

Question: Let a, N be integers with 0 ≤ a < N and gcd(a,N) = 1. Does the
arithmetic progression

{a, a+N, a+ 2N, a+ 3N, . . . }
contain infinitely many primes?

For example, if a = 4, N = 15, does the arithmetic progression

{4, 19, 34, 49, . . . }
contain infinitely many primes?

Answer (Dirichlet, 1837): Yes. Further, for fixed N the primes distribute
evenly among the arithmetic progressions for all such a.

For example, if N = 15, eight arithmetic progressions are candidates to contain
primes:

{1, 1 + 15, 1 + 2 · 15, 1 + 3 · 15, . . . },
{2, 2 + 15, 2 + 2 · 15, 2 + 3 · 15, . . . },
{4, 4 + 15, 4 + 2 · 15, 4 + 3 · 15, . . . },
{7, 7 + 15, 7 + 2 · 15, 7 + 3 · 15, . . . },
{8, 8 + 15, 8 + 2 · 15, 8 + 3 · 15, . . . },
{11, 11 + 15, 11 + 2 · 15, 11 + 3 · 15, . . . },
{13, 13 + 15, 13 + 2 · 15, 13 + 3 · 15, . . . },
{14, 14 + 15, 14 + 2 · 15, 14 + 3 · 15, . . . }.

In fact, each of these progressions contains infinitely many primes, and the primes
distribute evenly among them. The phrase distribute evenly will be defined more
precisely later on.

Contents

1. Introduction 1
2. Euler’s proof of infinitely many primes 2
3. Dirichlet characters 3
4. More on Dirichlet characters 5
5. Yet more on Dirichlet characters 6
6. L-functions and the first idea of Dirichlet’s proof 7
7. Analytic properties of L(χ, s) 7
8. The second idea of Dirichlet’s proof 8
9. Meromorphy of ζN (s) at s = 1 9
10. Review of the proofs 11
11. Place-holder continuation arguments 12

1



2 DIRICHLET’S THEOREM ON ARITHMETIC PROGRESSIONS

2. Euler’s proof of infinitely many primes

Recall some formulas:

• Geometric series:
∞∑
m=0

Xm = (1−X)−1, X ∈ C, |X| < 1,

• Logarithm series:

log(1−X)−1 =

∞∑
m=1

m−1Xm, X ∈ C, |X| < 1,

• Telescoping series:
∞∑
m=2

1

m(m− 1)
= 1.

(Proof: 1
m(m−1) = 1

m−1 −
1
m .)

First we establish Euler’s identity, in which P denotes the set of prime numbers,∑
n∈Z+

n−s =
∏
p∈P

(1− p−s)−1, s > 1.

The Fundamental Theorem of Arithmetic asserts that any n ∈ Z+ is uniquely
expressible as n = pe11 p

e2
2 . . . perr . . . with all ei ∈ N and almost all ei = 0. Euler’s

identity really just rephrases this fact:∑
n=2e

n−s =

∞∑
e=0

(2−s)e = (1− 2−s)−1,

∑
n=2e13e2

n−s =

∞∑
e1=0

(2−s)e1
∞∑
e2=0

(3−s)e2 = (1− 2−s)−1(1− 3−s)−1,

...∑
n=2e1 ···perr

n−s =

r∏
i=1

∞∑
ei=0

(p−si )ei =

r∏
i=1

(1− p−si )−1,

...∑
n∈Z+

n−s =
∏
p∈P

(1− p−s)−1.

With Euler’s identity in place, his proof that there are infinitely many primes
follows. Let

ζ(s) =
∑
n∈Z+

n−s =
∏
p∈P

(1− p−s)−1, s > 1.

By the product expansion of ζ,

log ζ(s) = log
∏
p∈P

(1− p−s)−1 =
∑
p∈P

log(1− p−s)−1 =
∑
p∈P

∞∑
m=1

m−1p−ms.
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That is,

log ζ(s) =
∑
p∈P

p−s +
∑
p∈P

∞∑
m=2

m−1p−ms.

But the second term in the previous display is small by a basic estimate, then the
geometric sum formula, then comparison with the telescoping series,∑

p∈P

∞∑
m=2

m−1p−ms <
∑
p∈P

∞∑
m=2

p−m =
∑
p∈P

1

p2(1− p−1)
=
∑
p∈P

1

p(p− 1)
< 1.

And so ∑
p∈P

p−s = log ζ(s) + ε, |ε| < 1.

By the sum expansion of ζ, lims→1+ ζ(s) =∞ because the harmonic series diverges.
So lims→1+ log ζ(s) =∞, and thus

lim
s→1+

∑
p∈P

p−s =∞.

The only way for the sum to diverge is if it is over an infinite set of summands, so
there must be infinitely many primes.

3. Dirichlet characters

Dirichlet augmented Euler’s idea by using Fourier analysis to pick off only the
primes p such that p ≡ a (mod N).

Let

G = (Z/NZ)×,

a finite abelian multiplicative group of order

|G| = φ(N) where φ is Euler’s totient function.

Define

G∗ = {homomorphisms : G −→ C×}.
Then G∗ forms a finite abelian multiplicative group also. Specifically, for any
χ1, χ2 ∈ G∗, define χ1χ2 by the rule

(χ1χ2)(g) = χ1(g)χ2(g), g ∈ G.
The identity element of G∗ is the character χ such that χ(g) = 1 for all g ∈ G, and
we use the symbol 1 (or 1N to emphasize N) to denote this character. The group G∗

is called the dual group of G. One can show that G∗ ∼= G by using the elementary
divisor structure of finite abelian groups (or by using the Sun Ze theorem and the
structure of the groups (Z/peZ)×), but the isomorphism is not canonical.

Proposition 3.1 (Orthogonality Relations). For each χ ∈ G∗,∑
g∈G

χ(g) =

{
|G| if χ = 1,

0 otherwise,

And for each g ∈ G, ∑
χ∈G∗

χ(g) =

{
|G| if g = 1,

0 otherwise.
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For the second orthogonality relation, an argument is needed that if g 6= 1G then
there is a character χ ∈ G∗ such that χ(g) 6= 1C. We will address this point later
in this writeup.

For any function f : G −→ C, the Fourier transform of f is a corresponding
function on the dual group,

f̂ : G∗ −→ C, f̂(χ) =
1

φ(N)

∑
x∈G

f(x)χ(x−1),

and then the Fourier series of f is

sf : G −→ C, sf =
∑
χ∈G∗

f̂(χ)χ.

The second orthogonality relation shows that the Fourier series synthesizes the
original function,

sf (x) =
∑
χ∈G∗

1

φ(N)

∑
y∈G

f(y)χ(y−1)χ(x)

=
∑
y∈G

f(y)
1

φ(N)

∑
χ∈G∗

χ(xy−1) = f(x).

Because the group G is finite, no qualifications on the function f , and no conver-
gence issues of any sort, are involved here.

Returning to the Dirichlet proof, specialize the function f : G −→ C to the
indicator function δa that picks off a (mod N),

δa(x) =

{
1 if x = a,

0 otherwise.

Then for any χ ∈ G∗, the χth Fourier coefficient 1/φ(N)
∑
x∈G δa(x)χ(x−1) of δa

is simply

δ̂a(χ) =
1

φ(N)
χ(a−1),

and so the Fourier series synthesis of δa,

δa =
1

φ(N)

∑
χ

χ(a−1)χ,

is inevitably just the second orthogonality relation,

1

φ(N)

∑
χ∈G∗

χ(xa−1) =

{
1 if x = a,

0 otherwise.

The Dirichlet proof is concerned with the sum
∑
p≡a(N) p

−s. The indicator func-

tion δa lets us take a sum over all primes instead and then replace δa by its Fourier
series from the penultimate display, obtaining∑

p≡a(N)

p−s =
∑
p∈P

δa(p)p−s =
1

φ(N)

∑
χ∈G∗

χ(a−1)
∑
p∈P

χ(p)p−s.

We will return to this formula soon.
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4. More on Dirichlet characters

Associate to any character χ ∈ G∗ a corresponding function from Z to C, also
called χ, as follows. First, there exists a least positive divisor M of N such that χ
factors as

χ = χo ◦ πM : (Z/NZ)×
πM−→ (Z/MZ)×

χo−→ C×.

The integer M is the conductor of χ, and the character χo is primitive. Note that

χo(n+MZ) = χ(n+NZ) if gcd(n,N) = 1,

but if gcd(n,M) = 1 while gcd(n,N) > 1 then χo(n+MZ) is defined and nonzero
even though χ(n + NZ) is undefined. Second, redefine the original symbol χ to
denote the primitive character χo lifted to a multiplicative function on the positive
integers,

χ : Z+ −→ C, χ(n) =

{
χo(n+MZ) if gcd(n,M) = 1,

0 if gcd(n,M) > 1.

The following relation, with the new χ on the left and the original χ on the right,

χ(n) = χ(n+NZ) if gcd(n,N) = 1,

justifies the multiple use of the symbol χ. For example, the orthogonality relations
are undisturbed if we apply the new χ to coset representatives rather than applying
the original χ to cosets. For gcd(n,N) > 1, χ(n) is defined and possibly nonzero,
while χ(n+NZ) is undefined. By default, we pass all Dirichlet characters through
the process described here, suppressing further reference to χo from the notation.

In particular, if N > 1 then the trivial character 1N ∈ G∗ does not lift directly to
the constant function 1 on the positive integers. However, 1N has conductor M = 1,
and the primitive trivial character 1 modulo 1 is identically 1 on (Z/1Z)× = {0}.
The primitive trivial character lifts to the constant function 1(n) = 1 for all n ∈ Z+.

For another example, the Dirichlet character χ : (Z/12Z)× −→ C× given by

1 + 12Z 7→ 1, 5 + 12Z 7→ −1, 7 + 12Z 7→ 1, 11 + 12Z 7→ −1

factors through the map π3 : (Z/12Z)× −→ (Z/3Z)×, which takes 1 + 12Z and
7 + 12Z to 1 + 3Z and takes 5 + 12Z and 11 + 12Z to 2 + 3Z, with the resulting
primitive character χo : (Z/3Z)× −→ C× being

1 + 3Z 7→ 1, 2 + 3Z 7→ −1.

Now the redefined χ : Z+ −→ C is

χ(n) =


0 if n ≡ 0 (mod 3),

1 if n ≡ 1 (mod 3),

−1 if n ≡ 2 (mod 3).

Overall there are four Dirichlet characters modulo 12, having conductors 1, 3, 4,
and 12, as follows. For each character χ = χm, having conductor m, the first four
columns are values χ(a+ 12Z) while the fifth column gives the nonzero values of χ
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after it is made primitive and then lifted to Z+.

1 5 7 11 nonzero values of χ on Z+

χ1 1 1 1 1 Z+ 7→ 1
χ3 1 −1 1 −1 1 + 3Z≥0 7→ 1, 2 + 3Z≥0 7→ −1
χ4 1 1 −1 −1 1 + 4Z≥0 7→ 1, 3 + 4Z≥0 7→ −1
χ12 1 −1 −1 1 {1, 11}+ 12Z≥0 7→ 1, {5, 7}+ 12Z≥0 7→ −1

The orthogonality relations say that the four rows of character values at 1, 5, 7,
and 11 form an (essentially) orthogonal matrix, and because the first row entries
are all 1 the entries of each other row sum to 0. We will return to the Dirichlet
characters modulo 12 later in this writeup.

5. Yet more on Dirichlet characters

Proposition 5.1. Let G be a finite abelian group, written additively, and let H
be a subgroup. Suppose that χ : H −→ C× is a character. Then χ extends to a
character of G, and there are [G : H] such extensions.

Proof. Consider any element g of G that does not lie in H. Some positive integer
multiple dg does lie in H, and we take the smallest such d. Consider the direct sum
H⊕〈g〉, which need not be a subgroup of G. Consider also the subgroup 〈−dg⊕dg〉
of the direct sum. The quotient (H⊕〈g〉)/〈−dg⊕dg〉 is isomorphic to the subgroup
H + 〈g〉 (nondirect sum) of G, which properly contains H.

Extend χ from H to the direct sum H ⊕ 〈g〉 by defining χ(h ⊕ 0) = χ(h) for
all h ∈ H and defining χ(0 ⊕ g) to be any complex number whose dth power is
χ(dg); there are d such extensions of χ. This extended χ is trivial on 〈−dg ⊕ dg〉
because χ(−dg ⊕ dg) = χ(−dg ⊕ 0)χ(0 ⊕ dg) = χ(dg)−1χ(0 ⊕ g)d = 1, and so it
descends to the quotient (H ⊕ 〈g〉)/〈−dg ⊕ dg〉. That is, the extended χ is defined
on the subgroup H + 〈g〉 of G that properly contains H. The number d of such
possible characters is also the index [H + 〈g〉 : H] of H in H + 〈g〉.

Repeat the process to extend the character χ until it is defined on all of G. The
nature of the construction shows that there are [G : H] extensions. �

As a small example let G = Z/4Z, notated {0, 1, 2, 3}, and let H = {0, 2}.
Consider the character χ : H −→ C× given by χ(0) = 1 and χ(2) = −1. Let g = 1,
an element of G and not of H but with 2g = 2 in H. To extend χ to g we must
take χ(g) to be a complex number that squares to χ(2), either of χ(g) = ±i. Now
χ is a homomorphism from H ⊕ 〈g〉 = {0, 2} ⊕ {0, 1, 2, 3} to C, and χ(−2 ⊕ 2) =
χ((−2⊕ 0) + (0⊕ 2)) = χ(−2⊕ 0)χ(0⊕ 2) = χ(2)−1χ(1)2 = (−1)−1(±i)2 = 1, so χ
is defined on the quotient ({0, 2}⊕{0, 1, 2, 3})/〈−2⊕2〉, in which 2⊕n ≡ 0⊕(n+2)
for n = 0, 1, 2, 3, making the quotient isomorphic to G. Thus the extended character
is either of χ(0) = 1, χ(1) = ±i, χ(2) = −1, χ(3) = ∓i.

Now return to the setting of this writeup, with the finite multiplicative abelian
group G = (Z/NZ)× for some N . This discussion has shown that any Dirichlet
character of any subgroup H of G extends to a Dirichlet character of G, and there
are |G|/|H| such extensions. Especially, for any g 6= 1G in G, the cyclic subgroup
H of G generated by g has a character that doesn’t take g to 1, and this character
extends to a character of G. This observation justifies the observation made earlier
in connection with the second orthogonality relation that if g 6= 1G then there is a
character χ ∈ G∗ such that χ(g) 6= 1C.
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6. L-functions and the first idea of Dirichlet’s proof

Recall that G = (Z/NZ)×, a ∈ G, and the goal is to show that the set

{p ∈ P : p ≡ a (mod N)}
is infinite.

For each χ ∈ G∗, with its corresponding χ : Z+ −→ C, define

L(χ, s) =
∑
n∈Z+

χ(n)n−s =
∏
p∈P

(1− χ(p)p−s)−1, s > 1.

The equality of the sum and product follow from a straightforward analogue of the
proof of Euler’s identity, because characters are homomorphisms. Then

logL(χ, s) =
∑
p∈P
m∈Z+

m−1χ(pm)p−ms =
∑
p∈P

χ(p)p−s +
∑
p∈P
m≥2

m−1χ(pm)p−ms,

and the second term has absolute value at most 1 by the argument in Euler’s proof.
Equivalently, ∑

p∈P
χ(p)p−s = logL(χ, s) + ε(χ), |ε(χ)| < 1.

Recall the formula that came from the Fourier series of the indicator function
of a (mod N), ∑

p≡a(N)

p−s =
1

φ(N)

∑
χ

χ(a−1)
∑
p∈P

χ(p)p−s.

The last sum
∑
p χ(p)p−s in the previous display is the left side of the penultimate

display. Thus the previous two displays combine to show that the desired sum is
close to the linear combination of {logL(χ, s)} whose coefficients are the Fourier
coefficients of the indicator function,∑

p≡a(N)

p−s =
1

φ(N)

∑
χ

χ(a−1) logL(χ, s) + ε, |ε| < 1.

This is the first idea of Dirichlet’s proof. Now the goal is to show that the right
side goes to +∞ as s → 1+. Already we know that the summand for the trivial
character does so. The crux of the matter will be that the finite value L(χ, 1) for
nontrivial χ is nonzero. Thus the summands for nontrivial characters are finite,
making the sum altogether infinite.

7. Analytic properties of L(χ, s)

We need to study the behavior of L(χ, s) as s → 1+. Even though s is real,
L(χ, s) still takes complex values. Bring complex analysis to bear on the matter by
viewing s as a complex variable. Begin by extending the definition of L(χ) to

L(χ, s) =
∑
n∈Z+

χ(n)n−s =
∏
p∈P

(1− χ(p)p−s)−1, s ∈ C, Re(s) > 1.

Here n−s = e−s lnn for n ∈ Z+. Thus, with s = σ + it, the size of n−s is |n−s| =
|e−(σ+it) lnn| = |n−σeit lnn| = n−σ. Consequently the sum expression for L(χ, s)
converges absolutely on the half plane {s : Re(s) > 1}, and the convergence is
uniform on compacta. Its summands, hence its partial sums, are analytic. So
L(χ, s) is analytic on the half plane.
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Proposition 7.1. The function L(χ, s) has a meromorphic continuation to the
right half plane {Re(s) > 0}. If χ = 1 then the extended function ζ(s) has a simple
pole at s = 1 with residue 1 and otherwise is analytic. If χ 6= 1 then the extended
function L(χ, s) is analytic.

Elementary arguments to be given at the end of this writeup establish the propo-
sition. In a separate writeup, results that subsume the proposition are proved by
methods that have greater scope.

We reiterate here that the identity

log ζ(s) ∼
∑
p∈P

p−s,

meaning that

lim
s→1+

log ζ(s)∑
p∈P p

−s = 1,

is the substance of Euler’s proof.

8. The second idea of Dirichlet’s proof

Recall that for s > 1,∑
p≡a(N)

p−s =
1

φ(N)

∑
χ

χ(a−1) logL(χ, s) + ε, |ε| < 1.

Also, L(1, s) → ∞ as s → 1+. We will show that for χ 6= 1, L(χ, 1) 6= 0 and thus
logL(χ, 1) is finite. Because |χ(a)−1| = 1 for all χ ∈ G∗, it follows that

lim
s→1+

∣∣∣∣∣∣
∑
χ∈G∗

χ(a)−1 logL(χ, s)

∣∣∣∣∣∣ = +∞

and Dirichlet’s proof is complete.

We study the function

ζN (s) =
∏
χ∈G∗

L(χ, s).

Because L(1, s) is meromorphic on {s : Re(s) > 0} with a simple pole at s = 1 and
all other L(χ, s) are analytic on {s : Re(s) > 0}, there are two possibilities. Either

ζN (s) is meromorphic on {s : Re(s) > 0} with a simple pole at s = 1

or

ζN (s) is analytic on {s : Re(s) > 0}.

We will rule out the second possibility to complete the proof.

The function ζN (s) has another definition as the cyclotomic Dedekind zeta func-
tion. A separate writeup describes ζN (s) this way, but in doing so it must invoke
some language and some results from algebraic number theory.
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9. Meromorphy of ζN (s) at s = 1

Lemma 9.1. Let p be prime. Let N = pdNp with p - Np. Let fp be the order of
p in (Z/NpZ)×, i.e., the smallest positive integer such that pfp ≡ 1 (mod Np). Let
gp = φ(Np)/fp. Then for any indeterminate T ,∏

χ∈G∗

(1− χ(p)T ) = (1− T fp)gp .

(See the comment immediately below for a careful parsing of the product in the
previous display.)

On the left side of the equality asserted by the lemma, the expression χ(p)
connotes that the character χ ∈ G∗ has been reduced to the primitive character
χo modulo M where M | N is the conductor of χ, then lifted M -periodically to
χ : Z+ −→ C, and this is the character that is evaluated at p.

When p - N , the process described in the previous paragraph merely reproduces
χ(p+NZ), now referring to the original χ. More generally, the process produces a
nonzero value χ(p) if and only if p does not divide the conductor M of the original χ.
That is, the multiplicand 1 − χ(p)T on the left side of the lemma’s equality is
nontrivial if and only if the original χ factors through (Z/NpZ)×. To repeat: only
the characters in G∗ that factor through (Z/NpZ)× contribute something other
than 1 to the left side of the lemma’s equality. Furthermore, any character in G∗

that does factor, χ = χNp
◦πN,Np

, is determined by χNp
. Thus, to prove the lemma

we may consider only characters modulo Np.
The subgroup 〈p+NpZ〉 of (Z/NpZ)× generated by p modulo NpZ has fp char-

acters; specifically, with ρ a primitive fpth root of unity in C, these characters take
p + NpZ to ρj for j = 1, . . . , fp − 1. Thus for each j there exist gp = φ(Np)/fp
characters χ modulo Np that take p to ρj . Now the proof of the lemma is immediate.

Proof. Let ρ be a primitive fpth root of unity in C. Then

fp−1∏
j=0

(1− ρjT ) = 1− T fp ,

and consequently, because gp characters χ ∈ G∗ take p to ρj for each j,∏
χ∈G∗

(1− χ(p)T ) =

fp−1∏
j=0

(1− ρjT )gp = (1− T fp)gp .

�

For example, we confirm the lemma directly for N = 12. Recall the four Dirichlet
characters modulo 12, having conductors 1, 3, 4, and 12.

1 5 7 11 nonzero values of χ on Z+

χ1 1 1 1 1 Z+ 7→ 1
χ3 1 −1 1 −1 1 + 3Z≥0 7→ 1, 2 + 3Z≥0 7→ −1
χ4 1 1 −1 −1 1 + 4Z≥0 7→ 1, 3 + 4Z≥0 7→ −1
χ12 1 −1 −1 1 {1, 11}+ 12Z≥0 7→ 1, {5, 7}+ 12Z≥0 7→ −1

First consider the prime p = 2. We have 1 − χ4(2)T = 1 and 1 − χ12(2)T = 1
because 2 divides the conductors; also 1−χ1(2)T = 1−T and 1−χ3(2)T = 1 +T ;
so altogether

∏
χ∈G∗(1 − χ(2)T ) = 1 − T 2. On the other hand, the values of N2
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and f2 and g2 for N = 12 are 3 and 2 and 1, and so also (1 − T f2)g2 = 1 − T 2,
confirming the lemma when N = 12 for p = 2. Similar arguments work for p =
3 with (Np, fp, gp) = (4, 2, 1), for p ≡ 1 (mod 12) with (Np, fp, gp) = (12, 1, 4),
and (together) for p ≡ 5, 7, 11 (mod 12) with (Np, fp, gp) = (12, 2, 2); because the
5, 7, and 11 columns in the previous table contain the same entries though in
different orders, they produce the same value of

∏
χ(1 − χ(p)T ). The reader can

similarly confirm the lemma for N = 18; here one character has conductor 1, one
has conductor 3, four have conductor 9, and the cases to check are p = 2, p = 3,
p ≡ 1 (mod 9), p ≡ 2, 5 (mod 9), p ≡ 4, 7 (mod 9), p ≡ 8 (mod 9).

In the lemma we could have let H = (Z/NpZ)×, which equals G for all p - N , and
then stated the lemma’s formula as a product over χ ∈ H∗ rather than worrying
about it holding for G∗. Our insistence on G∗ pays off in the simplicity of the next
proof.

Proposition 9.2. ζN (s) =
∏
p∈P

(1− p−fps)−gp for Re(s) > 1.

Proof. Compute, using the lemma with T = p−s at the last step,

ζN (s) =
∏
χ∈G∗

L(χ, s) =
∏
χ∈G∗

∏
p∈P

(1− χ(p)p−s)−1

=
∏
p∈P

∏
χ∈G∗

(1− χ(p)p−s)−1 =
∏
p∈P

(1− p−fps)−gp .

The product converges absolutely for Re(s) > 1, justifying the rearrangements. �

For a small example, let N = 3. There are two characters modulo 3, the triv-
ial character and the quadratic character (·/3), and so, not yet referring to the
proposition,

ζ3(s) =
∏
p∈P

(1− p−s)−1(1− (p/3)p−s)−1.

The pth factor is as follows.

• If p ≡ 1 (mod 3) then (p/3) = 1 and the pth factor of ζ3(s) is (1− p−s)−2;
this is (1− p−fps)−gp with fp = 1 and gp = 2.
• If p ≡ 2 (mod 3) then (p/3) = −1 and the pth factor of ζ3(s) is (1 −
p−s)−1(1 + p−s)−1 = (1− p−2s)−1; this is (1− p−fps)−gp with fp = 2 and
gp = 1.

• If p = 3 then (p/3) = 0 and the pth factor of ζ3(s) is (1 − p−s)−1; this is
(1− p−fps)−gp with f3 = 1 and g3 = 1.

We recognize these f and g values from our discussion of factorization in the cubic
integer ring D = Z[ω], to wit, p =

∏g
i=1 π

e
i where each πi has norm Nπ = pf and

efg = 2. Here ep = 1 in the first two cases above, while the value e3 = 2 in the third
case plays no role in the pth factor of ζ3(s). Recall that in D the primary prime
λ = 1 − ω divides 3 with (e, f, g) = (2, 1, 1) (3 is ramified), and two nonassociate
primary primes divide each p ≡ 1 (mod 3) with (e, f, g) = (1, 1, 2) (p splits), and
one primary prime divides each p ≡ 2 (mod 3) with (e, f, g) = (1, 2, 1) (p is inert).
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So we have shown that in fact (with π denoting primary primes in the next display)

ζ3(s) =
∏
p

(1− p−fps)−gp

= (1− 3−s)−1
∏
p≡31

(1− p−s)−2
∏
p≡32

(1− p−2s)−1

= (1− (Nλ)−s)−1
∏
p≡31

∏
π|p

(1− (Nπ)−s)−1
∏
p≡32

∏
π|p

(1− (Nπ)−s)−1

=
∏
π

(1− (Nπ)−s)−1.

That is, ζ3(s) =
∏
π(1 − (Nπ)−s)−1 generalizes the original zeta function ζ(s) =∏

p(1 − p−s)−1 from Z to D. Naturally we speculate that ζN (s) similarly extends

the original zeta function to Z[ζN ] where ζN = e2πi/N .

Theorem 9.3. ζN (s) has a simple pole at s = 1. Therefore L(χ, 1) 6= 0 for each
nontrivial character χ modulo N .

Proof. Otherwise ζN (s) is analytic on {s : Re(s) > 0} so that its product expression
converges there. But for s ∈ R+,

(1− p−fps)−gp =

( ∞∑
m=0

p−mfps

)gp
≥
∞∑
m=0

p−mφ(N)s = (1− p−φ(N)s)−1

(or one can show the inequality in a more elementary way1), and so for s > 1/φ(N),

ζN (s) ≥
∏
p∈P

(1− p−φ(N)s)−1 = ζ(φ(N)s).

Now letting s approach 1/φ(N) from the right shows that the product expression
of ζN diverges there. This gives a contradiction. �

We note that the complex analysis is being treated somewhat loosely here.

10. Review of the proofs

Let the notation f(s) ∼ g(s) mean lims→1+ f(s)/g(s) = 1. The three ideas in
Euler’s proof were

ζ(s) =
∑
n∈Z+

n−s =
∏
p∈P

(1− p−s)−1,

∑
p∈P

p−s ∼ log ζ(s),

lim
s→1+

ζ(s) =∞.

1 0 < p−fps < 1, so 0 < p−fpgps ≤ p−fps < 1, so 1 > 1 − p−fpgps > 1 − p−fps > 0, so
1 < (1− p−fpgps)−1 < (1− p−fps)−1 < (1− p−fps)−gp .
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The corresponding ideas in Dirichlet’s proof were

L(χ, s) =
∑
n∈Z+

χ(n)n−s =
∏
p∈P

(1− χ(p)p−s)−1,

∑
p∈P

p≡a(N)

p−s ∼ 1

φ(N)

∑
χ∈G∗

χ(a)−1 logL(χ, s),

lim
s→1

ζN (s) =∞ where ζN (s) =
∏
χ∈G∗

L(χ, s).

Consequently, ∑
p∈P

p≡a(N)

p−s ∼ 1

φ(N)
log ζ(s) ∼ 1

φ(N)

∑
p∈P

p−s.

In other words,

lim
s→1+

∑
p≡a(N) p

−s∑
p∈P p

−s =
1

φ(N)
.

That is, not only is the set {p ∈ P : p ≡ a (mod N)} infinite, but furthermore in
some limiting sense it contains 1/φ(N) of all the primes. This is the sense in which
the primes distribute evenly among the candidate arithmetic progressions a+NZ.

11. Place-holder continuation arguments

One way to continue the Euler–Riemann zeta function from {Re(s) > 1} to
{Re(s) > 0} is as follows. Compute that for Re(s) > 1,

ζ(s)− 1

s− 1
=

∞∑
n=1

n−s −
∫ ∞
1

t−s dt =

∞∑
n=1

∫ n+1

n

(n−s − t−s) dt.

This last sum is an infinite sum of analytic functions; call it ψ(s). For positive real s
it is the sum of small areas above the y = t−s curve but inside the circumscribing
box of the curve over each unit interval, and hence it is bounded absolutely by 1.
More generally, for complex s with positive real part we can quantify the smallness
of the sum as follows. For all t ∈ [n, n+ 1] we have

|n−s − t−s| = |s
∫ t

n

x−s−1 dx| ≤ |s|
∫ t

n

x−Re(s)−1 dx ≤ |s|n−Re(s)−1,

with the last quantity in the previous display independent of t and having the power
of n smaller by 1. It follows that∣∣∣∣∫ n+1

n

(n−s − t−s) dt

∣∣∣∣ ≤ |s|n−Re(s)−1.

This estimate shows that the sum

ψ(s) =

∞∑
n=1

∫ n+1

n

(n−s − t−s) dt

converges on {s : Re(s) > 0}, uniformly on compact subsets, making ψ(s) analytic
there. Thus

ζ(s) = ψ(s) +
1

s− 1
, Re(s) > 1.
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But the right side is meromorphic for Re(s) > 0, its only singularity for such s
being a simple pole at s = 1 with residue 1. The previous display extends ζ and
gives it the same properties.

The value ψ(1) = lims→1(ζ(s)− 1
s−1 ) is called Euler’s constant and denoted γ,

ζ(s) =
1

s− 1
+ γ +O(s− 1), γ =

∞∑
n=1

∫ n+1

n

(n−1 − t−1) dt.

With HN denoting the Nth harmonic number
∑N
n=1 n

−1, Euler’s constant is

γ = lim
N→∞

(HN − logN).

As above, this is the area above the y = 1/x curve for x ≥ 1 but inside the
circumscribing boxes [n, n+ 1]× [0, 1/n] for n ≥ 1.

One way to extend L(χ, s) to Re(s) > 0 for χ 6= 1 uses the discrete analogue of
integration by parts.

Proposition 11.1 (Summation by Parts). Let {an}n≥1 and {bn}n≥1 be complex
sequences. Define

An =

n∑
k=1

ak for n ≥ 0 (including A0 = 0),

so that

an = An −An−1 for n ≥ 1.

Also define

∆bn = bn+1 − bn for n ≥ 1.

Then for any 1 ≤ m ≤ n, the summation by parts formula is

n−1∑
k=m

akbk = An−1bn −Am−1bm −
n−1∑
k=m

Ak∆bk.

Proof. The formula is easy to verify in consequence of

akbk = Akbk+1 −Ak−1bk −Ak∆bk, k ≥ 1,

noting that the first two terms on the right side telescope when summed. �

For example, the proposition shows that
∑∞
k=1 ke

−k = e/(e− 1)2.
Returning to L(χ, s) =

∑
n∈Z+ χ(n)n−s where χ is nontrivial, the first orthogo-

nality relation gives

n0+N−1∑
n=n0

χ(n) = 0 for any n0 ∈ Z+.

Let {an} = {χ(n)} and {bn} = {n−s}, and note that {An} is bounded while
|∆bn| ≤ |s|n−Re(s)−1 as shown above. Summation by parts gives

L(χ, s) = lim
n

n−1∑
k=1

akbk = − lim
n

n−1∑
k=1

Ak∆bk,

and the right side converges on {s : Re(s) > 0}, uniformly on compacta. Thus
L(χ, s) is analytic on {s : Re(s) > 0}.
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Summation by parts gives a second argument for the continuation of the zeta
function as well. For any prime q, introduce the sequence of coefficients {an}
consisting of q − 1 times 1, then a single 1 − q, then q − 1 more times 1, then
another 1− q, and so on,

{an} = {1, 1, . . . , 1, 1− q, 1, 1, . . . , 1, 1− q, 1, 1, . . . , 1, 1− q, . . . }.
and consider the Dirichlet series

fq(s) =
∑
n≥1

ann
−s.

The sequence of partial sums of the coefficients is (starting at index 0 here)

{An} = {0, 1, 2, . . . , q − 1, 0, 1, 2, . . . , q − 1, 0, 1, 2, . . . , q − 1, 0, . . . }.
And so summation by parts shows that the Dirichlet series fq(s) is analytic on
Re(s) > 0.

Compute that for Re(s) > 1 (where we have absolute convergence and therefore
may rearrange terms freely),

fq(s) =
∑
n≥1

n−s − q
∑
n≥1

(qn)−s = (1− q1−s)ζ(s), Re(s) > 1.

Because fq(s) is analytic on {Re(s) > 0} and agrees with (1−q1−s)ζ(s) on {Re(s) >
1}, it follows that (1− q1−s)ζ(s) continues analytically to {Re(s) > 0}. Therefore
ζ(s) continues meromorphically to {Re(s) > 0} with poles possible only where
q1−s = 1.

Because q1−s = e(1−s) ln q, the condition q1−s = 1 is s ∈ 1 + 2πiZ/ ln q. Thus
the only possible poles of ζ(s) in {Re(s) > 0} are distributed evenly along the line
Re(s) = 1 with spacing 2π/ ln q. However, the prime q is arbitrary, and the sets
2πZ/ ln q and 2πZ/ ln q′ for distinct primes q and q′ meet only at 0. Thus the only
possible pole of the extended ζ(s) is at s = 1. This completes the proof.


